grame / app_complex.py
tiffank1802
Simplify code: minimal interface with ultra-fast simulation
b078a34
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from io import BytesIO
import base64
import time
from functools import lru_cache, partial
from robot_souple_helpers import *
@lru_cache(maxsize=10)
def cached_neb_matrices(nx, dx, E, Ix, rho, S, cy):
return neb_beam_matrices(nx, dx, E, Ix, rho, S, cy)
def generate_animation(ixe, u_history, title="Animation de la déformation"):
if u_history.shape[1] < 2:
return "Animation non disponible (pas assez de frames)"
fig, ax = plt.subplots()
ax.set_xlim(0, max(ixe))
ax.set_ylim(np.min(u_history) - 0.1, np.max(u_history) + 0.1)
line, = ax.plot([], [], lw=2, color='blue')
ax.set_title(title)
ax.set_xlabel('Position x (m)')
ax.set_ylabel('Déplacement u (m)')
def init():
line.set_data([], [])
return line,
def animate(i):
line.set_data(ixe, u_history[:, i])
return line,
# Further reduce frames for faster generation
max_frames = 10
frames = min(u_history.shape[1], max_frames)
step = max(1, u_history.shape[1] // frames)
anim = FuncAnimation(fig, animate, init_func=init, frames=range(0, u_history.shape[1], step), interval=300, blit=True)
buf = BytesIO()
anim.save(buf, writer='pillow', fps=3)
buf.seek(0)
gif = base64.b64encode(buf.read()).decode('utf-8')
plt.close(fig)
return f'<img src="data:image/gif;base64,{gif}" alt="Animation">'
def run_simulation(nx, delta, q, r, Kp, Ki, Kd, mu, with_noise, with_pert, niter, nopt, stagEps, solicitation, compare_open, without_measure, mode="Boucle ouverte"):
start_time = time.time()
try:
beta = 0.25
gamma = 0.5
L = 500
a = 5
b = 5
E = 70000
rho = 2700e-9
cy = 1e-4
nstep = min(200, int(2 / delta))
nA = int(np.floor(nx / 2))
S = a * b
Ix = a * b**3 / 12
dx = L / nx
time0 = np.linspace(0, delta * nstep, nstep + 1)
ixe = np.linspace(dx, L, nx)
vseed1 = 0 if with_pert else 42
vseed2 = 1 if with_noise else 43
Kfull, Cfull, Mfull = cached_neb_matrices(nx, dx, E, Ix, rho, S, cy)
ndo1 = Kfull.shape[0] - 2
K = Kfull[2:, 2:]
C = Cfull[2:, 2:]
M = Mfull[2:, 2:]
induA = 2 * nA - 2
induB = 2 * nx - 2
fpert = generateNoiseTemporal(time0, 1, q, vseed1) if with_pert else np.zeros(len(time0))
mpert = generateNoiseTemporal(time0, 1, r, vseed2) if with_noise else np.zeros(len(time0))
settling_time = ""
if mode == "Boucle ouverte":
if solicitation == "échelon":
fA = Heaviside(time0 - 1)
elif solicitation == "sinusoïdale":
fA = np.sin(2 * np.pi * 0.1 * time0)
else:
fA = Heaviside(time0 - 1)
f = np.zeros((ndo1, len(time0)))
f[induA, :] = fA + fpert
u0 = np.zeros(ndo1)
v0 = np.zeros(ndo1)
a0 = np.linalg.solve(M, f[:, 0] - C @ v0 - K @ u0)
u, v, a = Newmark(M, C, K, f, u0, v0, a0, delta, beta, gamma)
uB_final = u[induB, -1]
threshold = 0.01 * abs(uB_final)
stable_idx = np.where(np.abs(u[induB, :] - uB_final) < threshold)[0]
settling_time = time0[stable_idx[0]] if len(stable_idx) > 0 else "Non stabilisé"
fig, ax = plt.subplots()
ax.plot(time0, u[induB, :], label='u_B (tip)', linewidth=2)
ax.plot(time0, fA, label='Consigne f_A', linestyle='--')
ax.legend()
ax.set_title(f"Boucle ouverte ({solicitation}) : Déplacement du tip")
ax.set_xlabel("Temps (s)")
ax.set_ylabel("Déplacement (m)")
animation = generate_animation(ixe, u[::2, :], f"Déformation en boucle ouverte ({solicitation})")
elif mode == "Boucle fermée PID":
u_ref = Heaviside(time0 - 1)
u = np.zeros((ndo1, len(time0)))
v = np.zeros((ndo1, len(time0)))
a = np.zeros((ndo1, len(time0)))
u[:, 0] = np.zeros(ndo1)
v[:, 0] = np.zeros(ndo1)
a[:, 0] = np.linalg.solve(M, -C @ v[:, 0] - K @ u[:, 0])
integ_e = 0
prev_e = 0
errors = []
for step in range(1, len(time0)):
uB_meas = u[induB, step-1] + mpert[step-1]
e = u_ref[step] - uB_meas
integ_e += e * delta
de = (e - prev_e) / delta
Fpid = Kp * e + Ki * integ_e + Kd * de
f_k = np.zeros(ndo1)
f_k[induA] = Fpid + fpert[step]
u[:, step], v[:, step], a[:, step] = newmark1stepMRHS(M, C, K, f_k, u[:, step-1], v[:, step-1], a[:, step-1], delta, beta, gamma)
prev_e = e
errors.append(e)
u_open = None
if compare_open:
fA_comp = Heaviside(time0 - 1)
f_comp = np.zeros((ndo1, len(time0)))
f_comp[induA, :] = fA_comp + fpert
u_open, _, _ = Newmark(M, C, K, f_comp, np.zeros(ndo1), np.zeros(ndo1), np.linalg.solve(M, f_comp[:, 0]), delta, beta, gamma)
fig, ax = plt.subplots()
ax.plot(time0, u[induB, :], label='u_B PID', linewidth=2)
if u_open is not None:
ax.plot(time0, u_open[induB, :], label='u_B open loop', linestyle='--')
ax.plot(time0, u_ref, label='Consigne', linestyle='-.')
ax.legend()
ax.set_title("Boucle fermée PID : Déplacement u_B")
ax.set_xlabel("Temps (s)")
ax.set_ylabel("Déplacement (m)")
animation = generate_animation(ixe, u[::2, :], "Déformation en boucle fermée")
elif mode == "Filtre de Kalman":
n_state = 2 * ndo1
Q = np.eye(n_state) * q
R = r
P = np.eye(n_state) * 1e-3
x_est = np.zeros(n_state)
A = Fconstruct(M, C, K, delta, beta, gamma)[:n_state, :n_state]
B_mat = Bconstruct(M, C, K, nA, delta, beta, gamma)[:n_state, :ndo1]
H = np.zeros((1, n_state))
H[0, induB] = 1
u_sim = np.zeros((ndo1, len(time0)))
v_sim = np.zeros((ndo1, len(time0)))
u_sim[:, 0] = np.zeros(ndo1)
v_sim[:, 0] = np.zeros(ndo1)
estimates = []
P_history = [P.copy()]
for step in range(1, len(time0)):
f_k = np.zeros(ndo1)
u_sim[:, step], v_sim[:, step], _ = newmark1stepMRHS(M, C, K, f_k, u_sim[:, step-1], v_sim[:, step-1], np.zeros(ndo1), delta, beta, gamma)
z = None
if not without_measure:
z = u_sim[induB, step] + mpert[step]
x_pred = A @ x_est
P_pred = A @ P @ A.T + Q
if not without_measure and z is not None:
K_kal = P_pred @ H.T @ np.linalg.inv(H @ P_pred @ H.T + R)
x_est = x_pred + K_kal @ (z - H @ x_pred)
P = (np.eye(n_state) - K_kal @ H) @ P_pred
else:
x_est = x_pred
P = P_pred
estimates.append(x_est[induB])
P_history.append(P.copy())
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
ax1.plot(time0[1:], estimates, label='Estimation Kalman', linewidth=2)
ax1.plot(time0, u_sim[induB, :], label='Vraie u_B', linestyle='--')
ax1.legend()
ax1.set_title("Estimation de u_B")
ax1.set_xlabel("Temps (s)")
ax1.set_ylabel("Déplacement (m)")
cov_uB = [P[induB, induB] for P in P_history]
ax2.plot(time0, cov_uB, label='Covariance u_B', linewidth=2)
ax2.legend()
ax2.set_title("Évolution de la covariance")
ax2.set_xlabel("Temps (s)")
ax2.set_ylabel("Variance")
animation = "Animation non disponible pour Kalman"
else:
return "Mode non implémenté", "", f"Temps: {time.time() - start_time:.2f}s"
buf = BytesIO()
fig.savefig(buf, format="png", dpi=100)
buf.seek(0)
plot_b64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close(fig)
plot_html = f'<img src="data:image/png;base64,{plot_b64}" style="max-width:100%;">'
elapsed = f"Temps de calcul: {time.time() - start_time:.2f}s"
if mode == "Boucle ouverte":
info_str = f"{elapsed}, Stabilité: {settling_time}"
else:
info_str = elapsed
return plot_html, animation, info_str
except Exception as e:
return f"Erreur: {str(e)}", "", f"Temps: {time.time() - start_time:.2f}s"
def generate_schema():
fig, ax = plt.subplots(figsize=(10, 6))
ax.text(0.1, 0.8, 'i', fontsize=14, ha='center')
ax.arrow(0.15, 0.8, 0.1, 0, head_width=0.03, head_length=0.03, fc='k', ec='k')
ax.text(0.3, 0.8, 'Moteur', fontsize=14, ha='center', bbox=dict(boxstyle="round,pad=0.3", facecolor="lightblue"))
ax.arrow(0.4, 0.8, 0.1, 0, head_width=0.03, head_length=0.03, fc='k', ec='k')
ax.text(0.55, 0.8, 'F_m', fontsize=14, ha='center')
ax.arrow(0.6, 0.8, 0.1, 0, head_width=0.03, head_length=0.03, fc='k', ec='k')
ax.text(0.75, 0.8, 'Transmission', fontsize=14, ha='center', bbox=dict(boxstyle="round,pad=0.3", facecolor="lightgreen"))
ax.arrow(0.85, 0.8, 0.1, 0, head_width=0.03, head_length=0.03, fc='k', ec='k')
ax.text(0.95, 0.8, 'F_t', fontsize=14, ha='center')
ax.arrow(0.15, 0.5, 0.1, 0, head_width=0.03, head_length=0.03, fc='k', ec='k')
ax.text(0.3, 0.5, 'C_m', fontsize=14, ha='center')
ax.arrow(0.4, 0.5, 0.1, 0, head_width=0.03, head_length=0.03, fc='k', ec='k')
ax.text(0.55, 0.5, 'θ', fontsize=14, ha='center')
ax.arrow(0.6, 0.5, 0.1, 0, head_width=0.03, head_length=0.03, fc='k', ec='k')
ax.text(0.75, 0.5, 'f_A', fontsize=14, ha='center')
ax.arrow(0.85, 0.5, 0.1, 0, head_width=0.03, head_length=0.03, fc='k', ec='k')
ax.text(0.95, 0.5, 'u_A', fontsize=14, ha='center')
ax.arrow(0.5, 0.3, 0, -0.1, head_width=0.03, head_length=0.03, fc='k', ec='k')
ax.text(0.5, 0.2, 'Poutre Flexible', fontsize=14, ha='center', bbox=dict(boxstyle="round,pad=0.3", facecolor="lightcoral"))
ax.arrow(0.5, 0.1, 0, -0.05, head_width=0.03, head_length=0.03, fc='k', ec='k')
ax.text(0.5, 0.05, 'u_B', fontsize=14, ha='center')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
buf = BytesIO()
fig.savefig(buf, format="png", dpi=100)
buf.seek(0)
img_b64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close(fig)
return f'<img src="data:image/png;base64,{img_b64}" style="max-width:100%;">'
def compute_ft_gt(rendement, cm, theta_dot, fa_dot, ua_dot):
if rendement == 1:
ft = cm * theta_dot
gt = fa_dot * ua_dot
equal = "Oui" if np.isclose(ft, gt) else "Non"
return f"F_t = {ft:.3f}, G_t = {gt:.3f}, Égal: {equal}"
else:
return r"Pour rendement unitaire, F_t = C_m * \dot{\theta}, G_t = f_A * \dot{u_A}"
def quiz_answer(choice):
if choice == "Estimer u_B sans mesure directe":
return "Correct ! Le jumeau permet d'estimer états non mesurés."
else:
return "Incorrect. Réessayez."
desc_prep = r"""
### Travail Préparatoire (Section 4.1 des rapports)
Étude du système : Schéma bloc en boucle ouverte. Relation F_t et G_t : Sous hypothèse de conservation d'énergie (rendement unitaire), F_t = G_t (d'après conservation C_m \dot{\theta} = f_A \dot{u_A}).
Intérêt du jumeau : Estimer u_B sans mesure directe pour contrôle en boucle fermée.
"""
desc_open = """
### Boucle Ouverte (Section 4.2.1)
Simulation sans rétroaction. Observez le déplacement u_B avec/sans perturbation. La position de B suit A avec retard (forme sinusoïdale ou échelon).
"""
desc_pid = """
### Boucle Fermée PID
Contrôle avec PID pour suivre la consigne. Observez l'erreur de suivi.
"""
desc_kalman = """
### Filtre de Kalman
Estimation d'état avec filtre Kalman pour filtrer le bruit sur la mesure u_B.
"""
with gr.Blocks() as demo:
gr.Markdown("# Jumeaux Numériques : Simulation de Robot Souple\nDémo interactive basée sur le cours de Renaud Ferrier - Centrale Lyon ENISE.")
with gr.Tabs():
with gr.Tab("Préparatoire"):
gr.Markdown(desc_prep)
gr.Markdown("### Schéma Bloc du Système")
schema_img = gr.HTML(value=generate_schema())
gr.Markdown("### Conservation d'Énergie : F_t = G_t")
with gr.Row():
rendement_slider = gr.Slider(0.5, 1, 1, label="Rendement (η)", info="Hypothèse rendement unitaire pour conservation")
cm_input = gr.Number(1e-3, label="C_m (constante moteur)")
theta_dot_input = gr.Number(10, label="\\dot{\\theta} (vitesse angulaire)")
fa_dot_input = gr.Number(100, label="f_A (force en A)")
ua_dot_input = gr.Number(0.1, label="\\dot{u_A} (vitesse en A)")
compute_btn = gr.Button("Calculer F_t et G_t")
ft_gt_output = gr.Textbox(label="Résultat")
compute_btn.click(compute_ft_gt, inputs=[rendement_slider, cm_input, theta_dot_input, fa_dot_input, ua_dot_input], outputs=ft_gt_output)
gr.Markdown("### Intérêt du Jumeau Numérique")
quiz_radio = gr.Radio(["Estimer u_B sans mesure directe", "Simuler rapidement", "Réduire coûts"], label="Quel est l'intérêt principal du jumeau ?")
quiz_btn = gr.Button("Vérifier")
quiz_output = gr.Textbox()
quiz_btn.click(quiz_answer, inputs=quiz_radio, outputs=quiz_output)
gr.Markdown("### Probabilités Gaussiennes pour Bruits\nDensité : $ p(x) = \\frac{1}{\\sqrt{2\\pi \\sigma^2}} \\exp\\left(-\\frac{(x-\\mu)^2}{2\\sigma^2}\\right) $\nUtilisée pour covariances Q, R dans Kalman.")
with gr.Tab("Boucle ouverte"):
gr.Markdown(desc_open)
solicitation_dropdown = gr.Dropdown(["échelon", "sinusoïdale"], value="échelon", label="Type de sollicitation", info="Échelon à t=1s ou sinusoïdale")
with gr.Row():
nx_slider = gr.Slider(5, 20, 10, 1, label="nx (éléments)", info="Précision poutre")
delta_slider = gr.Slider(0.001, 0.05, 0.01, label="δt (pas temps)")
q_slider = gr.Slider(0, 0.001, 0.0001, label="q (variance perturbation)")
with_pert = gr.Checkbox(True, label="Perturbation ?")
compare_open_open = gr.Checkbox(False, visible=False)
without_measure_open = gr.Checkbox(False, visible=False)
mode_open = gr.Textbox("Boucle ouverte", visible=False)
run_open = gr.Button("Simuler")
plot_open = gr.HTML()
anim_open = gr.HTML()
time_open = gr.Textbox(label="Info")
run_open.click(run_simulation, inputs=[nx_slider, delta_slider, q_slider, gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), gr.Checkbox(value=False, visible=False), with_pert, gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), solicitation_dropdown, compare_open_open, without_measure_open, mode_open], outputs=[plot_open, anim_open, time_open])
with gr.Tab("Boucle fermée PID"):
gr.Markdown(desc_pid)
with gr.Row():
nx_pid = gr.Slider(5, 20, 10, 1, label="nx")
delta_pid = gr.Slider(0.001, 0.05, 0.01, label="δt")
r_pid = gr.Slider(0, 0.001, 0.0001, label="r (bruit mesure)")
Kp_slider = gr.Slider(0, 10, 0.5, label="Kp")
Ki_slider = gr.Slider(0, 1, 0.1, label="Ki")
Kd_slider = gr.Slider(0, 0.1, 0.01, label="Kd")
with_noise_pid = gr.Checkbox(True, label="Bruit mesure ?")
compare_open_pid = gr.Checkbox(False, label="Comparer avec boucle ouverte")
solicitation_pid = gr.Textbox("échelon", visible=False)
without_measure_pid = gr.Checkbox(False, visible=False)
mode_pid = gr.Textbox("Boucle fermée PID", visible=False)
run_pid = gr.Button("Simuler")
plot_pid = gr.HTML()
anim_pid = gr.HTML()
time_pid = gr.Textbox()
run_pid.click(run_simulation, inputs=[nx_pid, delta_pid, gr.Number(value=0, visible=False), r_pid, Kp_slider, Ki_slider, Kd_slider, gr.Number(value=0, visible=False), with_noise_pid, gr.Checkbox(value=False, visible=False), gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), solicitation_pid, compare_open_pid, without_measure_pid, mode_pid], outputs=[plot_pid, anim_pid, time_pid])
with gr.Tab("Filtre de Kalman"):
gr.Markdown(desc_kalman)
with gr.Row():
nx_kal = gr.Slider(5, 15, 10, 1, label="nx")
delta_kal = gr.Slider(0.001, 0.05, 0.01, label="δt")
q_kal = gr.Slider(0, 0.001, 0.0001, label="q (bruit processus)")
r_kal = gr.Slider(0, 0.001, 0.0001, label="r (bruit mesure)")
without_measure_kal = gr.Checkbox(False, label="Sans mesure u_B (jumeau)")
solicitation_kal = gr.Textbox("échelon", visible=False)
compare_open_kal = gr.Checkbox(False, visible=False)
mode_kal = gr.Textbox("Filtre de Kalman", visible=False)
run_kal = gr.Button("Simuler")
plot_kal = gr.HTML()
anim_kal = gr.HTML()
time_kal = gr.Textbox()
run_kal.click(run_simulation, inputs=[nx_kal, delta_kal, q_kal, r_kal, gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), gr.Checkbox(value=False, visible=False), gr.Checkbox(value=False, visible=False), gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), gr.Number(value=0, visible=False), solicitation_kal, compare_open_kal, without_measure_kal, mode_kal], outputs=[plot_kal, anim_kal, time_kal])
demo.launch()