Spaces:
Running
Running
| """ | |
| This code started out as a PyTorch port of Ho et al's diffusion models: | |
| https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py | |
| Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. | |
| """ | |
| import enum | |
| import math | |
| import torch | |
| import numpy as np | |
| from .nn import mean_flat | |
| from .losses import normal_kl, discretized_gaussian_log_likelihood | |
| def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): | |
| """ | |
| Get a pre-defined beta schedule for the given name. | |
| The beta schedule library consists of beta schedules which remain similar | |
| in the limit of num_diffusion_timesteps. | |
| Beta schedules may be added, but should not be removed or changed once | |
| they are committed to maintain backwards compatibility. | |
| """ | |
| if schedule_name == "linear": | |
| # Linear schedule from Ho et al, extended to work for any number of | |
| # diffusion steps. | |
| scale = 1000 / num_diffusion_timesteps | |
| beta_start = scale * 0.0001 | |
| beta_end = scale * 0.02 | |
| return np.linspace( | |
| beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 | |
| ) | |
| elif schedule_name == "cosine": | |
| return betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, | |
| ) | |
| elif schedule_name == "sqrt": | |
| return betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| lambda t: 1 - np.sqrt(t + 0.0001), | |
| ) | |
| elif schedule_name == "trunc_cos": | |
| return betas_for_alpha_bar2( | |
| num_diffusion_timesteps, | |
| lambda t: np.cos((t + 0.1) / 1.1 * np.pi / 2) ** 2, | |
| ) | |
| elif schedule_name == "trunc_lin": | |
| scale = 1000 / num_diffusion_timesteps | |
| beta_start = scale * 0.0001 + 0.01 | |
| beta_end = scale * 0.02 + 0.01 | |
| return np.linspace( | |
| beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 | |
| ) | |
| elif schedule_name == "pw_lin": | |
| scale = 1000 / num_diffusion_timesteps | |
| beta_start = scale * 0.0001 + 0.01 | |
| beta_mid = scale * 0.0001 # scale * 0.02 | |
| beta_end = scale * 0.02 | |
| first_part = np.linspace(beta_start, beta_mid, 10, dtype=np.float64) | |
| second_part = np.linspace( | |
| beta_mid, beta_end, num_diffusion_timesteps - 10, dtype=np.float64 | |
| ) | |
| return np.concatenate([first_part, second_part]) | |
| else: | |
| raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
| def betas_for_alpha_bar2(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, | |
| which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
| :param num_diffusion_timesteps: the number of betas to produce. | |
| :param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
| produces the cumulative product of (1-beta) up to that | |
| part of the diffusion process. | |
| :param max_beta: the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| """ | |
| betas = [] | |
| betas.append(min(1 - alpha_bar(0), max_beta)) | |
| for i in range(num_diffusion_timesteps - 1): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
| return np.array(betas) | |
| def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, | |
| which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
| :param num_diffusion_timesteps: the number of betas to produce. | |
| :param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
| produces the cumulative product of (1-beta) up to that | |
| part of the diffusion process. | |
| :param max_beta: the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| """ | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
| return np.array(betas) | |
| class ModelMeanType(enum.Enum): | |
| """ | |
| Which type of output the model predicts. | |
| """ | |
| PREVIOUS_X = enum.auto() # the model predicts x_{t-1} | |
| START_X = enum.auto() # the model predicts x_0 | |
| EPSILON = enum.auto() # the model predicts epsilon | |
| class ModelVarType(enum.Enum): | |
| """ | |
| What is used as the model's output variance. | |
| The LEARNED_RANGE option has been added to allow the model to predict | |
| values between FIXED_SMALL and FIXED_LARGE, making its job easier. | |
| """ | |
| LEARNED = enum.auto() | |
| FIXED_SMALL = enum.auto() | |
| FIXED_LARGE = enum.auto() | |
| LEARNED_RANGE = enum.auto() | |
| class LossType(enum.Enum): | |
| MSE = enum.auto() # use raw MSE loss (and KL when learning variances) | |
| RESCALED_MSE = ( | |
| enum.auto() | |
| ) # use raw MSE loss (with RESCALED_KL when learning variances) | |
| KL = enum.auto() # use the variational lower-bound | |
| RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB | |
| E2E_KL = enum.auto() | |
| E2E_MSE = enum.auto() | |
| E2E_Simple_MSE = enum.auto() | |
| E2E_Simple_KL = enum.auto() | |
| def is_vb(self): | |
| return self == LossType.KL or self == LossType.RESCALED_KL | |
| class GaussianDiffusion: | |
| """ | |
| Utilities for training and sampling diffusion models. | |
| Ported directly from here, and then adapted over time to further experimentation. | |
| https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 | |
| :param betas: a 1-D numpy array of betas for each diffusion timestep, | |
| starting at T and going to 1. | |
| :param model_mean_type: a ModelMeanType determining what the model outputs. | |
| :param model_var_type: a ModelVarType determining how variance is output. | |
| :param loss_type: a LossType determining the loss function to use. | |
| :param rescale_timesteps: if True, pass floating point timesteps into the | |
| model so that they are always scaled like in the | |
| original paper (0 to 1000). | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| betas, | |
| model_mean_type, | |
| model_var_type, | |
| loss_type, | |
| rescale_timesteps=False, | |
| model_arch=None, | |
| training_mode="emb", | |
| ): | |
| self.model_mean_type = model_mean_type | |
| self.model_var_type = model_var_type | |
| self.loss_type = loss_type | |
| self.rescale_timesteps = rescale_timesteps | |
| self.model_arch = model_arch | |
| # Use float64 for accuracy. | |
| betas = np.array(betas, dtype=np.float64) | |
| self.betas = betas | |
| assert len(betas.shape) == 1, "betas must be 1-D" | |
| assert (betas > 0).all() and (betas <= 1).all() | |
| self.num_timesteps = int(betas.shape[0]) | |
| alphas = 1.0 - betas | |
| self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
| self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
| self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) | |
| assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) | |
| # calculations for diffusion q(x_t | x_{t-1}) and others | |
| self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
| self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
| self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
| self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
| self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) | |
| # calculations for posterior q(x_{t-1} | x_t, x_0) | |
| self.posterior_variance = ( | |
| betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| # log calculation clipped because the posterior variance is 0 at the | |
| # beginning of the diffusion chain. | |
| self.posterior_log_variance_clipped = np.log( | |
| np.append(self.posterior_variance[1], self.posterior_variance[1:]) | |
| ) | |
| self.posterior_mean_coef1 = ( | |
| betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| self.posterior_mean_coef2 = ( | |
| (1.0 - self.alphas_cumprod_prev) | |
| * np.sqrt(alphas) | |
| / (1.0 - self.alphas_cumprod) | |
| ) | |
| self.training_mode = training_mode | |
| self.mapping_func = None | |
| # | |
| # if training_mode == 'e2e': | |
| # self.training_losses = self.training_losses_e2e | |
| # else: | |
| # self.training_losses = self.training_losses_emb | |
| self.maxt = -1 | |
| def training_losses(self, model, *args, **kwargs): | |
| return self.training_losses_e2e(model, *args, **kwargs) | |
| # if self.training_mode == "e2e": | |
| # return self.training_losses_e2e(model, *args, **kwargs) | |
| # elif self.training_mode == "e2e-simple": | |
| # return self.training_losses_e2e_simple(model, *args, **kwargs) | |
| # else: | |
| # return self.training_losses_emb(model, *args, **kwargs) | |
| def calc_bpd_loop(self, model, *args, **kwargs): | |
| if self.training_mode == "e2e": | |
| return self.calc_bpd_loop_e2e(model, *args, **kwargs) | |
| else: | |
| return self.calc_bpd_loop_emb(model, *args, **kwargs) | |
| def q_mean_variance(self, x_start, t): | |
| """ | |
| Get the distribution q(x_t | x_0). | |
| :param x_start: the [N x C x ...] tensor of noiseless inputs. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
| """ | |
| mean = ( | |
| _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| ) | |
| variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
| log_variance = _extract_into_tensor( | |
| self.log_one_minus_alphas_cumprod, t, x_start.shape | |
| ) | |
| return mean, variance, log_variance | |
| def q_sample(self, x_start, t, noise=None): | |
| """ | |
| Diffuse the data for a given number of diffusion steps. | |
| In other words, sample from q(x_t | x_0). | |
| :param x_start: the initial data batch. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :param noise: if specified, the split-out normal noise. | |
| :return: A noisy version of x_start. | |
| """ | |
| if noise is None: | |
| noise = torch.randn_like(x_start) | |
| assert noise.shape == x_start.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) | |
| * noise | |
| ) | |
| def q_posterior_mean_variance(self, x_start, x_t, t): | |
| """ | |
| Compute the mean and variance of the diffusion posterior: | |
| q(x_{t-1} | x_t, x_0) | |
| """ | |
| assert x_start.shape == x_t.shape | |
| posterior_mean = ( | |
| _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
| + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
| ) | |
| posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
| posterior_log_variance_clipped = _extract_into_tensor( | |
| self.posterior_log_variance_clipped, t, x_t.shape | |
| ) | |
| assert ( | |
| posterior_mean.shape[0] | |
| == posterior_variance.shape[0] | |
| == posterior_log_variance_clipped.shape[0] | |
| == x_start.shape[0] | |
| ) | |
| return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
| def p_mean_variance( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| caption=None, | |
| ): | |
| """ | |
| Apply the model to get p(x_{t-1} | x_t), as well as a prediction of | |
| the initial x, x_0. | |
| :param model: the model, which takes a signal and a batch of timesteps | |
| as input. | |
| :param x: the [N x C x ...] tensor at time t. | |
| :param t: a 1-D Tensor of timesteps. | |
| :param clip_denoised: if True, clip the denoised signal into [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. Applies before | |
| clip_denoised. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict with the following keys: | |
| - 'mean': the model mean output. | |
| - 'variance': the model variance output. | |
| - 'log_variance': the log of 'variance'. | |
| - 'pred_xstart': the prediction for x_0. | |
| """ | |
| caption_state, caption_mask = caption[0], caption[1] | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| if self.model_arch == "conv-unet" or self.model_arch == "1d-unet": | |
| B, C = x.shape[:2] | |
| else: | |
| B, C = x.size(0), x.size(-1) | |
| assert t.shape == (B,) | |
| # print(x.shape) | |
| model_output = model( | |
| x, self._scale_timesteps(t), caption_state, caption_mask, **model_kwargs | |
| ) | |
| if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: | |
| if self.model_arch == "conv-unet": | |
| assert model_output.shape == (B, C * 2, *x.shape[2:]) | |
| model_output, model_var_values = torch.split(model_output, C, dim=1) | |
| # print('conv-unet') | |
| elif self.model_arch == "1d-unet": | |
| assert model_output.shape == (B, C * 2, *x.shape[2:]) | |
| model_output, model_var_values = torch.split(model_output, C, dim=1) | |
| else: | |
| assert model_output.shape == (B, x.size(1), C * 2) | |
| model_output, model_var_values = torch.split(model_output, C, dim=-1) | |
| if self.model_var_type == ModelVarType.LEARNED: | |
| model_log_variance = model_var_values | |
| model_variance = torch.exp(model_log_variance) | |
| else: | |
| min_log = _extract_into_tensor( | |
| self.posterior_log_variance_clipped, t, x.shape | |
| ) | |
| max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) | |
| # The model_var_values is [-1, 1] for [min_var, max_var]. | |
| frac = (model_var_values + 1) / 2 | |
| model_log_variance = frac * max_log + (1 - frac) * min_log | |
| model_variance = torch.exp(model_log_variance) | |
| else: | |
| model_variance, model_log_variance = { | |
| # for fixedlarge, we set the initial (log-)variance like so | |
| # to get a better decoder log likelihood. | |
| ModelVarType.FIXED_LARGE: ( | |
| np.append(self.posterior_variance[1], self.betas[1:]), | |
| np.log(np.append(self.posterior_variance[1], self.betas[1:])), | |
| ), | |
| ModelVarType.FIXED_SMALL: ( | |
| self.posterior_variance, | |
| self.posterior_log_variance_clipped, | |
| ), | |
| }[self.model_var_type] | |
| model_variance = _extract_into_tensor(model_variance, t, x.shape) | |
| model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) | |
| def process_xstart(x): | |
| if denoised_fn is not None: | |
| # print(denoised_fn) | |
| x = denoised_fn(x, t) | |
| if clip_denoised: | |
| return x.clamp(-1, 1) | |
| return x | |
| if self.model_mean_type == ModelMeanType.PREVIOUS_X: | |
| pred_xstart = process_xstart( | |
| self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) | |
| ) | |
| model_mean = model_output | |
| elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: | |
| if self.model_mean_type == ModelMeanType.START_X: | |
| pred_xstart = process_xstart(model_output) | |
| else: | |
| pred_xstart = process_xstart( | |
| self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) | |
| ) | |
| model_mean, _, _ = self.q_posterior_mean_variance( | |
| x_start=pred_xstart, x_t=x, t=t | |
| ) | |
| else: | |
| raise NotImplementedError(self.model_mean_type) | |
| assert ( | |
| model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape | |
| ) | |
| return { | |
| "mean": model_mean, | |
| "variance": model_variance, | |
| "log_variance": model_log_variance, | |
| "pred_xstart": pred_xstart, | |
| } | |
| def _predict_xstart_from_eps(self, x_t, t, eps): | |
| assert x_t.shape == eps.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
| - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps | |
| ) | |
| def _predict_xstart_from_xprev(self, x_t, t, xprev): | |
| assert x_t.shape == xprev.shape | |
| return ( # (xprev - coef2*x_t) / coef1 | |
| _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev | |
| - _extract_into_tensor( | |
| self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape | |
| ) | |
| * x_t | |
| ) | |
| def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
| - pred_xstart | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
| def _scale_timesteps(self, t): | |
| if self.rescale_timesteps: | |
| return t.float() * (1000.0 / self.num_timesteps) | |
| return t | |
| def p_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| top_p=None, | |
| caption=None, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model at the given timestep. | |
| :param model: the model to sample from. | |
| :param x: the current tensor at x_{t-1}. | |
| :param t: the value of t, starting at 0 for the first diffusion step. | |
| :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict containing the following keys: | |
| - 'sample': a random sample from the model. | |
| - 'pred_xstart': a prediction of x_0. | |
| """ | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| caption=caption, | |
| ) | |
| if top_p is not None and top_p > 0: | |
| # print('top_p sampling') | |
| noise = torch.randn_like(x) | |
| replace_mask = torch.abs(noise) > top_p | |
| while replace_mask.any(): | |
| noise[replace_mask] = torch.randn_like(noise[replace_mask]) | |
| replace_mask = torch.abs(noise) > top_p | |
| assert (torch.abs(noise) <= top_p).all() | |
| else: | |
| noise = torch.randn_like(x) | |
| nonzero_mask = ( | |
| (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| ) # no noise when t == 0 | |
| sample = ( | |
| out["mean"] + nonzero_mask * torch.exp(0.5 * out["log_variance"]) * noise | |
| ) | |
| return { | |
| "sample": sample, | |
| "pred_xstart": out["pred_xstart"], | |
| "greedy_mean": out["mean"], | |
| "out": out, | |
| } | |
| def p_debug_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| ): | |
| final = None | |
| for sample in self.p_debug_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| ): | |
| final = sample | |
| return final["sample"] | |
| def p_debug_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| custom_t_start=100, | |
| ): | |
| """ | |
| Generate samples from the model and yield intermediate samples from | |
| each timestep of diffusion. | |
| Arguments are the same as p_sample_loop(). | |
| Returns a generator over dicts, where each dict is the return value of | |
| p_sample(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = torch.randn(*shape, device=device) | |
| indices = list(range(custom_t_start))[::-1] | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = torch.tensor([i] * shape[0], device=device) | |
| with torch.no_grad(): | |
| out = self.p_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| yield out | |
| img = out["sample"] | |
| def p_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| top_p=None, | |
| caption=None, | |
| ): | |
| """ | |
| Generate samples from the model. | |
| :param model: the model module. | |
| :param shape: the shape of the samples, (N, C, H, W). | |
| :param noise: if specified, the noise from the encoder to sample. | |
| Should be of the same shape as `shape`. | |
| :param clip_denoised: if True, clip x_start predictions to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param device: if specified, the device to create the samples on. | |
| If not specified, use a model parameter's device. | |
| :param progress: if True, show a tqdm progress bar. | |
| :return: a non-differentiable batch of samples. | |
| """ | |
| final = None | |
| for sample in self.p_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| top_p=top_p, | |
| caption=caption, | |
| ): | |
| final = sample | |
| return final["sample"] | |
| def p_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| top_p=None, | |
| caption=None, | |
| ): | |
| """ | |
| Generate samples from the model and yield intermediate samples from | |
| each timestep of diffusion. | |
| Arguments are the same as p_sample_loop(). | |
| Returns a generator over dicts, where each dict is the return value of | |
| p_sample(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise.to(device) | |
| else: | |
| img = torch.randn(*shape, device=device) | |
| indices = list(range(self.num_timesteps))[::-1] | |
| # print(indices[-10:]) | |
| # indices = indices[:-1]+[1,1,1,1,1,1,1]*60+[0] | |
| # print(indices[-10:]) | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| if caption is not None: | |
| print("Text Guiding Generation ......") | |
| caption = ( | |
| caption[0].to(img.device), | |
| caption[1].to(img.device), | |
| ) # (caption_state, caption_mask) | |
| for i in indices: | |
| t = torch.tensor([i] * shape[0], device=device) | |
| with torch.no_grad(): | |
| out = self.p_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| top_p=top_p, | |
| caption=caption, | |
| ) | |
| yield out | |
| img = out["sample"] | |
| def p_sample_loop_langevin_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| langevin_func=None, | |
| top_p=None, | |
| ): | |
| """ | |
| Generate samples from the model and yield intermediate samples from | |
| each timestep of diffusion. | |
| Arguments are the same as p_sample_loop(). | |
| Returns a generator over dicts, where each dict is the return value of | |
| p_sample(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = torch.randn(*shape, device=device) | |
| indices = list(range(self.num_timesteps))[::-1] | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = torch.tensor([i] * shape[0], device=device) | |
| with torch.no_grad(): | |
| out = self.p_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| top_p=top_p, | |
| ) | |
| if langevin_func is not None: | |
| out["t"] = t | |
| out["img"] = img | |
| out = langevin_func(out) | |
| yield out | |
| img = out["sample"] | |
| def p_sample_loop_progressive_infill( | |
| self, | |
| model, | |
| shape, | |
| partial_enc, | |
| partial_mask, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| greedy=False, | |
| ): | |
| """ | |
| Generate samples from the model and yield intermediate samples from | |
| each timestep of diffusion. | |
| Arguments are the same as p_sample_loop(). | |
| Returns a generator over dicts, where each dict is the return value of | |
| p_sample(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| # img = img[partial_mask] + partial_enc_with_noise[~partial_mask] | |
| else: | |
| t_batch = torch.tensor([self.num_timesteps - 1] * shape[0], device=device) | |
| partial_enc_with_noise = self.q_sample(partial_enc, t_batch) | |
| img = torch.randn(*shape, device=device) | |
| # print(img.shape, partial_enc_with_noise.shape, partial_mask.shape) | |
| # img = img[partial_mask] + partial_enc_with_noise[~partial_mask] | |
| img[~partial_mask] = partial_enc_with_noise[~partial_mask] | |
| indices = list(range(self.num_timesteps))[::-1] | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = torch.tensor([i] * shape[0], device=device) | |
| with torch.no_grad(): | |
| out = self.p_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| if i > 0: | |
| partial_enc_with_noise = self.q_sample(partial_enc, t - 1) | |
| else: | |
| partial_enc_with_noise = partial_enc | |
| if greedy: | |
| img = out["greedy_mean"] | |
| img[~partial_mask] = partial_enc[~partial_mask] | |
| out["sample"] = img | |
| else: | |
| img = out["sample"] | |
| img[~partial_mask] = partial_enc[~partial_mask] | |
| # img[~partial_mask] = partial_enc_with_noise[~partial_mask] | |
| out["sample"] = img | |
| yield out | |
| def p_sample_loop_progressive_merge( | |
| self, | |
| model, | |
| shape, | |
| partial_enc, | |
| partial_mask, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| greedy=False, | |
| ): | |
| """ | |
| Generate samples from the model and yield intermediate samples from | |
| each timestep of diffusion. | |
| Arguments are the same as p_sample_loop(). | |
| Returns a generator over dicts, where each dict is the return value of | |
| p_sample(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| # img = img[partial_mask] + partial_enc_with_noise[~partial_mask] | |
| else: | |
| t_batch = torch.tensor([self.num_timesteps - 1] * shape[0], device=device) | |
| partial_enc_with_noise = self.q_sample(partial_enc, t_batch) | |
| img = torch.randn(*shape, device=device) | |
| # print(img.shape, partial_enc_with_noise.shape, partial_mask.shape) | |
| # img = img[partial_mask] + partial_enc_with_noise[~partial_mask] | |
| img[~partial_mask] = partial_enc_with_noise[~partial_mask] | |
| indices = list(range(self.num_timesteps))[::-1] | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = torch.tensor([i] * shape[0], device=device) | |
| with torch.no_grad(): | |
| out = self.p_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| if i > 0: | |
| partial_enc_with_noise = self.q_sample(partial_enc, t - 1) | |
| else: | |
| partial_enc_with_noise = partial_enc | |
| if greedy: | |
| img = out["greedy_mean"] | |
| img[~partial_mask] = partial_enc[~partial_mask] | |
| out["sample"] = img | |
| else: | |
| img = out["sample"] | |
| img[~partial_mask] = partial_enc[~partial_mask] | |
| # img[~partial_mask] = partial_enc_with_noise[~partial_mask] | |
| out["sample"] = img | |
| yield out | |
| def ddim_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| langevin_fn=None, | |
| caption=None, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model using DDIM. | |
| Same usage as p_sample(). | |
| """ | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| caption=caption, | |
| ) | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) | |
| sigma = ( | |
| eta | |
| * torch.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) | |
| * torch.sqrt(1 - alpha_bar / alpha_bar_prev) | |
| ) | |
| # Equation 12. | |
| noise = torch.randn_like(x) | |
| mean_pred = ( | |
| out["pred_xstart"] * torch.sqrt(alpha_bar_prev) | |
| + torch.sqrt(1 - alpha_bar_prev - sigma**2) * eps | |
| ) | |
| nonzero_mask = ( | |
| (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| ) # no noise when t == 0 | |
| # print(sigma.mean()) | |
| sample = mean_pred + nonzero_mask * sigma * noise | |
| if langevin_fn: | |
| print(t.shape) | |
| sample = langevin_fn( | |
| sample, mean_pred, sigma, self.alphas_cumprod_prev[t[0]], t, x | |
| ) | |
| return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
| def ddim_reverse_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| ): | |
| """ | |
| Sample x_{t+1} from the model using DDIM reverse ODE. | |
| """ | |
| assert eta == 0.0, "Reverse ODE only for deterministic path" | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x | |
| - out["pred_xstart"] | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) | |
| alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) | |
| # Equation 12. reversed | |
| mean_pred = ( | |
| out["pred_xstart"] * torch.sqrt(alpha_bar_next) | |
| + torch.sqrt(1 - alpha_bar_next) * eps | |
| ) | |
| return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} | |
| def ddim_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| eta=0.0, | |
| top_p=-1.0, | |
| langevin_fn=None, | |
| caption=None, | |
| ): | |
| """ | |
| Generate samples from the model using DDIM. | |
| Same usage as p_sample_loop(). | |
| """ | |
| final = None | |
| for sample in self.ddim_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| eta=eta, | |
| langevin_fn=langevin_fn, | |
| caption=caption, | |
| ): | |
| final = sample | |
| return final["sample"] | |
| def ddim_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| eta=0.0, | |
| langevin_fn=None, | |
| caption=None, | |
| ): | |
| """ | |
| Use DDIM to sample from the model and yield intermediate samples from | |
| each timestep of DDIM. | |
| Same usage as p_sample_loop_progressive(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = torch.randn(*shape, device=device) | |
| indices = list(range(self.num_timesteps))[::-1] | |
| if caption is not None: | |
| print("Text Guiding Generation ......") | |
| caption = ( | |
| caption[0].to(img.device), | |
| caption[1].to(img.device), | |
| ) # (caption_state, caption_mask) | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = torch.tensor([i] * shape[0], device=device) | |
| with torch.no_grad(): | |
| out = self.ddim_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| eta=eta, | |
| langevin_fn=langevin_fn, | |
| caption=caption, | |
| ) | |
| yield out | |
| img = out["sample"] | |
| def _vb_terms_bpd( | |
| self, | |
| model, | |
| x_start, | |
| x_t, | |
| t, | |
| clip_denoised=True, | |
| model_kwargs=None, | |
| noise=None, | |
| denoised_fn=None, | |
| ): | |
| """ | |
| Get a term for the variational lower-bound. | |
| The resulting units are bits (rather than nats, as one might expect). | |
| This allows for comparison to other papers. | |
| :return: a dict with the following keys: | |
| - 'output': a shape [N] tensor of NLLs or KLs. | |
| - 'pred_xstart': the x_0 predictions. | |
| """ | |
| # lambda *args, r=frozen_out: r, | |
| true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( | |
| x_start=x_start, x_t=x_t, t=t | |
| ) | |
| if model_kwargs is not None and "input_ids" in model_kwargs: | |
| input_ids = model_kwargs.pop("input_ids") | |
| mapping_func = model_kwargs.pop("mapping_func", self.mapping_func) | |
| else: | |
| input_ids = None | |
| # noise=None | |
| out = self.p_mean_variance( | |
| model, | |
| x_t, | |
| t, | |
| clip_denoised=clip_denoised, | |
| model_kwargs=model_kwargs, | |
| denoised_fn=denoised_fn, | |
| ) | |
| kl = normal_kl( | |
| true_mean, true_log_variance_clipped, out["mean"], out["log_variance"] | |
| ) | |
| kl = mean_flat(kl) / np.log(2.0) | |
| if input_ids is not None: | |
| # print('input_ids is not None') | |
| # from torch.distributions import Normal | |
| # normal_dist = Normal(out["mean"], (0.5 * out["log_variance"]).exp()) | |
| # decoder_nll = -normal_dist.log_prob(x_start) | |
| assert mapping_func is not None | |
| if mapping_func is not None and torch.any(t == 0): | |
| decoder_nll = mapping_func(out["mean"], input_ids) / out["mean"].size( | |
| -1 | |
| ) | |
| else: | |
| decoder_nll = torch.zeros_like(x_start) | |
| model_kwargs["input_ids"] = input_ids | |
| model_kwargs["mapping_func"] = mapping_func | |
| # target = { | |
| # ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( | |
| # x_start=x_start, x_t=x_t, t=t | |
| # )[0], | |
| # ModelMeanType.START_X: x_start, | |
| # ModelMeanType.EPSILON: noise, | |
| # }[self.model_mean_type] | |
| # # print(out['mean'].shape, x_start.shape, self.model_mean_type, noise) | |
| # assert out["mean"].shape == target.shape == x_start.shape | |
| # decoder_nll = (target - out["mean"]) ** 2 | |
| else: | |
| decoder_nll = -discretized_gaussian_log_likelihood( | |
| x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] | |
| ) | |
| assert decoder_nll.shape == x_start.shape | |
| decoder_nll = mean_flat(decoder_nll) / np.log(2.0) | |
| # At the first timestep return the decoder NLL, | |
| # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) | |
| output = torch.where((t == 0), decoder_nll, kl) | |
| return {"output": output, "pred_xstart": out["pred_xstart"]} | |
| def _vb_terms_bpd_e2e( | |
| self, | |
| model, | |
| x_start, | |
| x_t, | |
| t, | |
| input_ids, | |
| get_logits, | |
| x_start_mean, | |
| x_start_log_var, | |
| clip_denoised=True, | |
| model_kwargs=None, | |
| noise=None, | |
| denoised_fn=None, | |
| ): | |
| """ | |
| Get a term for the variational lower-bound. | |
| The resulting units are bits (rather than nats, as one might expect). | |
| This allows for comparison to other papers. | |
| :return: a dict with the following keys: | |
| - 'output': a shape [N] tensor of NLLs or KLs. | |
| - 'pred_xstart': the x_0 predictions. | |
| """ | |
| # lambda *args, r=frozen_out: r, | |
| true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( | |
| x_start=x_start, x_t=x_t, t=t | |
| ) | |
| assert input_ids is not None | |
| mapping_func = model_kwargs.pop("mapping_func", self.mapping_func) | |
| # assert 'input_ids' in model_kwargs | |
| # input_ids = model_kwargs.pop('input_ids') | |
| out = self.p_mean_variance( | |
| model, | |
| x_t, | |
| t, | |
| clip_denoised=clip_denoised, | |
| model_kwargs=model_kwargs, | |
| denoised_fn=denoised_fn, | |
| ) | |
| # print(true_log_variance_clipped[0], out["log_variance"][0], 'line1259') | |
| kl = normal_kl( | |
| true_mean, true_log_variance_clipped, out["mean"], out["log_variance"] | |
| ) | |
| kl = mean_flat(kl) / np.log(2.0) | |
| decoder_nll = self.token_discrete_loss(x_start, get_logits, input_ids) # t=-1 | |
| decoder_nll = decoder_nll / out["mean"].size(-1) | |
| decoder_nll = decoder_nll / np.log(2.0) | |
| mask_1 = t == 0 | |
| if mask_1.any(): | |
| kl_T = normal_kl( | |
| x_start_mean, x_start_log_var, out["mean"], out["log_variance"] | |
| ) | |
| kl_T = mean_flat(kl_T) / np.log(2.0) | |
| kl = torch.where(mask_1, kl_T, kl) | |
| out_mean, out_variance, out_log_variance_clipped = self.q_mean_variance( | |
| x_start, torch.LongTensor([self.num_timesteps - 1]).to(x_start.device) | |
| ) | |
| kl_T = normal_kl(out_mean, out_log_variance_clipped, 0, 0) | |
| kl_T = mean_flat(kl_T) / np.log(2.0) | |
| # print(decoder_nll, ) | |
| # print() | |
| # At the first timestep return the decoder NLL, | |
| # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) | |
| # output =torch.where((t == 0), decoder_nll, kl) | |
| output = kl + decoder_nll + kl_T | |
| return { | |
| "output": output, | |
| "pred_xstart": out["pred_xstart"], | |
| "kl": kl, | |
| "decoder_nll": decoder_nll, | |
| "kl_T": kl_T, | |
| } | |
| def get_x_start(self, x_start_mean, std): | |
| """ | |
| Using the interpolating policy OR using the convolution policy... | |
| :param x_start_mean: | |
| :return: | |
| """ | |
| noise = torch.randn_like(x_start_mean) | |
| # print(std.shape, noise.shape, x_start_mean.shape) | |
| assert noise.shape == x_start_mean.shape | |
| # print(x_start_mean.device, noise.device) | |
| return x_start_mean + std * noise | |
| def token_discrete_loss(self, x_t, get_logits, input_ids): | |
| if self.model_arch == "conv-unet" or self.model_arch == "1d-unet": | |
| reshaped_x_t = x_t.view(x_t.size(0), x_t.size(1), -1).permute(0, 2, 1) | |
| else: | |
| # print(x_t.shape) | |
| reshaped_x_t = x_t | |
| # logits = get_logits(reshaped_x_t) # bsz, seqlen, vocab | |
| logits = get_logits(reshaped_x_t) | |
| loss_fct = torch.nn.CrossEntropyLoss(reduction="none") | |
| decoder_nll = loss_fct( | |
| logits.view(-1, logits.size(-1)), input_ids.view(-1) | |
| ).view(input_ids.shape) | |
| decoder_nll = decoder_nll.mean(dim=-1) | |
| return decoder_nll | |
| def x0_helper(self, model_output, x, t): | |
| if self.model_mean_type == ModelMeanType.PREVIOUS_X: | |
| pred_xstart = self._predict_xstart_from_xprev( | |
| x_t=x, t=t, xprev=model_output | |
| ) | |
| pred_prev = model_output | |
| elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: | |
| if self.model_mean_type == ModelMeanType.START_X: | |
| pred_xstart = model_output | |
| else: | |
| pred_xstart = self._predict_xstart_from_eps( | |
| x_t=x, t=t, eps=model_output | |
| ) | |
| pred_prev, _, _ = self.q_posterior_mean_variance( | |
| x_start=pred_xstart, x_t=x, t=t | |
| ) | |
| else: | |
| raise NotImplementedError(self.model_mean_type) | |
| return {"pred_xprev": pred_prev, "pred_xstart": pred_xstart} | |
| def training_losses_e2e(self, model, micro, t, noise=None): | |
| """ | |
| The function `training_losses_e2e` calculates various loss terms for an end-to-end training | |
| process in a machine learning model. | |
| :param model: The `model` parameter in the `training_losses_e2e` function seems to be an | |
| instance of a model used for training. It is likely a neural network model that is being trained | |
| for a specific task, such as sequence generation or prediction. The model is used within the | |
| function to make predictions | |
| :param micro: The `micro` parameter in the `training_losses_e2e` function seems to be a tuple | |
| containing the following elements: | |
| :param t: The `t` parameter in the `training_losses_e2e` function seems to represent the time | |
| step or timestep index. It is used to determine certain conditions within the function, such as | |
| comparing it to a threshold value of 400 and scaling timesteps. The function performs various | |
| calculations and computations based | |
| :param noise: The `noise` parameter in the `training_losses_e2e` function is used to pass a | |
| tensor representing random noise. If the `noise` parameter is not provided when calling the | |
| function, it generates random noise using `torch.randn_like(mix_start)`. This noise is then used | |
| in the | |
| :return: The function `training_losses_e2e` returns a dictionary `terms` containing different | |
| loss terms based on the specified loss type. The specific terms included in the dictionary | |
| depend on the conditions and calculations performed within the function for the given loss type. | |
| The function calculates and populates the `terms` dictionary with relevant loss values such as | |
| mean squared error (mse), variational bound (vb), decoder negative | |
| """ | |
| selfies_ids = micro[0] | |
| caption_state = micro[1] | |
| caption_mask = micro[2] | |
| corrupted_selfies_ids = micro[3] | |
| assert corrupted_selfies_ids.shape == selfies_ids.shape | |
| ######################################### | |
| mix_ids = torch.where( | |
| t.reshape(-1, 1) < 400, corrupted_selfies_ids, selfies_ids | |
| ) | |
| if t.max() > self.maxt: | |
| self.maxt = t.max() | |
| # print("Recieving max t:{}".format(self.maxt)) | |
| ########################################## | |
| # print(f"Model dir: {dir(model)}") | |
| try: | |
| x_start_mean = model.model.get_embeds(selfies_ids) | |
| mix_start_mean = model.model.get_embeds(mix_ids) | |
| except: | |
| x_start_mean = model.model.module.get_embeds(selfies_ids) | |
| mix_start_mean = model.model.module.get_embeds(mix_ids) | |
| std = _extract_into_tensor( | |
| self.sqrt_one_minus_alphas_cumprod, | |
| torch.tensor([0]).to(x_start_mean.device), | |
| x_start_mean.shape, | |
| ) | |
| x_start = self.get_x_start(x_start_mean, std) | |
| mix_start = self.get_x_start(mix_start_mean, std) | |
| if noise is None: | |
| noise = torch.randn_like(mix_start) | |
| x_t = self.q_sample(mix_start, t, noise=noise) # reparametrization trick. | |
| try: | |
| get_logits = model.model.get_logits | |
| except: | |
| get_logits = model.model.module.get_logits | |
| terms = {} | |
| if self.loss_type == LossType.E2E_KL: | |
| pass | |
| elif ( | |
| self.loss_type == LossType.E2E_MSE | |
| or self.loss_type == LossType.E2E_RESCALED_MSE | |
| ): | |
| model_output = model( | |
| x_t, self._scale_timesteps(t), caption_state, caption_mask | |
| ) | |
| if self.model_var_type in [ | |
| ModelVarType.LEARNED, | |
| ModelVarType.LEARNED_RANGE, | |
| ]: | |
| pass | |
| target = { | |
| # ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( | |
| # x_start=x_start, x_t=x_t, t=t | |
| # )[0], | |
| ModelMeanType.START_X: x_start, | |
| ModelMeanType.EPSILON: noise, | |
| }[ | |
| self.model_mean_type | |
| ] # this is exactly x_start | |
| # print(model_output.shape ,target.shape , x_start.shape) | |
| assert model_output.shape == target.shape == x_start.shape | |
| terms["mse"] = mean_flat((target - model_output) ** 2) | |
| # print( terms["mse"]) | |
| model_out_x_start = self.x0_helper(model_output, x_t, t)[ | |
| "pred_xstart" | |
| ] # this is exactly model_output | |
| t0_mask = t == 0 | |
| t0_loss = mean_flat((x_start_mean - model_out_x_start) ** 2) | |
| # print(terms["mse"].shape, ) | |
| terms["mse"] = torch.where(t0_mask, t0_loss, terms["mse"]) | |
| # tT_mask = (t == self.num_timesteps - 1) | |
| out_mean, _, _ = self.q_mean_variance( | |
| x_start, torch.LongTensor([self.num_timesteps - 1]).to(x_start.device) | |
| ) | |
| tT_loss = mean_flat(out_mean**2) | |
| decoder_nll = self.token_discrete_loss(x_start, get_logits, selfies_ids) | |
| if "vb" in terms: | |
| terms["loss"] = terms["mse"] + terms["vb"] | |
| else: | |
| terms["loss"] = terms["mse"] + (decoder_nll + tT_loss) | |
| else: | |
| raise NotImplementedError(self.loss_type) | |
| return terms | |
| def _prior_bpd(self, x_start): | |
| """ | |
| Get the prior KL term for the variational lower-bound, measured in | |
| bits-per-dim. | |
| This term can't be optimized, as it only depends on the encoder. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :return: a batch of [N] KL values (in bits), one per batch element. | |
| """ | |
| batch_size = x_start.shape[0] | |
| t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) | |
| qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
| kl_prior = normal_kl( | |
| mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 | |
| ) | |
| return mean_flat(kl_prior) / np.log(2.0) | |
| def calc_bpd_loop_e2e( | |
| self, model, x_start, clip_denoised=True, model_kwargs=None, denoised_fn=None | |
| ): | |
| device = x_start.device | |
| batch_size = x_start.shape[0] | |
| input_ids = model_kwargs.pop("input_ids").to(device) | |
| x_start_mean = model.get_embeds(input_ids) | |
| if self.model_arch == "conv-unet": | |
| seqlen = int(np.sqrt(input_ids.size(1))) | |
| x_start_mean = x_start_mean.view( | |
| x_start_mean.size(0), seqlen, seqlen, x_start_mean.size(-1) | |
| ).permute(0, 3, 1, 2) | |
| elif self.model_arch == "1d-unet": | |
| x_start_mean = x_start_mean.permute(0, 2, 1) | |
| std = _extract_into_tensor( | |
| self.sqrt_one_minus_alphas_cumprod, | |
| torch.tensor([0]).to(x_start_mean.device), | |
| x_start_mean.shape, | |
| ) | |
| x_start_log_var = 2 * torch.log(std) | |
| x_start = self.get_x_start(x_start_mean, std) | |
| get_logits = model.get_logits | |
| vb = [] | |
| xstart_mse = [] | |
| mse = [] | |
| for t in list(range(self.num_timesteps))[::-1]: | |
| t_batch = torch.tensor([t] * batch_size, device=device) | |
| noise = torch.randn_like(x_start) | |
| x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) | |
| with torch.no_grad(): | |
| out = self._vb_terms_bpd_e2e( | |
| model, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t_batch, | |
| input_ids=input_ids, | |
| get_logits=get_logits, | |
| x_start_mean=x_start_mean, | |
| x_start_log_var=x_start_log_var, | |
| clip_denoised=clip_denoised, | |
| model_kwargs=model_kwargs, | |
| noise=noise, | |
| denoised_fn=denoised_fn, | |
| ) | |
| if t == self.num_timesteps - 1: | |
| assert len(vb) == 0 | |
| vb.append(out["kl_T"]) | |
| vb.append(out["kl"]) | |
| xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) | |
| eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) | |
| mse.append(mean_flat((eps - noise) ** 2)) | |
| vb.append(out["decoder_nll"]) | |
| vb = torch.stack(vb, dim=1) | |
| xstart_mse = torch.stack(xstart_mse, dim=1) | |
| mse = torch.stack(mse, dim=1) | |
| # prior_bpd = self._prior_bpd(x_start) | |
| prior_bpd = out["kl_T"] | |
| total_bpd = vb.sum(dim=1) | |
| return { | |
| "total_bpd": total_bpd, | |
| "prior_bpd": prior_bpd, | |
| "vb": vb, | |
| "xstart_mse": xstart_mse, | |
| "mse": mse, | |
| } | |
| def calc_bpd_loop_emb( | |
| self, model, x_start, clip_denoised=True, model_kwargs=None, denoised_fn=None | |
| ): | |
| """ | |
| Compute the entire variational lower-bound, measured in bits-per-dim, | |
| as well as other related quantities. | |
| :param model: the model to evaluate loss on. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :param clip_denoised: if True, clip denoised samples. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict containing the following keys: | |
| - total_bpd: the total variational lower-bound, per batch element. | |
| - prior_bpd: the prior term in the lower-bound. | |
| - vb: an [N x T] tensor of terms in the lower-bound. | |
| - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. | |
| - mse: an [N x T] tensor of epsilon MSEs for each timestep. | |
| """ | |
| device = x_start.device | |
| batch_size = x_start.shape[0] | |
| vb = [] | |
| xstart_mse = [] | |
| mse = [] | |
| for t in list(range(self.num_timesteps))[::-1]: | |
| t_batch = torch.tensor([t] * batch_size, device=device) | |
| noise = torch.randn_like(x_start) | |
| # print(t) | |
| x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) | |
| # Calculate VLB term at the current timestep | |
| with torch.no_grad(): | |
| out = self._vb_terms_bpd( | |
| model, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t_batch, | |
| clip_denoised=clip_denoised, | |
| model_kwargs=model_kwargs, | |
| noise=noise, | |
| denoised_fn=denoised_fn, | |
| ) | |
| vb.append(out["output"]) | |
| xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) | |
| eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) | |
| # | |
| # ## DEBUG | |
| # def is_very_close(a, b): | |
| # return (((a - b) ** 2).mean()) | |
| # x_start_cycle = self._predict_xstart_from_eps(x_t=x_t, t=t_batch, eps=noise) | |
| # gold_eps_cycle = self._predict_eps_from_xstart(x_t, t_batch, x_start_cycle) | |
| # print(((gold_eps_cycle-noise)**2).mean()) | |
| # print(is_very_close(out2['pred_xstart'],out["pred_xstart"]), 'first isclose --> check p_mean') | |
| # model.eval() | |
| # with torch.no_grad(): | |
| # direct_pred_eps = model(x_t, self._scale_timesteps(t_batch), **model_kwargs) | |
| # print(((direct_pred_eps - noise) ** 2).mean(), 'ans1', self.rescale_timesteps) | |
| # x_start_cycle_pred = self._predict_xstart_from_eps(x_t=x_t, t=t_batch, eps=direct_pred_eps) | |
| # model_kwargs['debug_x_t'] = x_t | |
| # model_kwargs['debug_t_batch'] = t_batch | |
| # model_kwargs['debug_direct_pred_eps'] = direct_pred_eps | |
| # model_kwargs['debug_x_start_cycle_pred'] = x_start_cycle_pred | |
| # out2 = self.p_mean_variance( | |
| # model, x_t, t_batch, clip_denoised=clip_denoised, model_kwargs=model_kwargs | |
| # ) | |
| # # print(((out["pred_xstart"] - x_start_cycle_pred) ** 2).mean(), 'if not align issue with vb_terms') | |
| # print(is_very_close(out2['pred_xstart'], x_start_cycle_pred), '2nd isclose --> check our flattened') | |
| # gold_eps_cycle_pred = self._predict_eps_from_xstart(x_t, t_batch, x_start_cycle_pred) | |
| # print(((eps - noise) ** 2).mean(), 'ans2', self._scale_timesteps) | |
| # print() | |
| # print(((gold_eps_cycle_pred - direct_pred_eps) ** 2).mean(), 'should be same, exactly same computation..') | |
| ## DEBUG | |
| mse.append(mean_flat((eps - noise) ** 2)) | |
| vb = torch.stack(vb, dim=1) | |
| xstart_mse = torch.stack(xstart_mse, dim=1) | |
| mse = torch.stack(mse, dim=1) | |
| prior_bpd = self._prior_bpd(x_start) | |
| total_bpd = vb.sum(dim=1) + prior_bpd | |
| return { | |
| "total_bpd": total_bpd, | |
| "prior_bpd": prior_bpd, | |
| "vb": vb, | |
| "xstart_mse": xstart_mse, | |
| "mse": mse, | |
| } | |
| def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
| """ | |
| Extract values from a 1-D numpy array for a batch of indices. | |
| :param arr: the 1-D numpy array. | |
| :param timesteps: a tensor of indices into the array to extract. | |
| :param broadcast_shape: a larger shape of K dimensions with the batch | |
| dimension equal to the length of timesteps. | |
| :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
| """ | |
| res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
| while len(res.shape) < len(broadcast_shape): | |
| res = res[..., None] | |
| return res.expand(broadcast_shape) | |