digraph { graph [size="30.75,30.75"] node [align=left fontname=monospace fontsize=10 height=0.2 ranksep=0.1 shape=box style=filled] 5224613344 [label=" (1, 4)" fillcolor=darkolivegreen1] 5224438512 [label=AddmmBackward0] 5224438224 -> 5224438512 5225252960 [label="fc.10.bias (4)" fillcolor=lightblue] 5225252960 -> 5224438224 5224438224 [label=AccumulateGrad] 5224438320 -> 5224438512 5224438320 [label=ReluBackward0] 5224438368 -> 5224438320 5224438368 [label=AddmmBackward0] 5224438080 -> 5224438368 5225252800 [label="fc.8.bias (16)" fillcolor=lightblue] 5225252800 -> 5224438080 5224438080 [label=AccumulateGrad] 5224438128 -> 5224438368 5224438128 [label=ReluBackward0] 5224437984 -> 5224438128 5224437984 [label=AddmmBackward0] 5224437792 -> 5224437984 5225252640 [label="fc.6.bias (32)" fillcolor=lightblue] 5225252640 -> 5224437792 5224437792 [label=AccumulateGrad] 5224437840 -> 5224437984 5224437840 [label=ReluBackward0] 5224437696 -> 5224437840 5224437696 [label=AddmmBackward0] 5224437552 -> 5224437696 5225252480 [label="fc.4.bias (64)" fillcolor=lightblue] 5225252480 -> 5224437552 5224437552 [label=AccumulateGrad] 5224437312 -> 5224437696 5224437312 [label=ReluBackward0] 4986133616 -> 5224437312 4986133616 [label=AddmmBackward0] 4478509936 -> 4986133616 5225252320 [label="fc.2.bias (128)" fillcolor=lightblue] 5225252320 -> 4478509936 4478509936 [label=AccumulateGrad] 4478865216 -> 4986133616 4478865216 [label=ReluBackward0] 5225134064 -> 4478865216 5225134064 [label=AddmmBackward0] 5225133776 -> 5225134064 5225252160 [label="fc.0.bias (256)" fillcolor=lightblue] 5225252160 -> 5225133776 5225133776 [label=AccumulateGrad] 5225133824 -> 5225134064 5225133824 [label=ViewBackward0] 5225133632 -> 5225133824 5225133632 [label=MulBackward0] 5225135648 -> 5225133632 5225135648 [label=ReluBackward0] 5225135744 -> 5225135648 5225135744 [label=NativeBatchNormBackward0] 5225135840 -> 5225135744 5225135840 [label=ConvolutionBackward0] 5225136032 -> 5225135840 5225136032 [label=MulBackward0] 5224718496 -> 5225136032 5224718496 [label=ReluBackward0] 5224718592 -> 5224718496 5224718592 [label=NativeBatchNormBackward0] 5224718688 -> 5224718592 5224718688 [label=ConvolutionBackward0] 5224718880 -> 5224718688 5224718880 [label=MulBackward0] 5224719072 -> 5224718880 5224719072 [label=ReluBackward0] 5224719168 -> 5224719072 5224719168 [label=NativeBatchNormBackward0] 5224719264 -> 5224719168 5224719264 [label=ConvolutionBackward0] 5224719456 -> 5224719264 5224719456 [label=MulBackward0] 5224719648 -> 5224719456 5224719648 [label=ReluBackward0] 5224719744 -> 5224719648 5224719744 [label=NativeBatchNormBackward0] 5224719840 -> 5224719744 5224719840 [label=ConvolutionBackward0] 5224720032 -> 5224719840 5224720032 [label=MulBackward0] 5224720224 -> 5224720032 5224720224 [label=ReluBackward0] 5224720320 -> 5224720224 5224720320 [label=NativeBatchNormBackward0] 5224720416 -> 5224720320 5224720416 [label=ConvolutionBackward0] 5224720608 -> 5224720416 5224790912 [label="layer1.0.weight (16, 1, 5, 5)" fillcolor=lightblue] 5224790912 -> 5224720608 5224720608 [label=AccumulateGrad] 5224720560 -> 5224720416 5224791152 [label="layer1.0.bias (16)" fillcolor=lightblue] 5224791152 -> 5224720560 5224720560 [label=AccumulateGrad] 5224720368 -> 5224720320 5224788992 [label="layer1.1.weight (16)" fillcolor=lightblue] 5224788992 -> 5224720368 5224720368 [label=AccumulateGrad] 5224720128 -> 5224720320 5225146624 [label="layer1.1.bias (16)" fillcolor=lightblue] 5225146624 -> 5224720128 5224720128 [label=AccumulateGrad] 5224719984 -> 5224719840 5225147104 [label="layer2.0.weight (32, 16, 5, 5)" fillcolor=lightblue] 5225147104 -> 5224719984 5224719984 [label=AccumulateGrad] 5224719936 -> 5224719840 5225147184 [label="layer2.0.bias (32)" fillcolor=lightblue] 5225147184 -> 5224719936 5224719936 [label=AccumulateGrad] 5224719792 -> 5224719744 5225147264 [label="layer2.1.weight (32)" fillcolor=lightblue] 5225147264 -> 5224719792 5224719792 [label=AccumulateGrad] 5224719552 -> 5224719744 5225147344 [label="layer2.1.bias (32)" fillcolor=lightblue] 5225147344 -> 5224719552 5224719552 [label=AccumulateGrad] 5224719408 -> 5224719264 5225147744 [label="layer3.0.weight (64, 32, 5, 5)" fillcolor=lightblue] 5225147744 -> 5224719408 5224719408 [label=AccumulateGrad] 5224719360 -> 5224719264 5225147824 [label="layer3.0.bias (64)" fillcolor=lightblue] 5225147824 -> 5224719360 5224719360 [label=AccumulateGrad] 5224719216 -> 5224719168 5225147904 [label="layer3.1.weight (64)" fillcolor=lightblue] 5225147904 -> 5224719216 5224719216 [label=AccumulateGrad] 5224718976 -> 5224719168 5225147984 [label="layer3.1.bias (64)" fillcolor=lightblue] 5225147984 -> 5224718976 5224718976 [label=AccumulateGrad] 5224718832 -> 5224718688 5225250880 [label="layer4.0.weight (128, 64, 5, 5)" fillcolor=lightblue] 5225250880 -> 5224718832 5224718832 [label=AccumulateGrad] 5224718784 -> 5224718688 5225250960 [label="layer4.0.bias (128)" fillcolor=lightblue] 5225250960 -> 5224718784 5224718784 [label=AccumulateGrad] 5224718640 -> 5224718592 5225251040 [label="layer4.1.weight (128)" fillcolor=lightblue] 5225251040 -> 5224718640 5224718640 [label=AccumulateGrad] 5224718400 -> 5224718592 5225251120 [label="layer4.1.bias (128)" fillcolor=lightblue] 5225251120 -> 5224718400 5224718400 [label=AccumulateGrad] 5225135984 -> 5225135840 5225251520 [label="layer5.0.weight (256, 128, 5, 5)" fillcolor=lightblue] 5225251520 -> 5225135984 5225135984 [label=AccumulateGrad] 5225135936 -> 5225135840 5225251600 [label="layer5.0.bias (256)" fillcolor=lightblue] 5225251600 -> 5225135936 5225135936 [label=AccumulateGrad] 5225135792 -> 5225135744 5225251680 [label="layer5.1.weight (256)" fillcolor=lightblue] 5225251680 -> 5225135792 5225135792 [label=AccumulateGrad] 5225135552 -> 5225135744 5225251760 [label="layer5.1.bias (256)" fillcolor=lightblue] 5225251760 -> 5225135552 5225135552 [label=AccumulateGrad] 5225133872 -> 5225134064 5225133872 [label=TBackward0] 5225135696 -> 5225133872 5225252080 [label="fc.0.weight (256, 200704)" fillcolor=lightblue] 5225252080 -> 5225135696 5225135696 [label=AccumulateGrad] 5225134160 -> 4986133616 5225134160 [label=TBackward0] 5225135600 -> 5225134160 5225252240 [label="fc.2.weight (128, 256)" fillcolor=lightblue] 5225252240 -> 5225135600 5225135600 [label=AccumulateGrad] 5224437504 -> 5224437696 5224437504 [label=TBackward0] 4986133568 -> 5224437504 5225252400 [label="fc.4.weight (64, 128)" fillcolor=lightblue] 5225252400 -> 4986133568 4986133568 [label=AccumulateGrad] 5224437888 -> 5224437984 5224437888 [label=TBackward0] 5192022144 -> 5224437888 5225252560 [label="fc.6.weight (32, 64)" fillcolor=lightblue] 5225252560 -> 5192022144 5192022144 [label=AccumulateGrad] 5224438416 -> 5224438368 5224438416 [label=TBackward0] 5224437648 -> 5224438416 5225252720 [label="fc.8.weight (16, 32)" fillcolor=lightblue] 5225252720 -> 5224437648 5224437648 [label=AccumulateGrad] 5224438272 -> 5224438512 5224438272 [label=TBackward0] 5224437744 -> 5224438272 5225252880 [label="fc.10.weight (4, 16)" fillcolor=lightblue] 5225252880 -> 5224437744 5224437744 [label=AccumulateGrad] 5224438512 -> 5224613344 }