import numpy as np # Global factors; these might be computed more dynamically in a full implementation. laplacian_factor = None index_factor = None def compute_dE_dz(E_slice, n_r2_slice, dx, n0, sigma_x, k0): """ Compute the derivative dE/dz using the BPM equation: ∂E/∂z = (i/(2 k0 n0)) (∂^2 E/∂x^2) + i (k0/(2 n0)) [n_r^2 - n0^2] E - sigma(x) E """ # Finite-difference Laplacian in x laplacian_E = (np.roll(E_slice, 1, axis=0) - 2 * E_slice + np.roll(E_slice, -1, axis=0)) / dx**2 laplacian_term = (1j / (2 * k0 * n0)) * laplacian_E index_term = 1j * (k0 / (2 * n0)) * (n_r2_slice - n0**2) * E_slice damping_term = - sigma_x * E_slice return laplacian_term + index_term + damping_term def run_bpm(E, n_r2, x, z, dx, dz, n0, sigma_x, wavelength): """ Run the BPM propagation using an RK4 integrator. Parameters: E: initial field (2D array, shape (len(x), len(z)); only E[:,0] is used) n_r2: refractive index squared distribution (2D array, shape (len(x), len(z))) x, z: transverse and propagation coordinates dx, dz: grid spacings in x and z n0: background refractive index sigma_x: 1D array for PML damping in x wavelength: wavelength in um Returns: E: propagated field (2D array) """ k0 = 2 * np.pi / wavelength Nz = len(z) for zi in range(1, Nz): E_prev = E[:, zi-1] n_r2_slice = n_r2[:, zi-1] k1 = dz * compute_dE_dz(E_prev, n_r2_slice, dx, n0, sigma_x, k0) k2 = dz * compute_dE_dz(E_prev + k1/2, n_r2_slice, dx, n0, sigma_x, k0) k3 = dz * compute_dE_dz(E_prev + k2/2, n_r2_slice, dx, n0, sigma_x, k0) k4 = dz * compute_dE_dz(E_prev + k3, n_r2_slice, dx, n0, sigma_x, k0) E[:, zi] = E_prev + (k1 + 2*k2 + 2*k3 + k4) / 6 return E