File size: 11,854 Bytes
4845d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# flake8: noqa: F722
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from types import SimpleNamespace
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
from einops import einsum


def as_homogeneous(ext):
    """
    Accept (..., 3,4) or (..., 4,4) extrinsics, return (...,4,4) homogeneous matrix.
    Supports torch.Tensor or np.ndarray.
    """
    if isinstance(ext, torch.Tensor):
        # If already in homogeneous form
        if ext.shape[-2:] == (4, 4):
            return ext
        elif ext.shape[-2:] == (3, 4):
            # Create a new homogeneous matrix
            ones = torch.zeros_like(ext[..., :1, :4])
            ones[..., 0, 3] = 1.0
            return torch.cat([ext, ones], dim=-2)
        else:
            raise ValueError(f"Invalid shape for torch.Tensor: {ext.shape}")

    elif isinstance(ext, np.ndarray):
        if ext.shape[-2:] == (4, 4):
            return ext
        elif ext.shape[-2:] == (3, 4):
            ones = np.zeros_like(ext[..., :1, :4])
            ones[..., 0, 3] = 1.0
            return np.concatenate([ext, ones], axis=-2)
        else:
            raise ValueError(f"Invalid shape for np.ndarray: {ext.shape}")

    else:
        raise TypeError("Input must be a torch.Tensor or np.ndarray.")


@torch.jit.script
def affine_inverse(A: torch.Tensor):
    R = A[..., :3, :3]  # ..., 3, 3
    T = A[..., :3, 3:]  # ..., 3, 1
    P = A[..., 3:, :]  # ..., 1, 4
    return torch.cat([torch.cat([R.mT, -R.mT @ T], dim=-1), P], dim=-2)


def transpose_last_two_axes(arr):
    """
    for np < 2
    """
    if arr.ndim < 2:
        return arr
    axes = list(range(arr.ndim))
    # swap the last two
    axes[-2], axes[-1] = axes[-1], axes[-2]
    return arr.transpose(axes)


def affine_inverse_np(A: np.array):
    R = A[..., :3, :3]
    T = A[..., :3, 3:]
    P = A[..., 3:, :]
    return np.concatenate(
        [
            np.concatenate([transpose_last_two_axes(R), -transpose_last_two_axes(R) @ T], axis=-1),
            P,
        ],
        axis=-2,
    )


def quat_to_mat(quaternions: torch.Tensor) -> torch.Tensor:
    """
    Quaternion Order: XYZW or say ijkr, scalar-last

    Convert rotations given as quaternions to rotation matrices.
    Args:
        quaternions: quaternions with real part last,
            as tensor of shape (..., 4).

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """
    i, j, k, r = torch.unbind(quaternions, -1)
    # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
    two_s = 2.0 / (quaternions * quaternions).sum(-1)

    o = torch.stack(
        (
            1 - two_s * (j * j + k * k),
            two_s * (i * j - k * r),
            two_s * (i * k + j * r),
            two_s * (i * j + k * r),
            1 - two_s * (i * i + k * k),
            two_s * (j * k - i * r),
            two_s * (i * k - j * r),
            two_s * (j * k + i * r),
            1 - two_s * (i * i + j * j),
        ),
        -1,
    )
    return o.reshape(quaternions.shape[:-1] + (3, 3))


def mat_to_quat(matrix: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as rotation matrices to quaternions.

    Args:
        matrix: Rotation matrices as tensor of shape (..., 3, 3).

    Returns:
        quaternions with real part last, as tensor of shape (..., 4).
        Quaternion Order: XYZW or say ijkr, scalar-last
    """
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")

    batch_dim = matrix.shape[:-2]
    m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
        matrix.reshape(batch_dim + (9,)), dim=-1
    )

    q_abs = _sqrt_positive_part(
        torch.stack(
            [
                1.0 + m00 + m11 + m22,
                1.0 + m00 - m11 - m22,
                1.0 - m00 + m11 - m22,
                1.0 - m00 - m11 + m22,
            ],
            dim=-1,
        )
    )

    # we produce the desired quaternion multiplied by each of r, i, j, k
    quat_by_rijk = torch.stack(
        [
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
        ],
        dim=-2,
    )

    # We floor here at 0.1 but the exact level is not important; if q_abs is small,
    # the candidate won't be picked.
    flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
    quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))

    # if not for numerical problems, quat_candidates[i] should be same (up to a sign),
    # forall i; we pick the best-conditioned one (with the largest denominator)
    out = quat_candidates[F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :].reshape(
        batch_dim + (4,)
    )

    # Convert from rijk to ijkr
    out = out[..., [1, 2, 3, 0]]

    out = standardize_quaternion(out)

    return out


def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
    """
    Returns torch.sqrt(torch.max(0, x))
    but with a zero subgradient where x is 0.
    """
    ret = torch.zeros_like(x)
    positive_mask = x > 0
    if torch.is_grad_enabled():
        ret[positive_mask] = torch.sqrt(x[positive_mask])
    else:
        ret = torch.where(positive_mask, torch.sqrt(x), ret)
    return ret


def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
    """
    Convert a unit quaternion to a standard form: one in which the real
    part is non negative.

    Args:
        quaternions: Quaternions with real part last,
            as tensor of shape (..., 4).

    Returns:
        Standardized quaternions as tensor of shape (..., 4).
    """
    return torch.where(quaternions[..., 3:4] < 0, -quaternions, quaternions)


def sample_image_grid(
    shape: tuple[int, ...],
    device: torch.device = torch.device("cpu"),
) -> tuple[
    torch.Tensor,  # float coordinates (xy indexing), "*shape dim"
    torch.Tensor,  # integer indices (ij indexing), "*shape dim"
]:
    """Get normalized (range 0 to 1) coordinates and integer indices for an image."""

    # Each entry is a pixel-wise integer coordinate. In the 2D case, each entry is a
    # (row, col) coordinate.
    indices = [torch.arange(length, device=device) for length in shape]
    stacked_indices = torch.stack(torch.meshgrid(*indices, indexing="ij"), dim=-1)

    # Each entry is a floating-point coordinate in the range (0, 1). In the 2D case,
    # each entry is an (x, y) coordinate.
    coordinates = [(idx + 0.5) / length for idx, length in zip(indices, shape)]
    coordinates = reversed(coordinates)
    coordinates = torch.stack(torch.meshgrid(*coordinates, indexing="xy"), dim=-1)

    return coordinates, stacked_indices


def homogenize_points(points: torch.Tensor) -> torch.Tensor:  # "*batch dim"  # "*batch dim+1"
    """Convert batched points (xyz) to (xyz1)."""
    return torch.cat([points, torch.ones_like(points[..., :1])], dim=-1)


def homogenize_vectors(vectors: torch.Tensor) -> torch.Tensor:  #  "*batch dim"  # "*batch dim+1"
    """Convert batched vectors (xyz) to (xyz0)."""
    return torch.cat([vectors, torch.zeros_like(vectors[..., :1])], dim=-1)


def transform_rigid(
    homogeneous_coordinates: torch.Tensor,  # "*#batch dim"
    transformation: torch.Tensor,  # "*#batch dim dim"
) -> torch.Tensor:  # "*batch dim"
    """Apply a rigid-body transformation to points or vectors."""
    return einsum(
        transformation,
        homogeneous_coordinates.to(transformation.dtype),
        "... i j, ... j -> ... i",
    )


def transform_cam2world(
    homogeneous_coordinates: torch.Tensor,  # "*#batch dim"
    extrinsics: torch.Tensor,  # "*#batch dim dim"
) -> torch.Tensor:  # "*batch dim"
    """Transform points from 3D camera coordinates to 3D world coordinates."""
    return transform_rigid(homogeneous_coordinates, extrinsics)


def unproject(
    coordinates: torch.Tensor,  # "*#batch dim"
    z: torch.Tensor,  # "*#batch"
    intrinsics: torch.Tensor,  # "*#batch dim+1 dim+1"
) -> torch.Tensor:  # "*batch dim+1"
    """Unproject 2D camera coordinates with the given Z values."""

    # Apply the inverse intrinsics to the coordinates.
    coordinates = homogenize_points(coordinates)
    ray_directions = einsum(
        intrinsics.float().inverse().to(intrinsics),
        coordinates.to(intrinsics.dtype),
        "... i j, ... j -> ... i",
    )

    # Apply the supplied depth values.
    return ray_directions * z[..., None]


def get_world_rays(
    coordinates: torch.Tensor,  # "*#batch dim"
    extrinsics: torch.Tensor,  # "*#batch dim+2 dim+2"
    intrinsics: torch.Tensor,  # "*#batch dim+1 dim+1"
) -> tuple[
    torch.Tensor,  # origins, "*batch dim+1"
    torch.Tensor,  # directions, "*batch dim+1"
]:
    # Get camera-space ray directions.
    directions = unproject(
        coordinates,
        torch.ones_like(coordinates[..., 0]),
        intrinsics,
    )
    directions = directions / directions.norm(dim=-1, keepdim=True)

    # Transform ray directions to world coordinates.
    directions = homogenize_vectors(directions)
    directions = transform_cam2world(directions, extrinsics)[..., :-1]

    # Tile the ray origins to have the same shape as the ray directions.
    origins = extrinsics[..., :-1, -1].broadcast_to(directions.shape)

    return origins, directions


def get_fov(intrinsics: torch.Tensor) -> torch.Tensor:  # "batch 3 3" -> "batch 2"
    intrinsics_inv = intrinsics.float().inverse().to(intrinsics)

    def process_vector(vector):
        vector = torch.tensor(vector, dtype=intrinsics.dtype, device=intrinsics.device)
        vector = einsum(intrinsics_inv, vector, "b i j, j -> b i")
        return vector / vector.norm(dim=-1, keepdim=True)

    left = process_vector([0, 0.5, 1])
    right = process_vector([1, 0.5, 1])
    top = process_vector([0.5, 0, 1])
    bottom = process_vector([0.5, 1, 1])
    fov_x = (left * right).sum(dim=-1).acos()
    fov_y = (top * bottom).sum(dim=-1).acos()
    return torch.stack((fov_x, fov_y), dim=-1)


def map_pdf_to_opacity(
    pdf: torch.Tensor,  # " *batch"
    global_step: int = 0,
    opacity_mapping: Optional[dict] = None,
) -> torch.Tensor:  # " *batch"
    # https://www.desmos.com/calculator/opvwti3ba9

    # Figure out the exponent.
    if opacity_mapping is not None:
        cfg = SimpleNamespace(**opacity_mapping)
        x = cfg.initial + min(global_step / cfg.warm_up, 1) * (cfg.final - cfg.initial)
    else:
        x = 0.0
    exponent = 2**x

    # Map the probability density to an opacity.
    return 0.5 * (1 - (1 - pdf) ** exponent + pdf ** (1 / exponent))