File size: 17,392 Bytes
6146368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# Building Hungarian Matcher
# Borrow code from AnchorDETR
# We replace bounding box matching with point location matching
import numpy as np
import torch
from scipy.optimize import linear_sum_assignment
from torch import nn

from utils.box_ops import box_cxcywh_to_xyxy, generalized_box_iou, box_iou


class HungarianMatcher(nn.Module):
    def __init__(self, cost_class: float = 1.0, cost_points: float = 1.0):

        """Create the matcher
        Params:
        cost_class: Class weight
        cost_dists: distance weight
        """
        super().__init__()
        self.cost_class = cost_class
        self.cost_points = cost_points

    def forward(self, outputs, targets):
        """Matching pipeline

        Args:
            outputs (dict): contains at least two params:
            pred_logits: [batch_size, num_queries, num_classes]: classification logits
            pred_points: [batch_size, num_queries, 2]: predicted points
            targets (list of targets, where len(targets) = batch_size), each target is a dict containing
            labels: tensor of dim [num_target_boxes] containing the class label
            points: tensor of dim [num_target_boxes,2]: target points coordinate
        
        Returns:
            A list of size batch_size, containing the tuple of (index_i, index_j) where:
             - index_i: index of selected predictions (in order)
             - index_j: index of corresponding selected targets

        """
        with torch.no_grad():
            bs, num_queries = outputs["pred_logits"].shape[:2]
            # Flatten to compute cost matrix of the batch
            out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid()
            out_points = outputs["pred_points"].flatten(0, 1)  # [batch_size * num_queries, 2]

            # Also concat target labels and points
            tgt_ids = torch.cat([v["labels"] for v in targets])
            tgt_points = torch.cat([v["points"] for v in targets])  # [batch_size*num_targets,2]
            # Compute the classification loss
            alpha = 0.25
            gamma = 2.0
            neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log())
            pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
            cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids]  # [num_queries, num_targets]
            # L1 loss
            cost_points = torch.cdist(out_points, tgt_points, p=1)
            # Add cost
            C = self.cost_class * cost_class + self.cost_points * cost_points
            C = C.view(bs, num_queries, -1).cpu()

            sizes = [len(v["points"]) for v in targets]
            indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
            return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]


class PointsDistance(nn.Module):
    def __init__(self, dist_type):

        """
        Accept two distance type: EMD and Chamfer
        """
        super().__init__()
        self.dist_type = dist_type

    def _get_src_permutation_idx(self, indices):

        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def em_distance(self, outputs, targets):
        with torch.no_grad():
            bs, num_queries = outputs["pred_points"].shape[:2]
            out_points = outputs["pred_points"].flatten(0, 1)  # [batch_size * numqueries,2]
            tgt_points = torch.cat([v["points"] for v in targets])  # [batch_size * num_targets,2]
            C = torch.norm(
                out_points[:, None, :] - tgt_points[None, :, :], p=2, dim=-1
            )  # [batch_size*num_queries,batch_size*num_targets]
            C = C.view(bs, num_queries, -1).cpu()
            sizes = [len(v["points"]) for v in targets]
            indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
            indices = [
                (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices
            ]

        idx = self._get_src_permutation_idx(indices)
        src_points = outputs["pred_points"][idx]
        tgt_points = torch.cat([t["points"][i] for t, (_, i) in zip(targets, indices)])

        dists = torch.norm(src_points - tgt_points, p=2, dim=-1)
        return torch.mean(dists), indices

    def chamfer_distance(self, outputs, targets):
        with torch.no_grad():
            bs, num_queries = outputs["pred_points"].shape[:2]
            out_points = outputs["pred_points"].flatten(0, 1)  # [batch_size * num_queries,2]
            tgt_points = torch.cat([v["points"] for v in targets])  # [batch_size * num_targets,2]
            C = torch.norm(
                out_points[:, None, :] - tgt_points[None, :, :], p=2, dim=-1
            )  # [batch_size * num_queries, batch_size * num_targets]
            C = C.view(bs, num_queries, -1)  # [batch_size, num queries, num_targets]

            indices_src = torch.argmin(C, dim=1)
            indices_tgt = torch.argmin(C, dim=2)

        src_points = outputs["pred_points"]
        tgt_points = torch.stack([v["points"] for v in targets])
        matched_src = tgt_points[torch.arange(indices_tgt.shape[0]), torch.reshape(indices_tgt, [-1])]
        matched_tgt = src_points[torch.arange(indices_src.shape[0]), torch.reshape(indices_src, [-1])]

        src_points = src_points.flatten(0, 1)
        tgt_points = tgt_points.flatten(0, 1)

        chamfer_dist = torch.mean(torch.norm(src_points - matched_src, p=2, dim=-1)) + torch.mean(
            torch.norm(matched_tgt - tgt_points, p=2, dim=-1)
        )

        return chamfer_dist, indices_src

    def forward(self, outputs, targets):
        if self.dist_type == "emd":
            return self.em_distance(outputs, targets)
        elif self.dist_type == "chamfer":
            return self.chamfer_distance(outputs, targets)

        else:
            raise NotImplementedError("not support other distance")


class ChamferDistanceMatching(nn.Module):
    def __init__(self, point_cost, giou_cost):
        super().__init__()
        self.point_cost = point_cost
        self.giou_cost = giou_cost

    def forward(self, outputs, targets):
        """
        Expected parameters in the form
        dictionary, expected in the form:
        pred_boxes: [l,t,r,b]: the bounding position corresponds to anchor position
        points: [x,y]: coordinates of each anchor points
        targets: list of dictionary
        boxes: [cx,cy,w,h]: target bounding boxes
        """
        with torch.no_grad():
            bs, num_queries = outputs["pred_boxes"].shape[:2]
            out_boxes = outputs["pred_boxes"].flatten(0, 1)  # [batch_size*num_queries,4]
            tgt_boxes = torch.cat([v["boxes"] for v in targets])  # [batch_size * num_targets,4]

            cost_points = torch.cdist(
                out_boxes[..., :2], tgt_boxes[..., :2]
            )  # [batch_size*num_queries,batch_size*num_targets]
            cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_boxes), box_cxcywh_to_xyxy(tgt_boxes))

            C = self.point_cost * cost_points + self.giou_cost * cost_giou

            C = C.view(bs, num_queries, -1).cpu()

            indices_src = torch.argmin(C, dim=1)
            indices_tgt = torch.argmin(C, dim=2)

        return indices_src, indices_tgt


def match_points_to_boxes(ref_points, param):
    """
    Args:
    ref_points: [2, num_points]
    param: [num_boxes, 4]
    Returns:
    points_in_boxes: [num_points_in_gt, 2]
    points_outside_boxes: [num_points_outside_gt, 2]
    """
    ref_points = ref_points.type(torch.float32)
    param = param.type(torch.float32)
    points_in_boxes = torch.logical_and(
        torch.logical_and(
            ref_points[1] >= param[:, 0].unsqueeze(1), ref_points[1] <= param[:, 2].unsqueeze(1)
        ),
        torch.logical_and(
            ref_points[0] >= param[:, 1].unsqueeze(1), ref_points[0] <= param[:, 3].unsqueeze(1)
        ),
    )

    mask_points_in = points_in_boxes.sum(dim=0) > 0
    mask_points_out = torch.logical_not(mask_points_in)
    # points_in_boxes = ref_points[:, mask_points_in]
    # points_outside_boxes = ref_points[:, mask_points_out]
    return mask_points_in, mask_points_out


class PointLossHungarianMatcher(nn.Module):

    def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1):
        """Creates the matcher

        Params:
            cost_class: This is the relative weight of the classification error in the matching cost
            cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
            cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
        """
        super().__init__()
        self.cost_class = cost_class
        self.cost_bbox = cost_bbox
        self.cost_giou = cost_giou
        assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0"

    def forward(self, outputs, targets, ref_points=None):
        """ Performs the matching

        Params:
            outputs: This is a dict that contains at least these entries:
                 "box_v": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
                 "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates

            targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
                 "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
                           objects in the target) containing the class labels
                 "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates

        Returns:
            A list of size batch_size, containing tuples of (index_i, index_j) where:
                - index_i is the indices of the selected predictions (in order)
                - index_j is the indices of the corresponding selected targets (in order)
            For each batch element, it holds:
                len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
        """
        with torch.no_grad():
            bs, num_queries = outputs["box_v"].shape[:2]

            # We flatten to compute the cost matrices in a batch
            out_prob = outputs["box_v"].flatten(0, 1).sigmoid()
            out_bbox = outputs["pred_boxes"].flatten(0, 1)  # [batch_size * num_queries, 4]

           # Also concat the target labels and boxes
            tgt_ids = torch.cat([v["labels"] for v in targets])
            tgt_bbox = torch.cat([v["boxes"] for v in targets])

            # Compute the L1 cost between boxes
            cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1)

            # Compute the giou cost betwen boxes
            iou, unions = box_iou(out_bbox, tgt_bbox)
            cost_giou = - generalized_box_iou(out_bbox, tgt_bbox)
            # Final cost matrix
            C = self.cost_bbox * cost_bbox + self.cost_giou * cost_giou
            C = C.view(bs, num_queries, -1).cpu()

            sizes = [len(v["boxes"]) for v in targets]
            indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]

            non_mathced_gt_bbox_idx = \
                np.nonzero(np.logical_not(np.in1d(np.array([i for i in range(tgt_bbox.shape[0])]), indices[0][1])))[0]
            non_mathced_gt_bbox_idx = np.concatenate(
                (non_mathced_gt_bbox_idx, torch.where(iou.max(dim=0)[0] == 0)[0].cpu().numpy()))
            non_mathced_gt_bbox_idx = [torch.tensor(non_mathced_gt_bbox_idx, dtype=torch.int64).unique()]
            remove_mask = np.logical_not(np.in1d(indices[0][1], non_mathced_gt_bbox_idx[
                0].cpu()))
            ind0 = indices[0][0][remove_mask]
            ind1 = indices[0][1][remove_mask]
            non_mathced_pred_bbox_idx = \
                np.nonzero(np.logical_not(np.in1d(np.array([i for i in range(out_bbox.shape[0])]), indices[0][0])))[0]

            match_indexes = [(torch.as_tensor(ind0, dtype=torch.int64), torch.as_tensor(ind1, dtype=torch.int64))]
            return match_indexes, non_mathced_gt_bbox_idx, non_mathced_pred_bbox_idx

    # from matplotlib import pyplot as plt
# import matplotlib.colors as mcolors
# # colors = mcolors.CSS4_COLORS#['r', 'g','b','y','c','gray','brown','lightblue']
# # colors = sorted(
# #             colors, key=lambda c: tuple(mcolors.rgb_to_hsv(mcolors.to_rgb(c))))
#
# colors = [
#     'violet', 'khaki', 'aquamarine', 'darkslategray', 'orchid', 'cornflowerblue',
#     'darkgreen', 'peru', 'darkorange', 'mediumseagreen', 'darkviolet', 'dodgerblue',
#     'rosybrown', 'mediumorchid', 'cadetblue', 'darkgoldenrod', 'slateblue', 'springgreen', 'firebrick',
#     'blue', 'orange', 'green', 'red', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan',
#     'navy', 'coral', 'lime', 'tomato', 'indigo', 'sienna', 'magenta', 'silver', 'gold', 'teal'
# ]
#
#
# plt.clf()
# # for i in range(out_bbox.shape[0]):
# #     box = out_bbox[i].cpu()
# #     plt.plot([box[0], box[0], box[2], box[2], box[0]],
# #              [box[1], box[3], box[3], box[1], box[1]], color='black')
#
# for i in range(indices[0][0].shape[0]):
#     box = out_bbox[indices[0][0][i]].cpu()
#     plt.plot([box[0], box[0], box[2], box[2], box[0]],
#                             [box[1], box[3], box[3], box[1], box[1]], color=colors[i])
#
#     box = tgt_bbox[indices[0][1][i]].cpu()
#     if indices[0][1][i] == 1:
#         plt.plot([box[0], box[0], box[2], box[2], box[0]],
#                  [box[1], box[3], box[3], box[1], box[1]], color=colors[i], linewidth=3)
#     plt.plot([box[0], box[0], box[2], box[2], box[0]],
#              [box[1], box[3], box[3], box[1], box[1]], color=colors[i])
# plt.savefig("Matcbed_bboxes_9")
# #
# print(sorted(indices[0][1]))
def build_matcher(args):
    return PointLossHungarianMatcher(args.cost_class, args.cost_bbox, args.cost_giou)


def build_chamfer_matcher(args):
    return ChamferDistanceMatching(args.chamfer_point_cost, args.chamfer_giou_cost)


class PointHungarianMatcher(nn.Module):
    """This class computes an assignment between the targets and the predictions of the network
    For efficiency reasons, the targets don't include the no_object. Because of this, in general,
    there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
    while the others are un-matched (and thus treated as non-objects).
    """

    def __init__(
        self, cost_point: float = 1,
    ):
        """Creates the matcher
        Params:
            cost_class: This is the relative weight of the classification error in the matching cost
            cost_point: This is the relative weight of the L1 error of the point in the matching cost
        """
        super().__init__()
        self.cost_point = cost_point
        assert cost_point != 0, "all costs cant be 0"

    def forward(self, outputs, targets):
        """ Performs the matching
        Params:
            outputs: This is a dict that contains at least these entries:
                 "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
                 "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
            targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
                 "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
                           objects in the target) containing the class labels
                 "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
        Returns:
            A list of size batch_size, containing tuples of (index_i, index_j) where:
                - index_i is the indices of the selected predictions (in order)
                - index_j is the indices of the corresponding selected targets (in order)
            For each batch element, it holds:
                len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
        """
        with torch.no_grad():
            bs, num_queries = outputs["pred_logits"].shape[:2]
            # We flatten to compute the cost matrices in a batch
            out_point = outputs["pred_points"].flatten(0, 1)  # [batch_size * num_queries, 4]

            # Also concat the target point
            tgt_point = torch.cat([v["points"] for v in targets])

            # Compute the L1 cost between points
            cost_point = torch.cdist(out_point, tgt_point, p=1)

            # Final cost matrix
            C = self.cost_point * cost_point
            C = C.view(bs, num_queries, -1).cpu()

            sizes = [len(v["boxes"]) for v in targets]
            indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
            return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]


def build_centerness_matcher(args):
    return PointHungarianMatcher(cost_point=args.set_cost_points)