karthikmn commited on
Commit
bed8d89
·
verified ·
1 Parent(s): f23118c

Update simulators/fenics_simulation.py

Browse files
Files changed (1) hide show
  1. simulators/fenics_simulation.py +64 -1
simulators/fenics_simulation.py CHANGED
@@ -1 +1,64 @@
1
- q
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fenics import *
2
+ import numpy as np
3
+
4
+ def run_fenics_simulation(simulation_type, **kwargs):
5
+ """
6
+ Run FEniCS simulation for the selected use case.
7
+
8
+ Parameters:
9
+ simulation_type (str): 'plate' or 'beam'.
10
+ kwargs: Input parameters such as length, width, thickness, force/load.
11
+
12
+ Returns:
13
+ stress (float): Calculated maximum stress (approx).
14
+ deformation (float): Total deformation (approx).
15
+ """
16
+ # Mesh setup
17
+ if simulation_type == "plate":
18
+ length, width, thickness = kwargs["length"], kwargs["width"], kwargs["thickness"]
19
+ mesh = BoxMesh(Point(0, 0, 0), Point(length, width, thickness), 10, 10, 2)
20
+ load = kwargs["force"]
21
+ elif simulation_type == "beam":
22
+ length, width, thickness = kwargs["length"], kwargs["width"], kwargs["thickness"]
23
+ mesh = BoxMesh(Point(0, 0, 0), Point(length, width, thickness), 10, 10, 2)
24
+ load = kwargs["load"]
25
+ else:
26
+ raise ValueError("Invalid simulation type selected.")
27
+
28
+ # Function space
29
+ V = VectorFunctionSpace(mesh, "P", 1)
30
+
31
+ # Trial and test functions
32
+ u = TrialFunction(V)
33
+ v = TestFunction(V)
34
+
35
+ # Material properties
36
+ E, nu = 2e11, 0.3 # Elastic modulus and Poisson's ratio
37
+ mu = E / (2.0 * (1.0 + nu))
38
+ lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))
39
+
40
+ # Stress-strain relationship
41
+ def sigma(v):
42
+ return lmbda * nabla_div(v) * Identity(3) + 2 * mu * sym(grad(v))
43
+
44
+ # Load
45
+ f = Constant((-load, 0, 0))
46
+
47
+ # Variational form
48
+ a = inner(sigma(u), sym(grad(v))) * dx
49
+ L = dot(f, v) * dx
50
+
51
+ # Boundary conditions
52
+ def boundary(x, on_boundary):
53
+ return on_boundary and near(x[0], 0)
54
+
55
+ bc = DirichletBC(V, Constant((0, 0, 0)), boundary)
56
+
57
+ # Solve
58
+ u = Function(V)
59
+ solve(a == L, u, bc)
60
+
61
+ # Post-processing
62
+ stress = np.max(u.vector().get_local()) # Approximate stress
63
+ deformation = u.vector().norm("l2") # Approximate deformation
64
+ return stress, deformation