File size: 10,386 Bytes
c20d7cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""Defines module to compose final Gaussians from base values and delta values.

For licensing see accompanying LICENSE file.
Copyright (C) 2025 Apple Inc. All Rights Reserved.
"""

from __future__ import annotations

import torch
from torch import nn
from torch.nn import functional as F

from sharp.models.initializer import GaussianBaseValues
from sharp.utils import math as math_utils
from sharp.utils.color_space import ColorSpace, sRGB2linearRGB
from sharp.utils.gaussians import Gaussians3D

from .params import DeltaFactor


def _get_scale_activation_constant(max_scale: float, min_scale: float) -> tuple[float, float]:
    """Return constants for scale activation function."""
    # To ensure for delta = 0, the value of scale_factor is 1 and the gradient is 1.
    constant_a = (max_scale - min_scale) / (1 - min_scale) / (max_scale - 1)
    constant_b = math_utils.inverse_sigmoid(
        torch.tensor((1.0 - min_scale) / (max_scale - min_scale))
    ).item()
    return constant_a, constant_b


class GaussianComposer(nn.Module):
    """Converts base values and deltas into Gaussians."""

    color_activation_type: math_utils.ActivationType
    opacity_activation_type: math_utils.ActivationType

    def __init__(
        self,
        delta_factor: DeltaFactor,
        min_scale: float,
        max_scale: float,
        color_activation_type: math_utils.ActivationType,
        opacity_activation_type: math_utils.ActivationType,
        color_space: ColorSpace,
        base_scale_on_predicted_mean: bool,
        scale_factor: int = 1,
    ) -> None:
        """Initialize GaussianComposer.

        Args:
            delta_factor: Multiply delta offsets by this factor.
            min_scale: The minimal scale factor for gaussian scale activation.
            max_scale: The maximal scale factor for gaussian scale activation.
            color_activation_type: Which activation function to use for colors.
            opacity_activation_type: Which activation function to use for opacities.
            color_space: Which color space is used in training.
            scale_factor: The scale factor to upsample the delta_values before composition.
            base_scale_on_predicted_mean: Whether to account z offsets for estimating base scale.
        """
        super().__init__()
        self.delta_factor = delta_factor
        self.max_scale = max_scale
        self.min_scale = min_scale
        self.color_activation_type = color_activation_type
        self.opacity_activation_type = opacity_activation_type
        self.color_space = color_space
        self.scale_factor = scale_factor
        self.base_scale_on_predicted_mean = base_scale_on_predicted_mean

    def upsample_delta_value(self, delta: torch.Tensor, scale_factor: int = 1):
        """Upsample the delta value.

        Args:
            delta: The delta values predicted by gaussian predictor.
            scale_factor: The scale factor to upsample the delta_values.
        """
        (
            batch_size,
            num_channels,
            num_layers,
            image_height,
            image_width,
        ) = delta.shape
        new_height = image_height * scale_factor
        new_width = image_width * scale_factor
        upsampled_delta = F.interpolate(
            delta.view(batch_size, num_channels * num_layers, image_height, image_width),
            scale_factor=scale_factor,
        ).view(batch_size, num_channels, num_layers, new_height, new_width)
        return upsampled_delta

    def forward(
        self,
        delta: torch.Tensor,
        base_values: GaussianBaseValues,
        global_scale: torch.Tensor | None = None,
        flatten_output: bool = True,
    ) -> Gaussians3D:
        """Combine predicted delta values with base gaussian values and apply activation function.

        Args:
            delta: The delta values predicted by gaussian predictor.
            base_values: The gaussian base values.
            global_scale: Global scale of Gaussians.
            flatten_output: Flatten the gaussian parameters.

        Returns:
            The computed 3D Gaussians.
        """
        # Upsample the delta if delta and base_values have different strides.
        scale_factor = self.scale_factor
        # For triplane head, the delta has already been upsampled.
        actual_scale_factor = base_values.mean_x_ndc.shape[-1] // delta.shape[-1]
        if scale_factor != 1 and actual_scale_factor != 1:
            delta = self.upsample_delta_value(delta, scale_factor)

        mean_vectors = self._forward_mean(base_values, delta)

        # Account for the change in base scale due to z offsets.
        base_scales = (
            (base_values.scales * base_values.mean_inverse_z_ndc * mean_vectors[:, 2:3, ...])
            if self.base_scale_on_predicted_mean
            else base_values.scales
        )
        singular_values = self._scale_activation(
            base_scales,
            delta[:, 3:6],
            self.min_scale,
            self.max_scale,
        )
        quaternions = self._quaternion_activation(base_values.quaternions, delta[:, 6:10])
        colors = self._color_activation(base_values.colors, delta[:, 10:13])
        opacities = self._opacity_activation(base_values.opacities, delta[:, 13])

        if flatten_output:
            # [B, C, N, H, W] -> [B, N, H, W, C].
            # NOTE: opacities is [B, N, H, W] so it doesn't need to permute.
            mean_vectors = mean_vectors.permute(0, 2, 3, 4, 1).flatten(1, 3)
            singular_values = singular_values.permute(0, 2, 3, 4, 1).flatten(1, 3)
            quaternions = quaternions.permute(0, 2, 3, 4, 1).flatten(1, 3)
            colors = colors.permute(0, 2, 3, 4, 1).flatten(1, 3)
            opacities = opacities.flatten(1, 3)

        # Apply global scaling to convert Gaussians to metric space.
        if global_scale is not None:
            mean_vectors = global_scale[:, None, None] * mean_vectors
            singular_values = global_scale[:, None, None] * singular_values

        return Gaussians3D(
            mean_vectors=mean_vectors,
            singular_values=singular_values,
            quaternions=quaternions,
            colors=colors,
            opacities=opacities,
        )

    def _forward_mean(self, base_values: GaussianBaseValues, delta: torch.Tensor) -> torch.Tensor:
        # Concatenate base vectors and apply mean activation.
        delta_factor = torch.tensor(
            [self.delta_factor.xy, self.delta_factor.xy, self.delta_factor.z],
            device=delta.device,
        )[None, :, None, None, None]

        dtype = base_values.mean_x_ndc.dtype
        device = base_values.mean_x_ndc.device
        target_shape = (1, 3, 1, 1, 1)
        mean_x_mask = torch.tensor([1.0, 0.0, 0.0], dtype=dtype, device=device).reshape(
            target_shape
        )
        mean_y_mask = torch.tensor([0.0, 1.0, 0.0], dtype=dtype, device=device).reshape(
            target_shape
        )
        mean_z_mask = torch.tensor([0.0, 0.0, 1.0], dtype=dtype, device=device).reshape(
            target_shape
        )

        mean_vectors_ndc = (
            base_values.mean_x_ndc.repeat(target_shape) * mean_x_mask
            + base_values.mean_y_ndc.repeat(target_shape) * mean_y_mask
            + base_values.mean_inverse_z_ndc.repeat(target_shape) * mean_z_mask
        )

        mean_vectors = self._mean_activation(mean_vectors_ndc, delta_factor * delta[:, :3])
        return mean_vectors

    def _mean_activation(self, base: torch.Tensor, learned_delta: torch.Tensor) -> torch.Tensor:
        """Mean activation function.

        Args:
            base: Tensor of shape [B, 3, H, W], where first two feature dimensions
                (x,y) are in normalized device coordinates (NDC) where (-1, -1) is
                the top, while the third dimension is inverse depth.
            learned_delta: Tensor of shape [B, 3, H, W] with predicted delta values.

        Returns:
            Returns: The final mean vector after combining base and delta and applying nonlinearies.
        """
        xx = base[:, 0:1] + learned_delta[:, 0:1]
        yy = base[:, 1:2] + learned_delta[:, 1:2]

        a = base[:, 2:3]
        b = learned_delta[:, 2:3]

        # Original formula:
        inverse_zz = F.softplus(math_utils.inverse_softplus(a) + b)
        zz = 1.0 / (inverse_zz + 1e-3)

        mean_vectors = torch.cat([zz * xx, zz * yy, zz], dim=1)
        return mean_vectors

    def _scale_activation(
        self,
        base: torch.Tensor,
        learned_delta: torch.Tensor,
        min_scale: float,
        max_scale: float,
    ) -> torch.Tensor:
        constant_a, constant_b = _get_scale_activation_constant(max_scale, min_scale)
        scale_factor = (max_scale - min_scale) * torch.sigmoid(
            constant_a * self.delta_factor.scale * learned_delta + constant_b
        ) + min_scale
        return base * scale_factor

    def _quaternion_activation(
        self, base: torch.Tensor, learned_delta: torch.Tensor
    ) -> torch.Tensor:
        # No need to normalize the quaternions, since this is also done in rendering.
        return base + self.delta_factor.quaternion * learned_delta

    def _color_activation(self, base: torch.Tensor, learned_delta: torch.Tensor) -> torch.Tensor:
        # For certain activation functions we need to clamp the base value to
        # a supported range.
        if self.color_activation_type == "sigmoid":
            base = torch.clamp(base, min=0.01, max=0.99)
        elif self.color_activation_type in ("exp", "softplus"):
            base = torch.clamp(base, min=0.01)

        activation = math_utils.create_activation_pair(self.color_activation_type)
        colors: torch.Tensor = activation.forward(
            activation.inverse(base) + self.delta_factor.color * learned_delta
        )
        # Convert gaussian color to linear if linearRGB colorspace is specified.
        if self.color_space == "linearRGB":
            colors = sRGB2linearRGB(colors)
        return colors

    def _opacity_activation(self, base: torch.Tensor, learned_delta: torch.Tensor) -> torch.Tensor:
        activation = math_utils.create_activation_pair(self.opacity_activation_type)
        return activation.forward(
            activation.inverse(base) + self.delta_factor.opacity * learned_delta
        )