File size: 4,484 Bytes
fa34304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import warnings

def slab_mode_source(x, w, n_WG, n0, wavelength, ind_m=0, x0=0):
    """
    Returns the normalized TE mode profile for a symmetric slab waveguide with a lateral shift x0.
    """
    k0 = 2 * np.pi / wavelength

    def f_even(beta):
        if beta < n0*k0 or beta > n_WG*k0:
            return None
        inside = n_WG**2 * k0**2 - beta**2
        outside = beta**2 - n0**2 * k0**2
        if inside <= 0 or outside <= 0:
            return None
        kx = np.sqrt(inside)
        kappa = np.sqrt(outside)
        return kx * np.tan(kx * w / 2) - kappa

    def f_odd(beta):
        if beta < n0*k0 or beta > n_WG*k0:
            return None
        inside = n_WG**2 * k0**2 - beta**2
        outside = beta**2 - n0**2 * k0**2
        if inside <= 0 or outside <= 0:
            return None
        kx = np.sqrt(inside)
        kappa = np.sqrt(outside)
        sin_term = np.sin(kx * w / 2)
        if abs(sin_term) < 1e-12:
            return None
        return - kx * (np.cos(kx * w / 2) / sin_term) - kappa

    def valid_even(beta):
        inside = n_WG**2 * k0**2 - beta**2
        if inside <= 0:
            return False
        kx = np.sqrt(inside)
        theta = kx * w / 2
        m = int(np.floor(2 * theta / np.pi))
        if m % 2 == 0:
            if m == 0 and theta > (np.pi/2 - 0.1):
                return False
            return True
        return False

    def valid_odd(beta):
        inside = n_WG**2 * k0**2 - beta**2
        if inside <= 0:
            return False
        kx = np.sqrt(inside)
        theta = kx * w / 2
        m = int(np.floor(2 * theta / np.pi))
        return (m % 2 == 1)

    N = 2000
    beta_scan = np.linspace(n0*k0, n_WG*k0, N)
    even_intervals = []
    odd_intervals = []
    f_even_vals = [f_even(b) for b in beta_scan]
    f_odd_vals = [f_odd(b) for b in beta_scan]
    for i in range(N-1):
        if (f_even_vals[i] is not None) and (f_even_vals[i+1] is not None):
            if f_even_vals[i] * f_even_vals[i+1] < 0:
                even_intervals.append((beta_scan[i], beta_scan[i+1]))
        if (f_odd_vals[i] is not None) and (f_odd_vals[i+1] is not None):
            if f_odd_vals[i] * f_odd_vals[i+1] < 0:
                odd_intervals.append((beta_scan[i], beta_scan[i+1]))
                
    def refine_root(f, b_left, b_right):
        for _ in range(50):
            b_mid = 0.5*(b_left+b_right)
            val_mid = f(b_mid)
            if val_mid is None:
                b_right = b_mid
                continue
            if abs(val_mid) < 1e-9:
                return b_mid
            val_left = f(b_left)
            if val_left is None or val_left*val_mid > 0:
                b_left = b_mid
            else:
                b_right = b_mid
        return b_mid

    even_roots = []
    for (b_left, b_right) in even_intervals:
        root = refine_root(f_even, b_left, b_right)
        if valid_even(root):
            even_roots.append(root)
    odd_roots = []
    for (b_left, b_right) in odd_intervals:
        root = refine_root(f_odd, b_left, b_right)
        if valid_odd(root):
            odd_roots.append(root)

    modes = [("even", r) for r in even_roots] + [("odd", r) for r in odd_roots]
    modes_sorted = sorted(modes, key=lambda tup: tup[1], reverse=True)
    if len(modes_sorted) == 0:
        raise ValueError("No guided slab modes found in [n0*k0, n_WG*k0].")
    if ind_m >= len(modes_sorted):
        warnings.warn(
            f"Requested mode index {ind_m} >= found modes ({len(modes_sorted)}). Using highest mode index {len(modes_sorted)-1}.",
            UserWarning
        )
        ind_m = len(modes_sorted) - 1

    parity, beta_chosen = modes_sorted[ind_m]
    inside = n_WG**2 * k0**2 - beta_chosen**2
    outside = beta_chosen**2 - n0**2 * k0**2
    kx = np.sqrt(inside)
    kappa = np.sqrt(outside)

    E = np.zeros_like(x, dtype=np.complex128)
    if parity == "even":
        for i, xi in enumerate(x):
            xp = xi - x0
            if abs(xp) <= w/2:
                E[i] = np.cos(kx * xp)
            else:
                E[i] = np.cos(kx * (w/2)) * np.exp(-kappa * (abs(xp)-w/2))
    else:
        for i, xi in enumerate(x):
            xp = xi - x0
            if abs(xp) <= w/2:
                E[i] = np.sin(kx * xp)
            else:
                E[i] = np.sign(xp) * np.sin(kx * (w/2)) * np.exp(-kappa * (abs(xp)-w/2))
    norm = np.sqrt(np.trapz(np.abs(E)**2, x))
    E /= norm
    return E