naohiro701 commited on
Commit
8bffb59
·
verified ·
1 Parent(s): abe8c55

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -243
app.py CHANGED
@@ -1,243 +1,55 @@
1
- import streamlit as st
2
- import requests
3
- import pandas as pd
4
- from io import StringIO
5
- import pulp
6
- import plotly.graph_objs as go
7
- from plotly.subplots import make_subplots
8
- import plotly.express as px
9
- import datetime
10
-
11
- # Function to fetch renewable energy data
12
- def get_renewable_energy_data(city_code):
13
- """
14
- Fetch renewable energy data from an external source based on a city code.
15
-
16
- Args:
17
- - city_code (str): The code representing the city for which the renewable energy data is to be fetched.
18
- Returns:
19
- - result_df (DataFrame): A DataFrame containing the energy data with time and capacity factors for each energy type.
20
- - error (str): Error message if the data fetching fails.
21
- """
22
- url = f"https://energy-sustainability.jp/_ajax/renewable_energy/get/?code={city_code}"
23
- response = requests.get(url)
24
- if response.status_code != 200:
25
- return None, "データの取得に失敗しました。" # Data fetch failed.
26
-
27
- data = response.json()
28
- if not data:
29
- return None, "データが見つかりませんでした。" # Data not found.
30
-
31
- # Extract base times from the first energy type.
32
- base_times = data[next(iter(data))]['x']
33
- result_df = pd.DataFrame({"Time": base_times})
34
-
35
- # Loop through each energy type and append hourly capacity factor data.
36
- for energy_type, energy_data in data.items():
37
- if 'x' in energy_data and 'y' in energy_data:
38
- values = energy_data['y']
39
- result_df[f"{energy_type} hourly capacity factor"] = values
40
-
41
- return result_df, None
42
-
43
- # Function to optimize the energy system
44
- def optimize_energy_system(city_code, solar_cost, onshore_wind_cost, offshore_wind_cost, river_cost, battery_cost, yearly_demand):
45
- """
46
- Optimize the energy system using linear programming to minimize cost while meeting demand with renewable sources and batteries.
47
-
48
- Args:
49
- - city_code (str): The code of the city for which energy data is to be optimized.
50
- - solar_cost (float): The cost of solar capacity per MW.
51
- - onshore_wind_cost (float): The cost of onshore wind capacity per MW.
52
- - offshore_wind_cost (float): The cost of offshore wind capacity per MW.
53
- - river_cost (float): The cost of river (hydro) capacity per MW.
54
- - battery_cost (float): The cost of battery capacity per MWh.
55
- - yearly_demand (float): The total yearly demand in TWh/year.
56
- Returns:
57
- - fig (Figure): A plotly figure showing the optimized energy dispatch and state of charge (SOC) over time.
58
- - curtailment_values (list): List of curtailment values for visualization.
59
- - price_per_hour (list): List of estimated electricity price per hour for visualization.
60
- """
61
- data, error = get_renewable_energy_data(city_code)
62
- if error:
63
- st.error(error)
64
- return None, None, None
65
-
66
- # Convert capacity factor columns to numeric values, handling any errors and filling missing data.
67
- for col in data.columns[1:]:
68
- data[col] = pd.to_numeric(data[col], errors='coerce')
69
-
70
- data = data.fillna(0) # Fill missing values with zero.
71
-
72
- # Extract necessary data for optimization.
73
- time_steps = range(len(data['Time']))
74
- if 'solar hourly capacity factor' not in data.columns:
75
- st.error("Solar data is missing in the retrieved dataset.")
76
- return None, None, None
77
-
78
- solar_cf = data['solar hourly capacity factor']
79
- onshore_wind_cf = data.get('onshore_wind hourly capacity factor', pd.Series([0]*len(data)))
80
- offshore_wind_cf = data.get('offshore_wind hourly capacity factor', pd.Series([0]*len(data)))
81
- river_cf = data.get('river hourly capacity factor', pd.Series([0]*len(data)))
82
- demand_cf = data.get('demand hourly capacity factor', pd.Series([0]*len(data)))
83
-
84
- # Define regions and technologies.
85
- regions = ['region1']
86
- technologies = ['solar', 'onshore_wind', 'offshore_wind', 'river']
87
- capacity_factor = {
88
- 'solar': solar_cf,
89
- 'onshore_wind': onshore_wind_cf,
90
- 'offshore_wind': offshore_wind_cf,
91
- 'river': river_cf
92
- }
93
-
94
- # Cost definitions for renewable capacity and battery.
95
- renewable_capacity_cost = {'solar': solar_cost, 'onshore_wind': onshore_wind_cost, 'offshore_wind': offshore_wind_cost, 'river': river_cost}
96
- battery_cost_per_mwh = battery_cost
97
- battery_efficiency = 0.9 # Battery efficiency.
98
-
99
- # Scale demand from capacity factor and yearly demand in TWh/year to hourly demand in MW.
100
- demand = demand_cf * yearly_demand / 100 * 1000 * 1000
101
-
102
- # Define LP variables for renewable capacities, curtailment, battery capacity, charge, discharge, and state of charge (SOC).
103
- renewable_capacity = pulp.LpVariable.dicts("renewable_capacity",
104
- [(r, g) for r in regions for g in technologies],
105
- lowBound=0, cat='Continuous')
106
- curtailment = pulp.LpVariable.dicts("curtailment",
107
- [(r, t) for r in regions for t in time_steps],
108
- lowBound=0, cat='Continuous')
109
- battery_capacity = pulp.LpVariable("battery_capacity", lowBound=0, cat='Continuous')
110
- battery_charge = pulp.LpVariable.dicts("battery_charge", time_steps, lowBound=0, cat='Continuous')
111
- battery_discharge = pulp.LpVariable.dicts("battery_discharge", time_steps, lowBound=0, cat='Continuous')
112
- SOC = pulp.LpVariable.dicts("SOC", time_steps, lowBound=0, cat='Continuous')
113
-
114
- # Define the optimization problem: minimize the total system cost.
115
- model = pulp.LpProblem("EnergySystemOptimizationWithBattery", pulp.LpMinimize)
116
-
117
- model += pulp.lpSum([renewable_capacity[(r, g)] * renewable_capacity_cost[g]
118
- for r in regions for g in technologies]) + \
119
- battery_capacity * battery_cost_per_mwh, "TotalCost"
120
-
121
- # Constraints to meet demand, manage curtailment, and update state of charge for the battery.
122
- for r in regions:
123
- for t in time_steps:
124
- model += pulp.lpSum([renewable_capacity[(r, g)] * capacity_factor[g][t]
125
- for g in technologies]) + battery_discharge[t] == demand[t] + battery_charge[t] + curtailment[(r,t)], f"DemandConstraint_{r}_{t}"
126
-
127
- if t == 0:
128
- model += SOC[t] == battery_charge[t] * battery_efficiency - battery_discharge[t] * (1 / battery_efficiency), f"SOCUpdate_{t}"
129
- else:
130
- model += SOC[t] == SOC[t-1] + battery_charge[t] * battery_efficiency - battery_discharge[t] * (1 / battery_efficiency), f"SOCUpdate_{t}"
131
-
132
- model += SOC[t] <= battery_capacity, f"SOCUpperBound_{t}"
133
-
134
- # Solve the optimization model.
135
- model.solve()
136
-
137
- # Extract optimized supply and battery values.
138
- supply_solar = solar_cf * renewable_capacity[('region1', 'solar')].varValue
139
- supply_onshore_wind = onshore_wind_cf * renewable_capacity[('region1', 'onshore_wind')].varValue
140
- supply_offshore_wind = offshore_wind_cf * renewable_capacity[('region1', 'offshore_wind')].varValue
141
- supply_river = river_cf * renewable_capacity[('region1', 'river')].varValue
142
-
143
- battery_discharge_values = [battery_discharge[t].varValue for t in time_steps]
144
- battery_charge_values = [-battery_charge[t].varValue for t in time_steps]
145
- SOC_values = [SOC[t].varValue for t in time_steps]
146
- curtailment_values = [curtailment[(r, t)].varValue for r in regions for t in time_steps]
147
-
148
- # Calculate price per hour based on demand and generation (simplified example).
149
- price_per_hour = [100 + 0.05 * demand[t] for t in time_steps] # Base price + factor for demand.
150
-
151
- # Normalize state of charge (SOC) to a percentage.
152
- max_SOC = max(SOC_values)
153
- SOC_normalized = [(soc / max_SOC) * 100 for soc in SOC_values] if max_SOC > 0 else [0] * len(SOC_values)
154
-
155
- # Create figure for power supply and demand
156
- fig_supply_demand = go.Figure()
157
- fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=supply_solar, mode='lines', stackgroup='one', name='Solar'))
158
- fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=supply_onshore_wind, mode='lines', stackgroup='one', name='Onshore Wind'))
159
- fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=supply_offshore_wind, mode='lines', stackgroup='one', name='Offshore Wind'))
160
- fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=supply_river, mode='lines', stackgroup='one', name='River'))
161
- fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=battery_discharge_values, mode='lines', name='Battery Discharge', line=dict(color='red')))
162
- fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=battery_charge_values, mode='lines', name='Battery Charge', line=dict(color='blue')))
163
- fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=-demand, mode='lines', name='Demand', line=dict(color='black')))
164
-
165
- # Create figure for state of charge (SOC)
166
- fig_soc = go.Figure()
167
- fig_soc.add_trace(go.Scatter(x=data['Time'], y=SOC_normalized, mode='lines', name='State of Charge (SOC)'))
168
-
169
- # Create figure for electricity price over time
170
- fig_price = go.Figure()
171
- fig_price.add_trace(go.Scatter(x=data['Time'], y=price_per_hour, mode='lines', name='Electricity Price'))
172
-
173
- # Layout settings for the figures
174
- fig_supply_demand.update_layout(
175
- title_text='Power Supply and Demand',
176
- yaxis_title='Power dispatch (MW)',
177
- legend_title='Source',
178
- font=dict(size=12),
179
- margin=dict(l=40, r=40, t=40, b=40),
180
- hovermode='x unified',
181
- plot_bgcolor='white',
182
- xaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray'),
183
- yaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray')
184
- )
185
-
186
- fig_soc.update_layout(
187
- title_text='State of Charge (Battery)',
188
- yaxis_title='State of Charge (%)',
189
- font=dict(size=12),
190
- margin=dict(l=40, r=40, t=40, b=40),
191
- hovermode='x unified',
192
- plot_bgcolor='white',
193
- xaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray'),
194
- yaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray')
195
- )
196
-
197
- fig_price.update_layout(
198
- title_text='Electricity Price Over Time',
199
- yaxis_title='Electricity Price (\u00a5/MWh)',
200
- font=dict(size=12),
201
- margin=dict(l=40, r=40, t=40, b=40),
202
- hovermode='x unified',
203
- plot_bgcolor='white',
204
- xaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray'),
205
- yaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray')
206
- )
207
-
208
- return fig_supply_demand, fig_soc, fig_price, curtailment_values, price_per_hour
209
-
210
- # Streamlit UI for the application
211
- st.set_page_config(page_title='Renewable Energy System Optimization', layout='wide')
212
- st.title('Renewable Energy System Optimization')
213
-
214
- # Explanation of the project
215
- st.markdown("""
216
- ### Overview
217
- This application is designed to help researchers and policymakers explore and optimize renewable energy systems for a specified region. By inputting cost parameters for different renewable energy sources and energy storage systems, the application determines the optimal mix of resources to meet energy demand while minimizing cost.
218
-
219
- The optimization problem is solved using linear programming, ensuring a balance between supply and demand, and incorporating battery energy storage to manage intermittency issues inherent in renewable energy.
220
-
221
- The visualizations provided help to better understand how different energy sources contribute to the overall power supply, how energy storage systems are utilized, and the impact of cost variations on energy prices.
222
- """)
223
-
224
- # Input fields for the user
225
- with st.sidebar:
226
- st.header('Input Parameters')
227
- city_code = st.text_input("Enter City Code", value="")
228
- solar_cost = st.number_input("Solar Capacity Cost (\u00a5/MW)", value=80.0, help="Estimated average cost of solar capacity per MW")
229
- onshore_wind_cost = st.number_input("Onshore Wind Capacity Cost (\u00a5/MW)", value=120.0, help="Estimated average cost of onshore wind capacity per MW")
230
- offshore_wind_cost = st.number_input("Offshore Wind Capacity Cost (\u00a5/MW)", value=180.0, help="Estimated average cost of offshore wind capacity per MW")
231
- river_cost = st.number_input("River Capacity Cost (\u00a5/MW)", value=100.0, help="Estimated average cost of river (hydro) capacity per MW")
232
- battery_cost = st.number_input("Battery Cost (\u00a5/MWh)", value=80.0, help="Estimated average cost of battery storage per MWh")
233
- yearly_demand = st.number_input("Yearly Power Demand (TWh/year)", value=15.0, help="Total yearly power demand in TWh")
234
-
235
- # Button to trigger optimization
236
- if st.button('Calculate Optimal Energy Mix'):
237
- fig_supply_demand, fig_soc, fig_price, curtailment_values, price_per_hour = optimize_energy_system(city_code, solar_cost, onshore_wind_cost, offshore_wind_cost, river_cost, battery_cost, yearly_demand)
238
- if fig_supply_demand:
239
- st.plotly_chart(fig_supply_demand, use_container_width=True, height=800)
240
- if fig_soc:
241
- st.plotly_chart(fig_soc, use_container_width=True, height=800)
242
- if fig_price:
243
- st.plotly_chart(fig_price, use_container_width=True, height=800)
 
1
+ # Create a figure for power supply and demand
2
+ fig_supply_demand = go.Figure()
3
+ fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=supply_solar, mode='lines', stackgroup='one', name='Solar'))
4
+ fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=supply_onshore_wind, mode='lines', stackgroup='one', name='Onshore Wind'))
5
+ fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=supply_offshore_wind, mode='lines', stackgroup='one', name='Offshore Wind'))
6
+ fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=supply_river, mode='lines', stackgroup='one', name='River'))
7
+ fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=battery_discharge_values, mode='lines', name='Battery Discharge', line=dict(color='red')))
8
+ fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=battery_charge_values, mode='lines', name='Battery Charge', line=dict(color='blue')))
9
+ fig_supply_demand.add_trace(go.Scatter(x=data['Time'], y=-demand, mode='lines', name='Demand', line=dict(color='black')))
10
+
11
+ # Create a figure for state of charge (SOC)
12
+ fig_soc = go.Figure()
13
+ fig_soc.add_trace(go.Scatter(x=data['Time'], y=SOC_normalized, mode='lines', name='State of Charge (SOC)'))
14
+
15
+ # Create a figure for electricity price over time
16
+ fig_price = go.Figure()
17
+ fig_price.add_trace(go.Scatter(x=data['Time'], y=price_per_hour, mode='lines', name='Electricity Price'))
18
+
19
+ # Update layouts for each figure
20
+ fig_supply_demand.update_layout(
21
+ title_text='Power Supply and Demand',
22
+ yaxis_title='Power dispatch (MW)',
23
+ legend_title='Source',
24
+ font=dict(size=12),
25
+ margin=dict(l=40, r=40, t=40, b=40),
26
+ hovermode='x unified',
27
+ plot_bgcolor='white',
28
+ xaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray'),
29
+ yaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray')
30
+ )
31
+
32
+ fig_soc.update_layout(
33
+ title_text='State of Charge (Battery)',
34
+ yaxis_title='State of Charge (%)',
35
+ font=dict(size=12),
36
+ margin=dict(l=40, r=40, t=40, b=40),
37
+ hovermode='x unified',
38
+ plot_bgcolor='white',
39
+ xaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray'),
40
+ yaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray')
41
+ )
42
+
43
+ fig_price.update_layout(
44
+ title_text='Electricity Price Over Time',
45
+ yaxis_title='Electricity Price (\u00a5/MWh)',
46
+ font=dict(size=12),
47
+ margin=dict(l=40, r=40, t=40, b=40),
48
+ hovermode='x unified',
49
+ plot_bgcolor='white',
50
+ xaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray'),
51
+ yaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray')
52
+ )
53
+
54
+ # Return the figures
55
+ return fig_supply_demand, fig_soc, fig_price, curtailment_values, price_per_hour