|
|
|
|
|
|
|
|
|
|
|
#if !defined(CYTHON_CCOMPLEX) |
|
|
#if defined(__cplusplus) |
|
|
#define CYTHON_CCOMPLEX 1 |
|
|
#elif defined(_Complex_I) |
|
|
#define CYTHON_CCOMPLEX 1 |
|
|
#else |
|
|
#define CYTHON_CCOMPLEX 0 |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
#if CYTHON_CCOMPLEX |
|
|
#ifdef __cplusplus |
|
|
#include <complex> |
|
|
#else |
|
|
#include <complex.h> |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
#if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__) |
|
|
#undef _Complex_I |
|
|
#define _Complex_I 1.0fj |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if CYTHON_CCOMPLEX |
|
|
#ifdef __cplusplus |
|
|
#define __Pyx_CREAL(z) ((z).real()) |
|
|
#define __Pyx_CIMAG(z) ((z).imag()) |
|
|
#else |
|
|
#define __Pyx_CREAL(z) (__real__(z)) |
|
|
#define __Pyx_CIMAG(z) (__imag__(z)) |
|
|
#endif |
|
|
#else |
|
|
#define __Pyx_CREAL(z) ((z).real) |
|
|
#define __Pyx_CIMAG(z) ((z).imag) |
|
|
#endif |
|
|
|
|
|
#if defined(__cplusplus) && CYTHON_CCOMPLEX \ |
|
|
&& (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103) |
|
|
#define __Pyx_SET_CREAL(z,x) ((z).real(x)) |
|
|
#define __Pyx_SET_CIMAG(z,y) ((z).imag(y)) |
|
|
#else |
|
|
#define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x) |
|
|
#define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y) |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if CYTHON_CCOMPLEX |
|
|
#ifdef __cplusplus |
|
|
typedef ::std::complex< {{real_type}} > {{type_name}}; |
|
|
#else |
|
|
typedef {{real_type}} _Complex {{type_name}}; |
|
|
#endif |
|
|
#else |
|
|
typedef struct { {{real_type}} real, imag; } {{type_name}}; |
|
|
#endif |
|
|
|
|
|
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}}, {{real_type}}); |
|
|
|
|
|
|
|
|
|
|
|
#if CYTHON_CCOMPLEX |
|
|
#ifdef __cplusplus |
|
|
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) { |
|
|
return ::std::complex< {{real_type}} >(x, y); |
|
|
} |
|
|
#else |
|
|
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) { |
|
|
return x + y*({{type}})_Complex_I; |
|
|
} |
|
|
#endif |
|
|
#else |
|
|
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) { |
|
|
{{type}} z; |
|
|
z.real = x; |
|
|
z.imag = y; |
|
|
return z; |
|
|
} |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define __pyx_PyComplex_FromComplex(z) \ |
|
|
PyComplex_FromDoubles((double)__Pyx_CREAL(z), \ |
|
|
(double)__Pyx_CIMAG(z)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject*); |
|
|
|
|
|
|
|
|
|
|
|
static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) { |
|
|
Py_complex cval; |
|
|
#if !CYTHON_COMPILING_IN_PYPY |
|
|
if (PyComplex_CheckExact(o)) |
|
|
cval = ((PyComplexObject *)o)->cval; |
|
|
else |
|
|
#endif |
|
|
cval = PyComplex_AsCComplex(o); |
|
|
return {{type_name}}_from_parts( |
|
|
({{real_type}})cval.real, |
|
|
({{real_type}})cval.imag); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if CYTHON_CCOMPLEX |
|
|
#define __Pyx_c_eq{{func_suffix}}(a, b) ((a)==(b)) |
|
|
#define __Pyx_c_sum{{func_suffix}}(a, b) ((a)+(b)) |
|
|
#define __Pyx_c_diff{{func_suffix}}(a, b) ((a)-(b)) |
|
|
#define __Pyx_c_prod{{func_suffix}}(a, b) ((a)*(b)) |
|
|
#define __Pyx_c_quot{{func_suffix}}(a, b) ((a)/(b)) |
|
|
#define __Pyx_c_neg{{func_suffix}}(a) (-(a)) |
|
|
#ifdef __cplusplus |
|
|
#define __Pyx_c_is_zero{{func_suffix}}(z) ((z)==({{real_type}})0) |
|
|
#define __Pyx_c_conj{{func_suffix}}(z) (::std::conj(z)) |
|
|
#if {{is_float}} |
|
|
#define __Pyx_c_abs{{func_suffix}}(z) (::std::abs(z)) |
|
|
#define __Pyx_c_pow{{func_suffix}}(a, b) (::std::pow(a, b)) |
|
|
#endif |
|
|
#else |
|
|
#define __Pyx_c_is_zero{{func_suffix}}(z) ((z)==0) |
|
|
#define __Pyx_c_conj{{func_suffix}}(z) (conj{{m}}(z)) |
|
|
#if {{is_float}} |
|
|
#define __Pyx_c_abs{{func_suffix}}(z) (cabs{{m}}(z)) |
|
|
#define __Pyx_c_pow{{func_suffix}}(a, b) (cpow{{m}}(a, b)) |
|
|
#endif |
|
|
#endif |
|
|
#else |
|
|
static CYTHON_INLINE int __Pyx_c_eq{{func_suffix}}({{type}}, {{type}}); |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_sum{{func_suffix}}({{type}}, {{type}}); |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_diff{{func_suffix}}({{type}}, {{type}}); |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_prod{{func_suffix}}({{type}}, {{type}}); |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}}, {{type}}); |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_neg{{func_suffix}}({{type}}); |
|
|
static CYTHON_INLINE int __Pyx_c_is_zero{{func_suffix}}({{type}}); |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_conj{{func_suffix}}({{type}}); |
|
|
#if {{is_float}} |
|
|
static CYTHON_INLINE {{real_type}} __Pyx_c_abs{{func_suffix}}({{type}}); |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_pow{{func_suffix}}({{type}}, {{type}}); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#if CYTHON_CCOMPLEX |
|
|
#else |
|
|
static CYTHON_INLINE int __Pyx_c_eq{{func_suffix}}({{type}} a, {{type}} b) { |
|
|
return (a.real == b.real) && (a.imag == b.imag); |
|
|
} |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_sum{{func_suffix}}({{type}} a, {{type}} b) { |
|
|
{{type}} z; |
|
|
z.real = a.real + b.real; |
|
|
z.imag = a.imag + b.imag; |
|
|
return z; |
|
|
} |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_diff{{func_suffix}}({{type}} a, {{type}} b) { |
|
|
{{type}} z; |
|
|
z.real = a.real - b.real; |
|
|
z.imag = a.imag - b.imag; |
|
|
return z; |
|
|
} |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_prod{{func_suffix}}({{type}} a, {{type}} b) { |
|
|
{{type}} z; |
|
|
z.real = a.real * b.real - a.imag * b.imag; |
|
|
z.imag = a.real * b.imag + a.imag * b.real; |
|
|
return z; |
|
|
} |
|
|
|
|
|
#if {{is_float}} |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}} a, {{type}} b) { |
|
|
if (b.imag == 0) { |
|
|
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.real); |
|
|
} else if (fabs{{m}}(b.real) >= fabs{{m}}(b.imag)) { |
|
|
if (b.real == 0 && b.imag == 0) { |
|
|
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.imag); |
|
|
} else { |
|
|
{{real_type}} r = b.imag / b.real; |
|
|
{{real_type}} s = ({{real_type}})(1.0) / (b.real + b.imag * r); |
|
|
return {{type_name}}_from_parts( |
|
|
(a.real + a.imag * r) * s, (a.imag - a.real * r) * s); |
|
|
} |
|
|
} else { |
|
|
{{real_type}} r = b.real / b.imag; |
|
|
{{real_type}} s = ({{real_type}})(1.0) / (b.imag + b.real * r); |
|
|
return {{type_name}}_from_parts( |
|
|
(a.real * r + a.imag) * s, (a.imag * r - a.real) * s); |
|
|
} |
|
|
} |
|
|
#else |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}} a, {{type}} b) { |
|
|
if (b.imag == 0) { |
|
|
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.real); |
|
|
} else { |
|
|
{{real_type}} denom = b.real * b.real + b.imag * b.imag; |
|
|
return {{type_name}}_from_parts( |
|
|
(a.real * b.real + a.imag * b.imag) / denom, |
|
|
(a.imag * b.real - a.real * b.imag) / denom); |
|
|
} |
|
|
} |
|
|
#endif |
|
|
|
|
|
static CYTHON_INLINE {{type}} __Pyx_c_neg{{func_suffix}}({{type}} a) { |
|
|
{{type}} z; |
|
|
z.real = -a.real; |
|
|
z.imag = -a.imag; |
|
|
return z; |
|
|
} |
|
|
static CYTHON_INLINE int __Pyx_c_is_zero{{func_suffix}}({{type}} a) { |
|
|
return (a.real == 0) && (a.imag == 0); |
|
|
} |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_conj{{func_suffix}}({{type}} a) { |
|
|
{{type}} z; |
|
|
z.real = a.real; |
|
|
z.imag = -a.imag; |
|
|
return z; |
|
|
} |
|
|
#if {{is_float}} |
|
|
static CYTHON_INLINE {{real_type}} __Pyx_c_abs{{func_suffix}}({{type}} z) { |
|
|
#if !defined(HAVE_HYPOT) || defined(_MSC_VER) |
|
|
return sqrt{{m}}(z.real*z.real + z.imag*z.imag); |
|
|
#else |
|
|
return hypot{{m}}(z.real, z.imag); |
|
|
#endif |
|
|
} |
|
|
static CYTHON_INLINE {{type}} __Pyx_c_pow{{func_suffix}}({{type}} a, {{type}} b) { |
|
|
{{type}} z; |
|
|
{{real_type}} r, lnr, theta, z_r, z_theta; |
|
|
if (b.imag == 0 && b.real == (int)b.real) { |
|
|
if (b.real < 0) { |
|
|
{{real_type}} denom = a.real * a.real + a.imag * a.imag; |
|
|
a.real = a.real / denom; |
|
|
a.imag = -a.imag / denom; |
|
|
b.real = -b.real; |
|
|
} |
|
|
switch ((int)b.real) { |
|
|
case 0: |
|
|
z.real = 1; |
|
|
z.imag = 0; |
|
|
return z; |
|
|
case 1: |
|
|
return a; |
|
|
case 2: |
|
|
return __Pyx_c_prod{{func_suffix}}(a, a); |
|
|
case 3: |
|
|
z = __Pyx_c_prod{{func_suffix}}(a, a); |
|
|
return __Pyx_c_prod{{func_suffix}}(z, a); |
|
|
case 4: |
|
|
z = __Pyx_c_prod{{func_suffix}}(a, a); |
|
|
return __Pyx_c_prod{{func_suffix}}(z, z); |
|
|
} |
|
|
} |
|
|
if (a.imag == 0) { |
|
|
if (a.real == 0) { |
|
|
return a; |
|
|
} else if (b.imag == 0) { |
|
|
z.real = pow{{m}}(a.real, b.real); |
|
|
z.imag = 0; |
|
|
return z; |
|
|
} else if (a.real > 0) { |
|
|
r = a.real; |
|
|
theta = 0; |
|
|
} else { |
|
|
r = -a.real; |
|
|
theta = atan2{{m}}(0.0, -1.0); |
|
|
} |
|
|
} else { |
|
|
r = __Pyx_c_abs{{func_suffix}}(a); |
|
|
theta = atan2{{m}}(a.imag, a.real); |
|
|
} |
|
|
lnr = log{{m}}(r); |
|
|
z_r = exp{{m}}(lnr * b.real - theta * b.imag); |
|
|
z_theta = theta * b.real + lnr * b.imag; |
|
|
z.real = z_r * cos{{m}}(z_theta); |
|
|
z.imag = z_r * sin{{m}}(z_theta); |
|
|
return z; |
|
|
} |
|
|
#endif |
|
|
#endif |
|
|
|