karthikmn commited on
Commit
6a91f40
·
verified ·
1 Parent(s): ff26c0e

Delete simulators/fenics_simulation.py

Browse files
Files changed (1) hide show
  1. simulators/fenics_simulation.py +0 -64
simulators/fenics_simulation.py DELETED
@@ -1,64 +0,0 @@
1
- from fenics import *
2
- import numpy as np
3
-
4
- def run_fenics_simulation(simulation_type, **kwargs):
5
- """
6
- Run FEniCS simulation for the selected use case.
7
-
8
- Parameters:
9
- simulation_type (str): 'plate' or 'beam'.
10
- kwargs: Input parameters such as length, width, thickness, force/load.
11
-
12
- Returns:
13
- stress (float): Calculated maximum stress (approx).
14
- deformation (float): Total deformation (approx).
15
- """
16
- # Mesh setup
17
- if simulation_type == "plate":
18
- length, width, thickness = kwargs["length"], kwargs["width"], kwargs["thickness"]
19
- mesh = BoxMesh(Point(0, 0, 0), Point(length, width, thickness), 10, 10, 2)
20
- load = kwargs["force"]
21
- elif simulation_type == "beam":
22
- length, width, thickness = kwargs["length"], kwargs["width"], kwargs["thickness"]
23
- mesh = BoxMesh(Point(0, 0, 0), Point(length, width, thickness), 10, 10, 2)
24
- load = kwargs["load"]
25
- else:
26
- raise ValueError("Invalid simulation type selected.")
27
-
28
- # Function space
29
- V = VectorFunctionSpace(mesh, "P", 1)
30
-
31
- # Trial and test functions
32
- u = TrialFunction(V)
33
- v = TestFunction(V)
34
-
35
- # Material properties
36
- E, nu = 2e11, 0.3 # Elastic modulus and Poisson's ratio
37
- mu = E / (2.0 * (1.0 + nu))
38
- lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))
39
-
40
- # Stress-strain relationship
41
- def sigma(v):
42
- return lmbda * nabla_div(v) * Identity(3) + 2 * mu * sym(grad(v))
43
-
44
- # Load
45
- f = Constant((-load, 0, 0))
46
-
47
- # Variational form
48
- a = inner(sigma(u), sym(grad(v))) * dx
49
- L = dot(f, v) * dx
50
-
51
- # Boundary conditions
52
- def boundary(x, on_boundary):
53
- return on_boundary and near(x[0], 0)
54
-
55
- bc = DirichletBC(V, Constant((0, 0, 0)), boundary)
56
-
57
- # Solve
58
- u = Function(V)
59
- solve(a == L, u, bc)
60
-
61
- # Post-processing
62
- stress = np.max(u.vector().get_local()) # Approximate stress
63
- deformation = u.vector().norm("l2") # Approximate deformation
64
- return stress, deformation