File size: 7,188 Bytes
11118c6
 
b9fb926
 
11118c6
69d9c01
11118c6
ef3f9b1
32ffec2
b9fb926
48eed47
2b94494
69d9c01
ef3f9b1
 
 
 
 
11118c6
ef3f9b1
 
 
 
 
7616bd7
69d9c01
ef3f9b1
 
 
11118c6
32ffec2
 
 
 
1244666
 
48eed47
1244666
 
48eed47
8424804
11118c6
aea93fc
8424804
32ffec2
932fdef
aea93fc
ef3f9b1
 
48eed47
11118c6
ef3f9b1
 
 
11118c6
ef3f9b1
 
69d9c01
302e248
48eed47
32ffec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef3f9b1
 
 
 
 
32ffec2
ef3f9b1
32ffec2
ef3f9b1
32ffec2
8319fac
11118c6
 
3446916
 
 
ef3f9b1
48eed47
32ffec2
69d9c01
ef3f9b1
 
 
 
3446916
11118c6
 
 
 
 
 
 
8424804
11118c6
 
a6df1c4
ef3f9b1
 
 
32ffec2
ef3f9b1
 
 
 
 
 
 
 
 
 
 
 
 
11118c6
 
 
 
 
 
 
ef3f9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import gradio as gr
import torch
from torch import nn

import numpy as np
import pandas as pd

from utils2 import compute_features
from scipy.stats import nbinom

from xgboost import XGBRegressor
import json

# class NegBinomialModel(nn.Module):
#     def __init__(self, in_features):
#         super().__init__()
#         self.linear = nn.Linear(in_features, 1)
#         self.alpha = nn.Parameter(torch.tensor(0.5))

#     def forward(self, x):
#         # safer activation than exp()
#         mu = torch.exp(torch.clamp(self.linear(x), min=-5, max=5))
#         alpha = torch.clamp(self.alpha, min=1e-3, max=10)
#         return mu.squeeze(), alpha

    
# model = NegBinomialModel(12)
# model.load_state_dict(torch.load("model_weights.pt", map_location='cpu'))
# model.eval()

# MU_BANKS = 2.6035915713614286
# STD_BANKS = 3.0158890435512125


# with open("xgb_model(1).json", "r") as f:
#     params = json.load(f)

xgb_model = XGBRegressor()
xgb_model.load_model("xgb_model(1).json")

def predict_score(lat, lon, api_key):
    # Convert input to tensor
    # inputs = torch.tensor([[lat, lon]], dtype=torch.float32)
    inputs = compute_features((lat,lon), api_key)
    print("[INPUTS]", inputs)
    num_banks = inputs.pop("num_banks_in_radius", 0)

    input_dict = inputs.copy()

    inputs = torch.tensor(list(inputs.values()), dtype=torch.float32)

    # # Get model output
    # with torch.no_grad():
    #     mu_pred, alpha = model(inputs)

    # # Unpack into respective values
    # mu_pred = mu_pred.numpy().flatten()

    mu_pred2 = xgb_model.predict(inputs.unsqueeze(0).numpy())

    # r = 1/alpha
    # p = r / (r + mu_pred)

    # # Compute pmf and mode
    # k_mode = int((r - 1) * (1 - p) / p)  # mode of NB
    # p_k = nbinom.pmf(num_banks, r, p)
    # p_mode = nbinom.pmf(k_mode, r, p)

    # # Score normalized 0–100
    # score = (p_k / p_mode) * 100
    # score = np.clip(score, 0, 100)

    # diff = (num_banks - mu_pred) / (mu_pred + 1e-6)
    # # score = (1 - np.tanh(diff))

    # print("[TANH]", np.tanh(diff))

    # diff = mu_pred2 - num_banks
    # score = 100 / (1 + np.exp(-alpha * diff))

    # score = np.abs(1 + np.tanh(diff)) / 2 * 100


    # score = (1 * np.abs(mu_pred2 + 0.1)) * 100

    # score = np.sigmoid(mu_pred2 - num_banks + 0.1) * 100

    score =  100 / (1 + np.exp(num_banks - mu_pred2))

    # You can apply any post-processing here
    return (
        round(float(score), 3),
        num_banks,
        # round(float(mu_pred), 3),
        round(float(mu_pred2), 3),
        # round(float(log_score),3)
        # "Normal Score": round(float(normal_score), 3),
        input_dict["total_amenities"],

        *[v for k,v in input_dict.items() if k[:3] == "num"]

    )

# ======== Gradio Interface ========
interface = gr.Interface(
    fn=predict_score,
    inputs=[
        gr.Number(label="Latitude"),
        gr.Number(label="Longitude"),
        gr.Text(label="GOOGLE API KEY")
    ],
    outputs=[
        gr.Number(label="Score (0 - 100)"),
        gr.Number(label="Current ATMs"),
        # gr.Number(label="Number of Ideal Banks (Negative Binomial)"),
        gr.Number(label="Ideal ATMs (XGBoost)"),
        # gr.Number(label="Log Score Probability"),

        gr.Number(label="Total Amenities"),

        gr.Number(label="Dining and Drinking"),
        gr.Number(label="Community and Government"),
        gr.Number(label="Retail"),
        gr.Number(label="Business and Professional Services"),
        gr.Number(label="Landmarks and Outdoors"),
        gr.Number(label="Arts and Entertainment"),
        gr.Number(label="Health and Medicine"),
        gr.Number(label="Travel and Transportation"),
        gr.Number(label="Sports and Recreation"),
        gr.Number(label="Event"),
    ],
    title="Bank Location Scoring Model",
    description="Enter latitude and longitude to get the predicted score, number of banks, and normalized score.",
)


interface.launch()


# import gradio as gr
# import torch
# from torch import nn

# import numpy as np
# import pandas as pd

# from utils import compute_features
# from scipy.stats import nbinom

# from xgboost import XGBRegressor
# import json

# class NegBinomialModel(nn.Module):
#     def __init__(self, in_features):
#         super().__init__()
#         self.linear = nn.Linear(in_features, 1)
#         self.alpha = nn.Parameter(torch.tensor(0.5))

#     def forward(self, x):
#         # safer activation than exp()
#         mu = torch.exp(torch.clamp(self.linear(x), min=-5, max=5))
#         alpha = torch.clamp(self.alpha, min=1e-3, max=10)
#         return mu.squeeze(), alpha

    
# model = NegBinomialModel(12)
# model.load_state_dict(torch.load("model_weights(1).pt", map_location='cpu'))
# model.eval()

# # MU_BANKS = 2.6035915713614286
# # STD_BANKS = 3.0158890435512125


# # with open("xgb_model(1).json", "r") as f:
# #     params = json.load(f)

# xgb_model = XGBRegressor()
# xgb_model.load_model("xgb_model(1).json")

# def predict_score(lat, lon):
#     # Convert input to tensor
#     # inputs = torch.tensor([[lat, lon]], dtype=torch.float32)
#     inputs = compute_features((lat,lon))
#     print("[INPUTS]", inputs)
#     num_banks = inputs.pop("num_banks_in_radius", 0)

#     inputs = torch.tensor(list(inputs.values()), dtype=torch.float32)

#     # Get model output
#     with torch.no_grad():
#         mu_pred, alpha = model(inputs)

#     # Unpack into respective values
#     mu_pred = mu_pred.numpy().flatten()

#     mu_pred2 = xgb_model.predict(inputs.unsqueeze(0).numpy())

#     # r = 1/alpha
#     # p = r / (r + mu_pred)

#     # # Compute pmf and mode
#     # k_mode = int((r - 1) * (1 - p) / p)  # mode of NB
#     # p_k = nbinom.pmf(num_banks, r, p)
#     # p_mode = nbinom.pmf(k_mode, r, p)

#     # # Score normalized 0–100
#     # score = (p_k / p_mode) * 100
#     # score = np.clip(score, 0, 100)

#     # diff = (num_banks - mu_pred) / (mu_pred + 1e-6)
#     # # score = (1 - np.tanh(diff))

#     # print("[TANH]", np.tanh(diff))

#     diff = mu_pred - num_banks
#     score = 100 / (1 + np.exp(-alpha * diff))

#     score = np.abs(1 + np.tanh(diff)) / 2 * 100


#     # score = (1 * np.abs(mu_pred + 0.1)) * 100

#     # You can apply any post-processing here
#     return (
#         round(float(score), 3),
#         num_banks,
#         round(float(mu_pred), 3),
#         round(float(mu_pred2), 3),
#         # round(float(log_score),3)
#         # "Normal Score": round(float(normal_score), 3),
#     )

# # ======== Gradio Interface ========
# interface = gr.Interface(
#     fn=predict_score,
#     inputs=[
#         gr.Number(label="Latitude"),
#         gr.Number(label="Longitude"),
#     ],
#     outputs=[
#         gr.Number(label="Score (0 - 100)"),
#         gr.Number(label="Number of Current Banks"),
#         gr.Number(label="Number of Ideal Banks (Negative Binomial)"),
#         gr.Number(label="Number of Ideal Banks (XGBoost)"),
#         # gr.Number(label="Log Score Probability"),
#     ],
#     title="Bank Location Scoring Model",
#     description="Enter latitude and longitude to get the predicted score, number of banks, and normalized score.",
# )


# interface.launch()