""" NEUROFLUX ULTIMATE - Quantum Feature Extraction Quantum-inspired algorithms for feature extraction (Simulation) """ import numpy as np from typing import Dict, Any, List import logging # Quantum simulation libraries try: import pennylane as qml PENNYLANE_AVAILABLE = True except ImportError: PENNYLANE_AVAILABLE = False logger = logging.getLogger(__name__) class QuantumFeatureExtractor: """ Quantum-inspired feature extraction Note: Uses simulation for research/demonstration purposes """ def __init__(self, n_qubits: int = 8): self.n_qubits = n_qubits self.quantum_enabled = PENNYLANE_AVAILABLE if self.quantum_enabled: self.dev = qml.device('default.qubit', wires=n_qubits) else: logger.warning("PennyLane not available. Using classical simulation.") def extract_quantum_features( self, image: np.ndarray, n_features: int = 16 ) -> Dict[str, Any]: """ Extract quantum-inspired features from image Args: image: Input image array n_features: Number of features to extract Returns: Dictionary with quantum features """ if not self.quantum_enabled: return self._classical_simulation(image, n_features) # Extract classical features first classical_features = self._extract_classical_features(image) # Quantum circuit processing quantum_features = self._quantum_circuit_extraction(classical_features) return { 'quantum_features': quantum_features, 'classical_features': classical_features, 'entanglement_score': self._calculate_entanglement(quantum_features), 'quantum_enhanced': True } def _extract_classical_features(self, image: np.ndarray) -> np.ndarray: """Extract classical features for quantum processing""" # Resize and flatten if len(image.shape) > 1: # Extract patches and compute statistics patch_size = 16 h, w = image.shape[:2] features = [] for i in range(0, h - patch_size, patch_size): for j in range(0, w - patch_size, patch_size): patch = image[i:i+patch_size, j:j+patch_size] features.append(np.mean(patch)) features.append(np.std(patch)) features = np.array(features) else: features = image.flatten() # Normalize to [0, 2π] for quantum rotation features = (features - features.min()) / (features.max() - features.min() + 1e-7) features = features * 2 * np.pi # Take first n_qubits features return features[:self.n_qubits] def _quantum_circuit_extraction(self, features: np.ndarray) -> List[float]: """Run quantum circuit for feature extraction""" @qml.qnode(self.dev) def quantum_circuit(inputs): """Quantum feature extraction circuit""" # Encode classical data into quantum state for i, feature in enumerate(inputs): qml.RY(feature, wires=i) # Create entanglement for i in range(len(inputs) - 1): qml.CNOT(wires=[i, i + 1]) # Additional rotations for i, feature in enumerate(inputs): qml.RZ(feature * 0.5, wires=i) # Measure expectations return [qml.expval(qml.PauliZ(i)) for i in range(len(inputs))] try: quantum_output = quantum_circuit(features) return [float(x) for x in quantum_output] except Exception as e: logger.error(f"Quantum circuit error: {e}") return features.tolist() def _calculate_entanglement(self, features: List[float]) -> float: """ Calculate entanglement measure (simplified) Based on correlation between qubit measurements """ features_array = np.array(features) # Use correlation as proxy for entanglement if len(features_array) > 1: correlation = np.corrcoef(features_array[:-1], features_array[1:])[0, 1] entanglement = abs(correlation) else: entanglement = 0.0 return float(entanglement) def _classical_simulation(self, image: np.ndarray, n_features: int) -> Dict[str, Any]: """Classical simulation of quantum features""" # Use Fourier-based approach as quantum analog if len(image.shape) > 1: # 2D FFT fft = np.fft.fft2(image) fft_shift = np.fft.fftshift(fft) magnitude = np.abs(fft_shift) phase = np.angle(fft_shift) # Extract features from frequency domain features = [] h, w = magnitude.shape # Sample from different frequency regions for i in range(n_features // 2): idx_h = int(h * (i + 1) / (n_features // 2)) idx_w = int(w * (i + 1) / (n_features // 2)) features.append(magnitude[idx_h, idx_w]) features.append(phase[idx_h, idx_w]) features = np.array(features[:n_features]) else: features = np.fft.fft(image)[:n_features] features = np.abs(features) # Normalize features = (features - features.min()) / (features.max() - features.min() + 1e-7) return { 'quantum_features': features.tolist(), 'classical_features': features.tolist(), 'entanglement_score': 0.75, # Simulated 'quantum_enhanced': False, 'note': 'Classical simulation - PennyLane not available' } def create_quantum_visualization(self, features: List[float]) -> Dict[str, Any]: """Create visualization data for quantum states""" n = len(features) # Create Bloch sphere representation theta = np.array(features) * np.pi phi = np.linspace(0, 2 * np.pi, n) return { 'theta': theta.tolist(), 'phi': phi.tolist(), 'amplitudes': [abs(f) for f in features], 'phases': [np.angle(complex(f, 0)) for f in features] }