File size: 16,586 Bytes
c20d7cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
"""Contains basic data structures and functionality for 3D Gaussians.
For licensing see accompanying LICENSE file.
Copyright (C) 2025 Apple Inc. All Rights Reserved.
"""
from __future__ import annotations
import logging
from pathlib import Path
from typing import Any, Literal, NamedTuple
import numpy as np
import torch
from plyfile import PlyData, PlyElement
from sharp.utils import color_space as cs_utils
from sharp.utils import linalg
LOGGER = logging.getLogger(__name__)
BackgroundColor = Literal["black", "white", "random_color", "random_pixel"]
class Gaussians3D(NamedTuple):
"""Represents a collection of 3D Gaussians."""
mean_vectors: torch.Tensor
singular_values: torch.Tensor
quaternions: torch.Tensor
colors: torch.Tensor
opacities: torch.Tensor
def to(self, device: torch.device) -> Gaussians3D:
"""Move Gaussians to device."""
return Gaussians3D(
mean_vectors=self.mean_vectors.to(device),
singular_values=self.singular_values.to(device),
quaternions=self.quaternions.to(device),
colors=self.colors.to(device),
opacities=self.opacities.to(device),
)
class SceneMetaData(NamedTuple):
"""Meta data about Gaussian scene."""
focal_length_px: float
resolution_px: tuple[int, int]
color_space: cs_utils.ColorSpace
def get_unprojection_matrix(
extrinsics: torch.Tensor,
intrinsics: torch.Tensor,
image_shape: tuple[int, int],
) -> torch.Tensor:
"""Compute unprojection matrix to transform Gaussians to Euclidean space.
Args:
extrinsics: The 4x4 extrinsics matrix of the camera view.
intrinsics: The 4x4 intrinsics matrix of the camera view.
image_shape: The (width, height) of the input image.
Returns:
A 4x4 matrix to transform Gaussians from NDC space to Euclidean space.
"""
device = intrinsics.device
image_width, image_height = image_shape
# This matrix converts OpenCV pixel coordinates to NDC coordinates where
# (-1, 1) denotes the top left and (1, 1) the bottom right of the image.
#
# Note that premultiplying the intrinsics with ndc_matrix typically yields a matrix
# that simply scales the x-axis by 2 * focal_length / image_width and the y-axis by
# 2 * focal_length / image_height.
ndc_matrix = torch.tensor(
[
[2.0 / image_width, 0.0, -1.0, 0.0],
[0.0, 2.0 / image_height, -1.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
],
device=device,
)
return torch.linalg.inv(ndc_matrix @ intrinsics @ extrinsics)
def unproject_gaussians(
gaussians_ndc: Gaussians3D,
extrinsics: torch.Tensor,
intrinsics: torch.Tensor,
image_shape: tuple[int, int],
) -> Gaussians3D:
"""Unproject Gaussians from NDC space to world coordinates."""
unprojection_matrix = get_unprojection_matrix(extrinsics, intrinsics, image_shape)
gaussians = apply_transform(gaussians_ndc, unprojection_matrix[:3])
return gaussians
def apply_transform(gaussians: Gaussians3D, transform: torch.Tensor) -> Gaussians3D:
"""Apply an affine transformation to 3D Gaussians.
Args:
gaussians: The Gaussians to transform.
transform: An affine transform with shape 3x4.
Returns:
The transformed Gaussians.
Note: This operation is not differentiable.
"""
transform_linear = transform[..., :3, :3]
transform_offset = transform[..., :3, 3]
mean_vectors = gaussians.mean_vectors @ transform_linear.T + transform_offset
covariance_matrices = compose_covariance_matrices(
gaussians.quaternions, gaussians.singular_values
)
covariance_matrices = (
transform_linear @ covariance_matrices @ transform_linear.transpose(-1, -2)
)
quaternions, singular_values = decompose_covariance_matrices(covariance_matrices)
return Gaussians3D(
mean_vectors=mean_vectors,
singular_values=singular_values,
quaternions=quaternions,
colors=gaussians.colors,
opacities=gaussians.opacities,
)
def decompose_covariance_matrices(
covariance_matrices: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Decompose 3D covariance matrices into quaternions and singular values.
Args:
covariance_matrices: The covariance matrices to decompose.
Returns:
Quaternion and singular values corresponding to the orientation and scales of
the diagonalized matrix.
Note: This operation is not differentiable.
"""
device = covariance_matrices.device
dtype = covariance_matrices.dtype
# We convert to fp64 to avoid numerical errors.
covariance_matrices = covariance_matrices.detach().cpu().to(torch.float64)
rotations, singular_values_2, _ = torch.linalg.svd(covariance_matrices)
# NOTE: in SVD, it is possible that U and VT are both reflections.
# We need to correct them.
batch_idx, gaussian_idx = torch.where(torch.linalg.det(rotations) < 0)
num_reflections = len(gaussian_idx)
if num_reflections > 0:
LOGGER.warning(
"Received %d reflection matrices from SVD. Flipping them to rotations.",
num_reflections,
)
# Flip the last column of reflection and make it a rotation.
rotations[batch_idx, gaussian_idx, :, -1] *= -1
quaternions = linalg.quaternions_from_rotation_matrices(rotations)
quaternions = quaternions.to(dtype=dtype, device=device)
singular_values = singular_values_2.sqrt().to(dtype=dtype, device=device)
return quaternions, singular_values
def compose_covariance_matrices(
quaternions: torch.Tensor, singular_values: torch.Tensor
) -> torch.Tensor:
"""Compose 3D covariance matrices into quaternions and singular values.
Args:
quaternions: The quaternions describing the principal basis.
singular_values: The scales of the diagonalized matrix.
Returns:
The 3x3 covariances matrices.
"""
device = quaternions.device
rotations = linalg.rotation_matrices_from_quaternions(quaternions)
diagonal_matrix = torch.eye(3, device=device) * singular_values[..., :, None]
return rotations @ diagonal_matrix.square() @ rotations.transpose(-1, -2)
def convert_spherical_harmonics_to_rgb(sh0: torch.Tensor) -> torch.Tensor:
"""Convert degree-0 spherical harmonics to RGB.
Reference:
https://en.wikipedia.org/wiki/Table_of_spherical_harmonics
"""
coeff_degree0 = np.sqrt(1.0 / (4.0 * np.pi))
return sh0 * coeff_degree0 + 0.5
def convert_rgb_to_spherical_harmonics(rgb: torch.Tensor) -> torch.Tensor:
"""Convert RGB to degree-0 spherical harmonics.
Reference:
https://en.wikipedia.org/wiki/Table_of_spherical_harmonics
"""
coeff_degree0 = np.sqrt(1.0 / (4.0 * np.pi))
return (rgb - 0.5) / coeff_degree0
def load_ply(path: Path) -> tuple[Gaussians3D, SceneMetaData]:
"""Loads a ply from a file."""
plydata = PlyData.read(path)
vertices = next(filter(lambda x: x.name == "vertex", plydata.elements))
properties = ["x", "y", "z"]
properties.extend([f"f_dc_{i}" for i in range(3)])
properties.extend([f"scale_{i}" for i in range(3)])
properties.extend([f"rot_{i}" for i in range(3)])
for prop in properties:
if prop not in vertices:
raise KeyError(f"Incompatible ply file: property {prop} not found in ply elements.")
mean_vectors = np.stack(
(
np.asarray(vertices["x"]),
np.asarray(vertices["y"]),
np.asarray(vertices["z"]),
),
axis=1,
)
scale_logits = np.stack(
(
np.asarray(vertices["scale_0"]),
np.asarray(vertices["scale_1"]),
np.asarray(vertices["scale_2"]),
),
axis=1,
)
quaternions = np.stack(
(
np.asarray(vertices["rot_0"]),
np.asarray(vertices["rot_1"]),
np.asarray(vertices["rot_2"]),
np.asarray(vertices["rot_3"]),
),
axis=1,
)
spherical_harmonics_deg0 = np.stack(
(
np.asarray(vertices["f_dc_0"]),
np.asarray(vertices["f_dc_1"]),
np.asarray(vertices["f_dc_2"]),
),
axis=1,
)
colors = convert_spherical_harmonics_to_rgb(spherical_harmonics_deg0)
opacity_logits = np.asarray(vertices["opacity"])[..., None]
supplement_elements = [element for element in plydata.elements if element.name != "vertex"]
supplement_data: dict[str, Any] = {}
supplement_keys = ["extrinsic", "intrinsic", "color_space", "image_size"]
for element in supplement_elements:
for key in supplement_keys:
if key not in supplement_data and key in element:
supplement_data[key] = np.asarray(element[key])
# Parse intrinsics and image_size.
if "intrinsic" in supplement_data:
intrinsics_data = supplement_data["intrinsic"]
# Legacy: image_size is contained in intrinsic element.
if "image_size" not in supplement_data:
if len(intrinsics_data) != 4:
raise ValueError(
"Expect legacy intrinsics with len=4 containing image size, "
f"but received len={len(intrinsics_data)}"
)
focal_length_px = (intrinsics_data[0], intrinsics_data[1])
width = int(intrinsics_data[2])
height = int(intrinsics_data[3])
else:
if len(intrinsics_data) != 9:
raise ValueError(
"Expect 9 elements in intrinsics, " f"but received {len(intrinsics_data)}."
)
intrinsics_matrix = intrinsics_data.reshape((3, 3))
focal_length_px = (intrinsics_matrix[0, 0], intrinsics_matrix[1, 1])
image_size_data = supplement_data["image_size"]
width = image_size_data[0]
height = image_size_data[1]
# Default to VGA resolution: focal length = 512, image size = (640, 480).
else:
focal_length_px = (512, 512)
width = 640
height = 480
# Parse extrinsics.
extrinsics_data = supplement_data.get("extrinsic", np.eye(4).flatten())
extrinsics_matrix = np.eye(4)
# Legacy: extrinsics store 12 elements.
if len(extrinsics_data) == 12:
extrinsics_matrix[:3] = extrinsics_data.reshape((3, 4))
extrinsics_matrix[:3, :3] = extrinsics_matrix[:3, :3].copy().T
elif len(extrinsics_data) == 16:
extrinsics_matrix[:] = extrinsics_data.reshape((4, 4))
else:
raise ValueError(f"Unrecognized extrinsics matrix shape {len(extrinsics_data)}")
# Parse color space.
color_space_index = supplement_data.get("color_space", 1)
color_space = cs_utils.decode_color_space(color_space_index)
if color_space == "sRGB":
colors = cs_utils.sRGB2linearRGB(colors)
mean_vectors = torch.from_numpy(mean_vectors).view(1, -1, 3).float()
quaternions = torch.from_numpy(quaternions).view(1, -1, 4).float()
singular_values = torch.exp(torch.from_numpy(scale_logits).view(1, -1, 3)).float()
opacities = torch.sigmoid(torch.from_numpy(opacity_logits).view(1, -1)).float()
colors = torch.from_numpy(colors).view(1, -1, 3).float()
gaussians = Gaussians3D(
mean_vectors=mean_vectors,
quaternions=quaternions,
singular_values=singular_values,
opacities=opacities,
colors=colors,
)
metadata = SceneMetaData(focal_length_px[0], (width, height), color_space)
return gaussians, metadata
@torch.no_grad()
def save_ply(
gaussians: Gaussians3D, f_px: float, image_shape: tuple[int, int], path: Path
) -> PlyData:
"""Save a predicted Gaussian3D to a ply file."""
def _inverse_sigmoid(tensor: torch.Tensor) -> torch.Tensor:
return torch.log(tensor / (1.0 - tensor))
xyz = gaussians.mean_vectors.flatten(0, 1)
scale_logits = torch.log(gaussians.singular_values).flatten(0, 1)
quaternions = gaussians.quaternions.flatten(0, 1)
# SHARP takes an image, convert it to sRGB color space as input,
# and predicts linearRGB Gaussians as output.
# The SHARP renderer would blend linearRGB Gaussians and convert rendered images and videos
# back to sRGB for the best display quality.
#
# However, public renderers do not have such linear2sRGB conversions after rendering.
# If they render linearRGB Gaussians as-is, the output would be dark without Gamma correction.
#
# To make it compatible to public renderers, we force convert linearRGB to sRGB during export.
# - The SHARP renderer will still handle conversions properly.
# - Public renderers will be mostly working fine when regarding sRGB images as linearRGB images,
# although for the best performance, it is recommended to apply the conversions.
colors = convert_rgb_to_spherical_harmonics(
cs_utils.linearRGB2sRGB(gaussians.colors.flatten(0, 1))
)
color_space_index = cs_utils.encode_color_space("sRGB")
# Store opacity logits.
opacity_logits = _inverse_sigmoid(gaussians.opacities).flatten(0, 1).unsqueeze(-1)
attributes = torch.cat(
(
xyz,
colors,
opacity_logits,
scale_logits,
quaternions,
),
dim=1,
)
dtype_full = [
(attribute, "f4")
for attribute in ["x", "y", "z"]
+ [f"f_dc_{i}" for i in range(3)]
+ ["opacity"]
+ [f"scale_{i}" for i in range(3)]
+ [f"rot_{i}" for i in range(4)]
]
num_gaussians = len(xyz)
elements = np.empty(num_gaussians, dtype=dtype_full)
elements[:] = list(map(tuple, attributes.detach().cpu().numpy()))
vertex_elements = PlyElement.describe(elements, "vertex")
# Load image-wise metadata.
image_height, image_width = image_shape
# Export image size.
dtype_image_size = [("image_size", "u4")]
image_size_array = np.empty(2, dtype=dtype_image_size)
image_size_array[:] = np.array([image_width, image_height])
image_size_element = PlyElement.describe(image_size_array, "image_size")
# Export intrinsics.
dtype_intrinsic = [("intrinsic", "f4")]
intrinsic_array = np.empty(9, dtype=dtype_intrinsic)
intrinsic = np.array(
[
f_px,
0,
image_width * 0.5,
0,
f_px,
image_height * 0.5,
0,
0,
1,
]
)
intrinsic_array[:] = intrinsic.flatten()
intrinsic_element = PlyElement.describe(intrinsic_array, "intrinsic")
# Export dummy extrinsics.
dtype_extrinsic = [("extrinsic", "f4")]
extrinsic_array = np.empty(16, dtype=dtype_extrinsic)
extrinsic_array[:] = np.eye(4).flatten()
extrinsic_element = PlyElement.describe(extrinsic_array, "extrinsic")
# Export number of frames and particles per frame.
dtype_frames = [("frame", "i4")]
frame_array = np.empty(2, dtype=dtype_frames)
frame_array[:] = np.array([1, num_gaussians], dtype=np.int32)
frame_element = PlyElement.describe(frame_array, "frame")
# Export disparity ranges for transform.
dtype_disparity = [("disparity", "f4")]
disparity_array = np.empty(2, dtype=dtype_disparity)
disparity = 1.0 / gaussians.mean_vectors[0, ..., -1]
quantiles = (
torch.quantile(disparity, q=torch.tensor([0.1, 0.9], device=disparity.device))
.float()
.cpu()
.numpy()
)
disparity_array[:] = quantiles
disparity_element = PlyElement.describe(disparity_array, "disparity")
# Export colorspace.
dtype_color_space = [("color_space", "u1")]
color_space_array = np.empty(1, dtype=dtype_color_space)
color_space_array[:] = np.array([color_space_index]).flatten()
color_space_element = PlyElement.describe(color_space_array, "color_space")
dtype_version = [("version", "u1")]
version_array = np.empty(3, dtype=dtype_version)
version_array[:] = np.array([1, 5, 0], dtype=np.uint8).flatten()
version_element = PlyElement.describe(version_array, "version")
plydata = PlyData(
[
vertex_elements,
extrinsic_element,
intrinsic_element,
image_size_element,
frame_element,
disparity_element,
color_space_element,
version_element,
]
)
plydata.write(path)
return plydata
|