|
|
import torch |
|
|
import numpy as np |
|
|
from numpy import ndarray |
|
|
from torch import Tensor, FloatTensor |
|
|
from typing import Tuple, Union |
|
|
|
|
|
from scipy.spatial.transform import Rotation as R |
|
|
from scipy.sparse import csc_matrix |
|
|
import numpy as np |
|
|
|
|
|
def quaternion_to_matrix(x, use_4x4=True) -> FloatTensor: |
|
|
""" |
|
|
Ref: https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#quaternion_to_matrix |
|
|
""" |
|
|
if not isinstance(x, Tensor): |
|
|
quaternions = torch.tensor(x, dtype=torch.float32) |
|
|
else: |
|
|
quaternions = x |
|
|
r, i, j, k = torch.unbind(quaternions, -1) |
|
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
device = quaternions.device |
|
|
|
|
|
if use_4x4: |
|
|
o = torch.stack( |
|
|
( |
|
|
1 - two_s * (j * j + k * k), |
|
|
two_s * (i * j - k * r), |
|
|
two_s * (i * k + j * r), |
|
|
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32), |
|
|
two_s * (i * j + k * r), |
|
|
1 - two_s * (i * i + k * k), |
|
|
two_s * (j * k - i * r), |
|
|
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32), |
|
|
two_s * (i * k - j * r), |
|
|
two_s * (j * k + i * r), |
|
|
1 - two_s * (i * i + j * j), |
|
|
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32), |
|
|
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32), |
|
|
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32), |
|
|
torch.zeros(quaternions.shape[:-1], device=device, dtype=torch.float32), |
|
|
torch.ones(quaternions.shape[:-1], device=device, dtype=torch.float32), |
|
|
), |
|
|
-1, |
|
|
) |
|
|
return o.reshape(quaternions.shape[:-1] + (4, 4)) |
|
|
else: |
|
|
o = torch.stack( |
|
|
( |
|
|
1 - two_s * (j * j + k * k), |
|
|
two_s * (i * j - k * r), |
|
|
two_s * (i * k + j * r), |
|
|
two_s * (i * j + k * r), |
|
|
1 - two_s * (i * i + k * k), |
|
|
two_s * (j * k - i * r), |
|
|
two_s * (i * k - j * r), |
|
|
two_s * (j * k + i * r), |
|
|
1 - two_s * (i * i + j * j), |
|
|
), |
|
|
-1, |
|
|
) |
|
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
|
|
def axis_angle_to_quaternion(axis_angle: FloatTensor) -> FloatTensor: |
|
|
""" |
|
|
Ref: https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#axis_angle_to_quaternion |
|
|
""" |
|
|
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) |
|
|
half_angles = angles * 0.5 |
|
|
eps = 1e-6 |
|
|
small_angles = angles.abs() < eps |
|
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
|
sin_half_angles_over_angles[~small_angles] = ( |
|
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles] |
|
|
) |
|
|
|
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48 |
|
|
) |
|
|
quaternions = torch.cat( |
|
|
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 |
|
|
) |
|
|
return quaternions |
|
|
|
|
|
def axis_angle_to_matrix(axis_angle: Union[FloatTensor, ndarray]) -> Union[FloatTensor, ndarray]: |
|
|
""" |
|
|
Ref: https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#axis_angle_to_matrix |
|
|
""" |
|
|
if isinstance(axis_angle, FloatTensor): |
|
|
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) |
|
|
else: |
|
|
res = np.pad(R.from_rotvec(axis_angle).as_matrix(), ((0, 0), (0, 1), (0, 1)), 'constant', constant_values=((0, 0), (0, 0), (0, 0))) |
|
|
assert res.ndim == 3 |
|
|
res[:, -1, -1] = 1 |
|
|
return res |
|
|
|
|
|
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Returns torch.sqrt(torch.max(0, x)) |
|
|
but with a zero subgradient where x is 0. |
|
|
""" |
|
|
ret = torch.zeros_like(x) |
|
|
positive_mask = x > 0 |
|
|
if torch.is_grad_enabled(): |
|
|
ret[positive_mask] = torch.sqrt(x[positive_mask]) |
|
|
else: |
|
|
ret = torch.where(positive_mask, torch.sqrt(x), ret) |
|
|
return ret |
|
|
|
|
|
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Convert a unit quaternion to a standard form: one in which the real |
|
|
part is non negative. |
|
|
|
|
|
Args: |
|
|
quaternions: Quaternions with real part first, |
|
|
as tensor of shape (..., 4). |
|
|
|
|
|
Returns: |
|
|
Standardized quaternions as tensor of shape (..., 4). |
|
|
""" |
|
|
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) |
|
|
|
|
|
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Convert rotations given as rotation matrices to quaternions. |
|
|
|
|
|
Args: |
|
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
|
|
|
Returns: |
|
|
quaternions with real part first, as tensor of shape (..., 4). |
|
|
""" |
|
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
|
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") |
|
|
|
|
|
batch_dim = matrix.shape[:-2] |
|
|
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( |
|
|
matrix.reshape(batch_dim + (9,)), dim=-1 |
|
|
) |
|
|
|
|
|
q_abs = _sqrt_positive_part( |
|
|
torch.stack( |
|
|
[ |
|
|
1.0 + m00 + m11 + m22, |
|
|
1.0 + m00 - m11 - m22, |
|
|
1.0 - m00 + m11 - m22, |
|
|
1.0 - m00 - m11 + m22, |
|
|
], |
|
|
dim=-1, |
|
|
) |
|
|
) |
|
|
|
|
|
|
|
|
quat_by_rijk = torch.stack( |
|
|
[ |
|
|
|
|
|
|
|
|
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), |
|
|
|
|
|
|
|
|
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), |
|
|
|
|
|
|
|
|
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), |
|
|
|
|
|
|
|
|
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), |
|
|
], |
|
|
dim=-2, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) |
|
|
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) |
|
|
|
|
|
|
|
|
|
|
|
out = quat_candidates[ |
|
|
torch.nn.functional.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : |
|
|
].reshape(batch_dim + (4,)) |
|
|
return standardize_quaternion(out) |
|
|
|
|
|
def linear_blend_skinning( |
|
|
vertex: Union[FloatTensor, ndarray], |
|
|
matrix_local: Union[FloatTensor, ndarray], |
|
|
matrix: Union[FloatTensor, ndarray], |
|
|
skin: Union[FloatTensor, ndarray], |
|
|
pad: int=0, |
|
|
value: float=0., |
|
|
) -> Union[FloatTensor, ndarray]: |
|
|
''' |
|
|
Args: |
|
|
vertex: (B, N, 4-pad) or (N, 4-pad) |
|
|
matrix_local: (B, J, 4, 4) or (J, 4, 4) |
|
|
matrix: (B, J, 4, 4) or (J, 4, 4) |
|
|
skin: (B, N, J) or (N, J), value of pseudo bones should be 0 |
|
|
Returns: |
|
|
(B, N, 3) or (N, 3) |
|
|
''' |
|
|
assert vertex.shape[-1] + pad == 4 |
|
|
if isinstance(vertex, Tensor): |
|
|
dims = vertex.dim() |
|
|
elif isinstance(vertex, ndarray): |
|
|
dims = vertex.ndim |
|
|
else: |
|
|
raise NotImplementedError() |
|
|
if dims == 3: |
|
|
assert isinstance(vertex, Tensor) |
|
|
J = matrix_local.shape[1] |
|
|
|
|
|
offset = ( |
|
|
matrix_local.inverse() @ |
|
|
torch.nn.functional.pad(vertex, (0, pad, 0, 0, 0, 0), value=value).unsqueeze(1).transpose(2, 3).repeat(1, J, 1, 1) |
|
|
) |
|
|
|
|
|
per_bone_matrix = matrix @ offset |
|
|
|
|
|
weighted_per_bone_matrix = skin.transpose(1, 2).unsqueeze(2) * per_bone_matrix |
|
|
|
|
|
g = weighted_per_bone_matrix.sum(dim=1) |
|
|
|
|
|
final = g[:, 0:3, :] / (skin.transpose(1, 2).sum(dim=1) + 1e-8).unsqueeze(1) |
|
|
return final.permute(0, 2, 1) |
|
|
|
|
|
elif dims == 2: |
|
|
if isinstance(vertex, Tensor): |
|
|
J = matrix_local.shape[0] |
|
|
offset = ( |
|
|
matrix_local.inverse() @ |
|
|
torch.nn.functional.pad(vertex, (0, pad, 0, 0), value=value).unsqueeze(0).transpose(1, 2).repeat(J, 1, 1) |
|
|
) |
|
|
per_bone_matrix = matrix @ offset |
|
|
weighted_per_bone_matrix = skin.transpose(0, 1).unsqueeze(1) * per_bone_matrix |
|
|
g = weighted_per_bone_matrix.sum(dim=0) |
|
|
final = g[0:3, :] / (skin.transpose(0, 1).sum(dim=0) + 1e-8).unsqueeze(0) |
|
|
return final.permute(1, 0) |
|
|
else: |
|
|
J = matrix_local.shape[0] |
|
|
N = vertex.shape[0] |
|
|
|
|
|
padded = np.pad(vertex, ((0, 0), (0, pad)), 'constant', constant_values=(0, value)).T |
|
|
|
|
|
trans = matrix @ np.linalg.inv(matrix_local) |
|
|
weighted_per_bone_matrix = [] |
|
|
|
|
|
mask = (skin > 0).T |
|
|
for i in range(J): |
|
|
offset = np.zeros((4, N), dtype=np.float32) |
|
|
offset[:, mask[i]] = (trans[i] @ padded[:, mask[i]]) * skin.T[i, mask[i]] |
|
|
weighted_per_bone_matrix.append(offset) |
|
|
weighted_per_bone_matrix = np.stack(weighted_per_bone_matrix) |
|
|
g = np.sum(weighted_per_bone_matrix, axis=0) |
|
|
final = g[:3, :] / (np.sum(skin, axis=1) + 1e-8) |
|
|
return final.T |
|
|
else: |
|
|
assert 0, f'unsupported shape: {vertex.shape}' |
|
|
|