import torch import argparse import os import numpy as np from tqdm import tqdm import random import warnings from glob import glob from scipy.stats import entropy from sklearn.neighbors import NearestNeighbors from plyfile import PlyData from pathlib import Path from multiprocessing import Pool from chamfer_distance import ChamferDistance random.seed(0) N_POINTS = 2000 NUM_TRHEADS = 16 def find_files(folder, extension): return sorted([Path(os.path.join(folder, f)) for f in os.listdir(folder) if f.endswith(extension)]) def read_ply(path): with open(path, 'rb') as f: plydata = PlyData.read(f) x = np.array(plydata['vertex']['x']) y = np.array(plydata['vertex']['y']) z = np.array(plydata['vertex']['z']) vertex = np.stack([x, y, z], axis=1) return vertex def distChamfer(a, b): x, y = a, b bs, num_points, points_dim = x.size() xx = torch.bmm(x, x.transpose(2, 1)) yy = torch.bmm(y, y.transpose(2, 1)) zz = torch.bmm(x, y.transpose(2, 1)) diag_ind = torch.arange(0, num_points).to(a).long() rx = xx[:, diag_ind, diag_ind].unsqueeze(1).expand_as(xx) ry = yy[:, diag_ind, diag_ind].unsqueeze(1).expand_as(yy) P = (rx.transpose(2, 1) + ry - 2 * zz) return P.min(1)[0], P.min(2)[0] def _pairwise_CD(sample_pcs, ref_pcs, batch_size): N_sample = sample_pcs.shape[0] N_ref = ref_pcs.shape[0] all_cd = [] all_emd = [] iterator = range(N_sample) matched_gt = [] pbar = tqdm(iterator) chamfer_dist = ChamferDistance() for sample_b_start in pbar: sample_batch = sample_pcs[sample_b_start] cd_lst = [] emd_lst = [] for ref_b_start in range(0, N_ref, batch_size): ref_b_end = min(N_ref, ref_b_start + batch_size) ref_batch = ref_pcs[ref_b_start:ref_b_end] batch_size_ref = ref_batch.size(0) sample_batch_exp = sample_batch.view(1, -1, 3).expand(batch_size_ref, -1, -1) sample_batch_exp = sample_batch_exp.contiguous() dl, dr, idx1, idx2 = chamfer_dist(sample_batch_exp,ref_batch) cd_lst.append((dl.mean(dim=1) + dr.mean(dim=1)).view(1, -1)) cd_lst = torch.cat(cd_lst, dim=1) all_cd.append(cd_lst) hit = np.argmin(cd_lst.detach().cpu().numpy()[0]) matched_gt.append(hit) pbar.set_postfix({"cov": len(np.unique(matched_gt)) * 1.0 / N_ref}) all_cd = torch.cat(all_cd, dim=0) # N_sample, N_ref return all_cd def compute_cov_mmd(sample_pcs, ref_pcs, batch_size): all_dist = _pairwise_CD(sample_pcs, ref_pcs, batch_size) print(all_dist.shape, flush=True) N_sample, N_ref = all_dist.size(0), all_dist.size(1) min_val_fromsmp, min_idx = torch.min(all_dist, dim=1) min_val, _ = torch.min(all_dist, dim=0) mmd = min_val.mean() cov = float(min_idx.unique().view(-1).size(0)) / float(N_ref) cov = torch.tensor(cov).to(all_dist) return { # 'med-CD': torch.diagonal(all_dist).median().item(), 'avg-CD': torch.diagonal(all_dist).mean().item(), 'COV-CD': cov.item(), 'MMD-CD': mmd.item() } def jsd_between_point_cloud_sets(sample_pcs, ref_pcs, in_unit_sphere, resolution=28): '''Computes the JSD between two sets of point-clouds, as introduced in the paper ```Learning Representations And Generative Models For 3D Point Clouds```. Args: sample_pcs: (np.ndarray S1xR2x3) S1 point-clouds, each of R1 points. ref_pcs: (np.ndarray S2xR2x3) S2 point-clouds, each of R2 points. resolution: (int) grid-resolution. Affects granularity of measurements. ''' sample_grid_var = entropy_of_occupancy_grid(sample_pcs, resolution, in_unit_sphere)[1] ref_grid_var = entropy_of_occupancy_grid(ref_pcs, resolution, in_unit_sphere)[1] return jensen_shannon_divergence(sample_grid_var, ref_grid_var) def entropy_of_occupancy_grid(pclouds, grid_resolution, in_sphere=False): '''Given a collection of point-clouds, estimate the entropy of the random variables corresponding to occupancy-grid activation patterns. Inputs: pclouds: (numpy array) #point-clouds x points per point-cloud x 3 grid_resolution (int) size of occupancy grid that will be used. ''' epsilon = 10e-4 bound = 1 + epsilon if abs(np.max(pclouds)) > bound or abs(np.min(pclouds)) > bound: print(abs(np.max(pclouds)), abs(np.min(pclouds))) warnings.warn('Point-clouds are not in unit cube.') if in_sphere and np.max(np.sqrt(np.sum(pclouds ** 2, axis=2))) > bound: warnings.warn('Point-clouds are not in unit sphere.') grid_coordinates, _ = unit_cube_grid_point_cloud(grid_resolution, in_sphere) grid_coordinates = grid_coordinates.reshape(-1, 3) grid_counters = np.zeros(len(grid_coordinates)) grid_bernoulli_rvars = np.zeros(len(grid_coordinates)) nn = NearestNeighbors(n_neighbors=1).fit(grid_coordinates) for pc in pclouds: _, indices = nn.kneighbors(pc) indices = np.squeeze(indices) for i in indices: grid_counters[i] += 1 indices = np.unique(indices) for i in indices: grid_bernoulli_rvars[i] += 1 acc_entropy = 0.0 n = float(len(pclouds)) for g in grid_bernoulli_rvars: p = 0.0 if g > 0: p = float(g) / n acc_entropy += entropy([p, 1.0 - p]) return acc_entropy / len(grid_counters), grid_counters def unit_cube_grid_point_cloud(resolution, clip_sphere=False): '''Returns the center coordinates of each cell of a 3D grid with resolution^3 cells, that is placed in the unit-cube. If clip_sphere it True it drops the "corner" cells that lie outside the unit-sphere. ''' grid = np.ndarray((resolution, resolution, resolution, 3), np.float32) spacing = 1.0 / float(resolution - 1) * 2 for i in range(resolution): for j in range(resolution): for k in range(resolution): grid[i, j, k, 0] = i * spacing - 0.5 * 2 grid[i, j, k, 1] = j * spacing - 0.5 * 2 grid[i, j, k, 2] = k * spacing - 0.5 * 2 if clip_sphere: grid = grid.reshape(-1, 3) grid = grid[np.linalg.norm(grid, axis=1) <= 0.5] return grid, spacing def jensen_shannon_divergence(P, Q): if np.any(P < 0) or np.any(Q < 0): raise ValueError('Negative values.') if len(P) != len(Q): raise ValueError('Non equal size.') P_ = P / np.sum(P) # Ensure probabilities. Q_ = Q / np.sum(Q) e1 = entropy(P_, base=2) e2 = entropy(Q_, base=2) e_sum = entropy((P_ + Q_) / 2.0, base=2) res = e_sum - ((e1 + e2) / 2.0) res2 = _jsdiv(P_, Q_) if not np.allclose(res, res2, atol=10e-5, rtol=0): warnings.warn('Numerical values of two JSD methods don\'t agree.') return res def _jsdiv(P, Q): '''another way of computing JSD''' def _kldiv(A, B): a = A.copy() b = B.copy() idx = np.logical_and(a > 0, b > 0) a = a[idx] b = b[idx] return np.sum([v for v in a * np.log2(a / b)]) P_ = P / np.sum(P) Q_ = Q / np.sum(Q) M = 0.5 * (P_ + Q_) return 0.5 * (_kldiv(P_, M) + _kldiv(Q_, M)) def downsample_pc(points, n): sample_idx = random.sample(list(range(points.shape[0])), n) return points[sample_idx] def normalize_pc(points): scale = np.max(np.abs(points)) points = points / scale return points def collect_pc(cad_folder): pc_path = find_files(os.path.join(cad_folder, 'ptl'), 'final_pcd.ply') if len(pc_path) == 0: return [] pc_path = pc_path[-1] # final pcd pc = read_ply(pc_path) if pc.shape[0] > N_POINTS: pc = downsample_pc(pc, N_POINTS) pc = normalize_pc(pc) return pc def collect_pc2(cad_folder): pc = read_ply(cad_folder) if pc.shape[0] > N_POINTS: pc = downsample_pc(pc, N_POINTS) pc = normalize_pc(pc) return pc def main(): parser = argparse.ArgumentParser() parser.add_argument("--fake", type=str) parser.add_argument("--real", type=str) parser.add_argument("--output", type=str) split = 1 args = parser.parse_args() if args.output is None: args.output = args.fake + '_cad_results.txt' chamfer_dist = ChamferDistance() cd = [] for i in tqdm(range(952)): fake_pcs = [] real_pcs = [] for j in range(split): fake_index = i * split + j fake_folder = os.path.join(args.fake, f'{fake_index:06d}') if not os.path.exists(fake_folder): continue else: fake_pc = collect_pc(fake_folder) if len(fake_pc) == 0: continue fake_pcs.append(fake_pc) real_folder = os.path.join(args.real, f'{i:06d}') if not os.path.exists(real_folder): continue else: real_pc = collect_pc(real_folder) if len(real_pc) == 0: continue real_pcs.append(real_pc) if len(fake_pcs) == 0 or len(real_pcs) == 0: continue sample_pcs = np.stack(fake_pcs, axis=0) ref_pcs = np.stack(real_pcs, axis=0) sample_pcs = torch.tensor(sample_pcs, dtype=torch.float32).cuda() ref_pcs = torch.tensor(ref_pcs, dtype=torch.float32).cuda() print(sample_pcs.shape, ref_pcs.shape) dl, dr, idx1, idx2 = chamfer_dist(sample_pcs, ref_pcs) min_val = (dl.mean(dim=1) + dr.mean(dim=1)).view(1, -1).squeeze(0).min().item() cd.append(min_val) cd = np.array(cd) mean = np.mean(cd) median = np.median(cd) print('mean:', mean) print('median:', median) if __name__ == '__main__': import time start_time = time.time() main() end_time = time.time() print(end_time - start_time)