Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,854 Bytes
4845d25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
# flake8: noqa: F722
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from types import SimpleNamespace
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
from einops import einsum
def as_homogeneous(ext):
"""
Accept (..., 3,4) or (..., 4,4) extrinsics, return (...,4,4) homogeneous matrix.
Supports torch.Tensor or np.ndarray.
"""
if isinstance(ext, torch.Tensor):
# If already in homogeneous form
if ext.shape[-2:] == (4, 4):
return ext
elif ext.shape[-2:] == (3, 4):
# Create a new homogeneous matrix
ones = torch.zeros_like(ext[..., :1, :4])
ones[..., 0, 3] = 1.0
return torch.cat([ext, ones], dim=-2)
else:
raise ValueError(f"Invalid shape for torch.Tensor: {ext.shape}")
elif isinstance(ext, np.ndarray):
if ext.shape[-2:] == (4, 4):
return ext
elif ext.shape[-2:] == (3, 4):
ones = np.zeros_like(ext[..., :1, :4])
ones[..., 0, 3] = 1.0
return np.concatenate([ext, ones], axis=-2)
else:
raise ValueError(f"Invalid shape for np.ndarray: {ext.shape}")
else:
raise TypeError("Input must be a torch.Tensor or np.ndarray.")
@torch.jit.script
def affine_inverse(A: torch.Tensor):
R = A[..., :3, :3] # ..., 3, 3
T = A[..., :3, 3:] # ..., 3, 1
P = A[..., 3:, :] # ..., 1, 4
return torch.cat([torch.cat([R.mT, -R.mT @ T], dim=-1), P], dim=-2)
def transpose_last_two_axes(arr):
"""
for np < 2
"""
if arr.ndim < 2:
return arr
axes = list(range(arr.ndim))
# swap the last two
axes[-2], axes[-1] = axes[-1], axes[-2]
return arr.transpose(axes)
def affine_inverse_np(A: np.array):
R = A[..., :3, :3]
T = A[..., :3, 3:]
P = A[..., 3:, :]
return np.concatenate(
[
np.concatenate([transpose_last_two_axes(R), -transpose_last_two_axes(R) @ T], axis=-1),
P,
],
axis=-2,
)
def quat_to_mat(quaternions: torch.Tensor) -> torch.Tensor:
"""
Quaternion Order: XYZW or say ijkr, scalar-last
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part last,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
i, j, k, r = torch.unbind(quaternions, -1)
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def mat_to_quat(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part last, as tensor of shape (..., 4).
Quaternion Order: XYZW or say ijkr, scalar-last
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
out = quat_candidates[F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :].reshape(
batch_dim + (4,)
)
# Convert from rijk to ijkr
out = out[..., [1, 2, 3, 0]]
out = standardize_quaternion(out)
return out
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
if torch.is_grad_enabled():
ret[positive_mask] = torch.sqrt(x[positive_mask])
else:
ret = torch.where(positive_mask, torch.sqrt(x), ret)
return ret
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert a unit quaternion to a standard form: one in which the real
part is non negative.
Args:
quaternions: Quaternions with real part last,
as tensor of shape (..., 4).
Returns:
Standardized quaternions as tensor of shape (..., 4).
"""
return torch.where(quaternions[..., 3:4] < 0, -quaternions, quaternions)
def sample_image_grid(
shape: tuple[int, ...],
device: torch.device = torch.device("cpu"),
) -> tuple[
torch.Tensor, # float coordinates (xy indexing), "*shape dim"
torch.Tensor, # integer indices (ij indexing), "*shape dim"
]:
"""Get normalized (range 0 to 1) coordinates and integer indices for an image."""
# Each entry is a pixel-wise integer coordinate. In the 2D case, each entry is a
# (row, col) coordinate.
indices = [torch.arange(length, device=device) for length in shape]
stacked_indices = torch.stack(torch.meshgrid(*indices, indexing="ij"), dim=-1)
# Each entry is a floating-point coordinate in the range (0, 1). In the 2D case,
# each entry is an (x, y) coordinate.
coordinates = [(idx + 0.5) / length for idx, length in zip(indices, shape)]
coordinates = reversed(coordinates)
coordinates = torch.stack(torch.meshgrid(*coordinates, indexing="xy"), dim=-1)
return coordinates, stacked_indices
def homogenize_points(points: torch.Tensor) -> torch.Tensor: # "*batch dim" # "*batch dim+1"
"""Convert batched points (xyz) to (xyz1)."""
return torch.cat([points, torch.ones_like(points[..., :1])], dim=-1)
def homogenize_vectors(vectors: torch.Tensor) -> torch.Tensor: # "*batch dim" # "*batch dim+1"
"""Convert batched vectors (xyz) to (xyz0)."""
return torch.cat([vectors, torch.zeros_like(vectors[..., :1])], dim=-1)
def transform_rigid(
homogeneous_coordinates: torch.Tensor, # "*#batch dim"
transformation: torch.Tensor, # "*#batch dim dim"
) -> torch.Tensor: # "*batch dim"
"""Apply a rigid-body transformation to points or vectors."""
return einsum(
transformation,
homogeneous_coordinates.to(transformation.dtype),
"... i j, ... j -> ... i",
)
def transform_cam2world(
homogeneous_coordinates: torch.Tensor, # "*#batch dim"
extrinsics: torch.Tensor, # "*#batch dim dim"
) -> torch.Tensor: # "*batch dim"
"""Transform points from 3D camera coordinates to 3D world coordinates."""
return transform_rigid(homogeneous_coordinates, extrinsics)
def unproject(
coordinates: torch.Tensor, # "*#batch dim"
z: torch.Tensor, # "*#batch"
intrinsics: torch.Tensor, # "*#batch dim+1 dim+1"
) -> torch.Tensor: # "*batch dim+1"
"""Unproject 2D camera coordinates with the given Z values."""
# Apply the inverse intrinsics to the coordinates.
coordinates = homogenize_points(coordinates)
ray_directions = einsum(
intrinsics.float().inverse().to(intrinsics),
coordinates.to(intrinsics.dtype),
"... i j, ... j -> ... i",
)
# Apply the supplied depth values.
return ray_directions * z[..., None]
def get_world_rays(
coordinates: torch.Tensor, # "*#batch dim"
extrinsics: torch.Tensor, # "*#batch dim+2 dim+2"
intrinsics: torch.Tensor, # "*#batch dim+1 dim+1"
) -> tuple[
torch.Tensor, # origins, "*batch dim+1"
torch.Tensor, # directions, "*batch dim+1"
]:
# Get camera-space ray directions.
directions = unproject(
coordinates,
torch.ones_like(coordinates[..., 0]),
intrinsics,
)
directions = directions / directions.norm(dim=-1, keepdim=True)
# Transform ray directions to world coordinates.
directions = homogenize_vectors(directions)
directions = transform_cam2world(directions, extrinsics)[..., :-1]
# Tile the ray origins to have the same shape as the ray directions.
origins = extrinsics[..., :-1, -1].broadcast_to(directions.shape)
return origins, directions
def get_fov(intrinsics: torch.Tensor) -> torch.Tensor: # "batch 3 3" -> "batch 2"
intrinsics_inv = intrinsics.float().inverse().to(intrinsics)
def process_vector(vector):
vector = torch.tensor(vector, dtype=intrinsics.dtype, device=intrinsics.device)
vector = einsum(intrinsics_inv, vector, "b i j, j -> b i")
return vector / vector.norm(dim=-1, keepdim=True)
left = process_vector([0, 0.5, 1])
right = process_vector([1, 0.5, 1])
top = process_vector([0.5, 0, 1])
bottom = process_vector([0.5, 1, 1])
fov_x = (left * right).sum(dim=-1).acos()
fov_y = (top * bottom).sum(dim=-1).acos()
return torch.stack((fov_x, fov_y), dim=-1)
def map_pdf_to_opacity(
pdf: torch.Tensor, # " *batch"
global_step: int = 0,
opacity_mapping: Optional[dict] = None,
) -> torch.Tensor: # " *batch"
# https://www.desmos.com/calculator/opvwti3ba9
# Figure out the exponent.
if opacity_mapping is not None:
cfg = SimpleNamespace(**opacity_mapping)
x = cfg.initial + min(global_step / cfg.warm_up, 1) * (cfg.final - cfg.initial)
else:
x = 0.0
exponent = 2**x
# Map the probability density to an opacity.
return 0.5 * (1 - (1 - pdf) ** exponent + pdf ** (1 / exponent))
|