{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "aE2_G4OSoiA1" }, "source": [ "## 1. Objective\n", "\n", "\n", "Objective : Menurut laporan FIFA 2022 (link artikel), jumlah pemain sepak bola pada tahun 2021 kurang lebih sebanyak 130.000 pemain. namun dalam dataset ini hanya tersedia 20.000 pemain saja. Project kali ini bertujuan untuk memprediksi rating pemain FIFA 2022 sehingga semua pemain sepak bola profesional dapat diketahui ratingnya dan tidak menutup kempungkinan akan muncul talenta/wonderkid baru.\n", "\n", "Akan model machine learning menggunakan linear regression dan dinilai performansinya menggunakan metriks akurasi.\n", "\n", "buat sedetail mungkin" ] }, { "cell_type": "markdown", "metadata": { "id": "lu9d9JLkp2Cb" }, "source": [ "## 2. Import Libraries\n" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "id": "g_nS2IBZOq2g" }, "outputs": [], "source": [ "#Import libraries\n", "\n", "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n" ] }, { "cell_type": "markdown", "metadata": { "id": "BNsOy-lMqV4z" }, "source": [ "## 3. Data Loading\n", "\n", ">Bagian ini berisi proses penyiapan data sebelum dilakukan eksplorasi data lebih lanjut. Proses Data Loading dapat berupa memberi nama baru untuk setiap kolom, mengecek ukuran dataset, dll.\n", "\n" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 496 }, "id": "pJTvArF3qlbf", "outputId": "46aa94d8-7bcc-4e37-eb33-60b72126bf4e" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameAgeHeightWeightValueEURAttackingWorkRateDefensiveWorkRatePaceTotalShootingTotalPassingTotalDribblingTotalDefendingTotalPhysicalityTotalOverall
0L. Messi341707278000000MediumLow85929195346593
1R. Lewandowski3218581119500000HighMedium78927985448292
2Cristiano Ronaldo361878345000000HighLow87948087347591
3K. Mbappé2218273194000000HighLow97888092367791
4J. Oblak2818887112000000MediumMedium87927890529091
.............................................
19255S. Black1918075100000MediumMedium56272933485348
19256Ma Zhen231968550000MediumMedium49474546544448
19257Yang Haoyu201837790000MediumMedium57262928515648
19258He Siwei2017469100000MediumMedium61253232495148
19259Chen Guoliang221867070000MediumMedium55272930505448
\n", "

19260 rows × 14 columns

\n", "
" ], "text/plain": [ " Name Age Height Weight ValueEUR AttackingWorkRate \\\n", "0 L. Messi 34 170 72 78000000 Medium \n", "1 R. Lewandowski 32 185 81 119500000 High \n", "2 Cristiano Ronaldo 36 187 83 45000000 High \n", "3 K. Mbappé 22 182 73 194000000 High \n", "4 J. Oblak 28 188 87 112000000 Medium \n", "... ... ... ... ... ... ... \n", "19255 S. Black 19 180 75 100000 Medium \n", "19256 Ma Zhen 23 196 85 50000 Medium \n", "19257 Yang Haoyu 20 183 77 90000 Medium \n", "19258 He Siwei 20 174 69 100000 Medium \n", "19259 Chen Guoliang 22 186 70 70000 Medium \n", "\n", " DefensiveWorkRate PaceTotal ShootingTotal PassingTotal \\\n", "0 Low 85 92 91 \n", "1 Medium 78 92 79 \n", "2 Low 87 94 80 \n", "3 Low 97 88 80 \n", "4 Medium 87 92 78 \n", "... ... ... ... ... \n", "19255 Medium 56 27 29 \n", "19256 Medium 49 47 45 \n", "19257 Medium 57 26 29 \n", "19258 Medium 61 25 32 \n", "19259 Medium 55 27 29 \n", "\n", " DribblingTotal DefendingTotal PhysicalityTotal Overall \n", "0 95 34 65 93 \n", "1 85 44 82 92 \n", "2 87 34 75 91 \n", "3 92 36 77 91 \n", "4 90 52 90 91 \n", "... ... ... ... ... \n", "19255 33 48 53 48 \n", "19256 46 54 44 48 \n", "19257 28 51 56 48 \n", "19258 32 49 51 48 \n", "19259 30 50 54 48 \n", "\n", "[19260 rows x 14 columns]" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Data Loading\n", "\n", "data = pd.read_csv('https://raw.githubusercontent.com/ardhiraka/FSDS_Guidelines/master/p1/v3/w1/P1W1D1PM%20-%20Machine%20Learning%20Problem%20Framing.csv')\n", "data" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "id": "iLbVn5VjqudY" }, "outputs": [], "source": [ "#Duplicate dataset\n", "\n", "data_duplicate = data.copy()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 496 }, "id": "4irQngKBrI4U", "outputId": "0901a060-95a9-428c-fc94-adb4b9afc938" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameAgeHeightWeightPriceAttackingWorkRateDefensiveWorkRatePaceTotalShootingTotalPassingTotalDribblingTotalDefendingTotalPhysicalityTotalRating
0L. Messi341707278000000MediumLow85929195346593
1R. Lewandowski3218581119500000HighMedium78927985448292
2Cristiano Ronaldo361878345000000HighLow87948087347591
3K. Mbappé2218273194000000HighLow97888092367791
4J. Oblak2818887112000000MediumMedium87927890529091
.............................................
19255S. Black1918075100000MediumMedium56272933485348
19256Ma Zhen231968550000MediumMedium49474546544448
19257Yang Haoyu201837790000MediumMedium57262928515648
19258He Siwei2017469100000MediumMedium61253232495148
19259Chen Guoliang221867070000MediumMedium55272930505448
\n", "

19260 rows × 14 columns

\n", "
" ], "text/plain": [ " Name Age Height Weight Price AttackingWorkRate \\\n", "0 L. Messi 34 170 72 78000000 Medium \n", "1 R. Lewandowski 32 185 81 119500000 High \n", "2 Cristiano Ronaldo 36 187 83 45000000 High \n", "3 K. Mbappé 22 182 73 194000000 High \n", "4 J. Oblak 28 188 87 112000000 Medium \n", "... ... ... ... ... ... ... \n", "19255 S. Black 19 180 75 100000 Medium \n", "19256 Ma Zhen 23 196 85 50000 Medium \n", "19257 Yang Haoyu 20 183 77 90000 Medium \n", "19258 He Siwei 20 174 69 100000 Medium \n", "19259 Chen Guoliang 22 186 70 70000 Medium \n", "\n", " DefensiveWorkRate PaceTotal ShootingTotal PassingTotal \\\n", "0 Low 85 92 91 \n", "1 Medium 78 92 79 \n", "2 Low 87 94 80 \n", "3 Low 97 88 80 \n", "4 Medium 87 92 78 \n", "... ... ... ... ... \n", "19255 Medium 56 27 29 \n", "19256 Medium 49 47 45 \n", "19257 Medium 57 26 29 \n", "19258 Medium 61 25 32 \n", "19259 Medium 55 27 29 \n", "\n", " DribblingTotal DefendingTotal PhysicalityTotal Rating \n", "0 95 34 65 93 \n", "1 85 44 82 92 \n", "2 87 34 75 91 \n", "3 92 36 77 91 \n", "4 90 52 90 91 \n", "... ... ... ... ... \n", "19255 33 48 53 48 \n", "19256 46 54 44 48 \n", "19257 28 51 56 48 \n", "19258 32 49 51 48 \n", "19259 30 50 54 48 \n", "\n", "[19260 rows x 14 columns]" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Rename column\n", "\n", "data.rename(columns = {'ValueEUR' : 'Price', 'Overall' : 'Rating'}, inplace = True)\n", "data" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "EPLmiZ24rjFO", "outputId": "683f05b2-e4f7-4539-8187-f18f95f7760b" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 19260 entries, 0 to 19259\n", "Data columns (total 14 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Name 19260 non-null object\n", " 1 Age 19260 non-null int64 \n", " 2 Height 19260 non-null int64 \n", " 3 Weight 19260 non-null int64 \n", " 4 Price 19260 non-null int64 \n", " 5 AttackingWorkRate 19260 non-null object\n", " 6 DefensiveWorkRate 19260 non-null object\n", " 7 PaceTotal 19260 non-null int64 \n", " 8 ShootingTotal 19260 non-null int64 \n", " 9 PassingTotal 19260 non-null int64 \n", " 10 DribblingTotal 19260 non-null int64 \n", " 11 DefendingTotal 19260 non-null int64 \n", " 12 PhysicalityTotal 19260 non-null int64 \n", " 13 Rating 19260 non-null int64 \n", "dtypes: int64(11), object(3)\n", "memory usage: 2.1+ MB\n" ] } ], "source": [ "#check dataset\n", "\n", "data.info()" ] }, { "cell_type": "markdown", "metadata": { "id": "0PDhnKHQr7f-" }, "source": [ "kasih statement ....\n", "\n", "- Pada dataset ini terdapat 14 kolom dengan masing-masing tipe data terdiri object (3 kolom) dan integer (11 kolom)\n", "\n", "- Terlihat tidak terdapat missing value karena jumlah entri data lengkap" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 320 }, "id": "SV-F4kf2rvo0", "outputId": "7aff89e7-29a1-4a41-e552-a4b023677aab" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AgeHeightWeightPricePaceTotalShootingTotalPassingTotalDribblingTotalDefendingTotalPhysicalityTotalRating
count19260.00000019260.00000019260.0000001.926000e+0419260.00000019260.00000019260.00000019260.00000019260.000019260.00000019260.000000
mean25.184683181.30503674.9507792.857652e+0667.91022853.53551457.85332363.02871250.058164.67658465.815628
std4.7373406.8661517.0668647.604532e+0610.65645313.8134769.8354949.70485316.38889.6262696.817297
min16.000000155.00000049.0000000.000000e+0028.00000018.00000025.00000026.00000014.000029.00000048.000000
25%21.000000176.00000070.0000004.750000e+0562.00000044.00000052.00000058.00000035.000058.00000062.000000
50%25.000000181.00000075.0000009.750000e+0568.00000056.00000058.00000064.00000054.000066.00000066.000000
75%29.000000186.00000080.0000002.000000e+0675.00000064.00000065.00000069.00000063.000072.00000070.000000
max54.000000206.000000110.0000001.940000e+0897.00000094.00000093.00000095.00000091.000092.00000093.000000
\n", "
" ], "text/plain": [ " Age Height Weight Price PaceTotal \\\n", "count 19260.000000 19260.000000 19260.000000 1.926000e+04 19260.000000 \n", "mean 25.184683 181.305036 74.950779 2.857652e+06 67.910228 \n", "std 4.737340 6.866151 7.066864 7.604532e+06 10.656453 \n", "min 16.000000 155.000000 49.000000 0.000000e+00 28.000000 \n", "25% 21.000000 176.000000 70.000000 4.750000e+05 62.000000 \n", "50% 25.000000 181.000000 75.000000 9.750000e+05 68.000000 \n", "75% 29.000000 186.000000 80.000000 2.000000e+06 75.000000 \n", "max 54.000000 206.000000 110.000000 1.940000e+08 97.000000 \n", "\n", " ShootingTotal PassingTotal DribblingTotal DefendingTotal \\\n", "count 19260.000000 19260.000000 19260.000000 19260.0000 \n", "mean 53.535514 57.853323 63.028712 50.0581 \n", "std 13.813476 9.835494 9.704853 16.3888 \n", "min 18.000000 25.000000 26.000000 14.0000 \n", "25% 44.000000 52.000000 58.000000 35.0000 \n", "50% 56.000000 58.000000 64.000000 54.0000 \n", "75% 64.000000 65.000000 69.000000 63.0000 \n", "max 94.000000 93.000000 95.000000 91.0000 \n", "\n", " PhysicalityTotal Rating \n", "count 19260.000000 19260.000000 \n", "mean 64.676584 65.815628 \n", "std 9.626269 6.817297 \n", "min 29.000000 48.000000 \n", "25% 58.000000 62.000000 \n", "50% 66.000000 66.000000 \n", "75% 72.000000 70.000000 \n", "max 92.000000 93.000000 " ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# cek basic statistic\n", "\n", "data.describe()" ] }, { "cell_type": "markdown", "metadata": { "id": "o6jT_kSSsx9l" }, "source": [ "- kasih statement jugaa" ] }, { "cell_type": "markdown", "metadata": { "id": "XeaY9FeztNi1" }, "source": [ "## 4. Exploratary Data Analysis (EDA)\n", "\n", ">Bagian ini berisi eksplorasi data pada dataset diatas dengan menggunakan query, grouping, visualisasi sederhana, dan lain sebagainya.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "onIvIpOItrkj" }, "source": [ "Akan dilihat persebaran rating pada dataset ini dan juga proporsi antara tinggi dan berat badan pemain" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 444 }, "id": "2wCGTVcEsjGw", "outputId": "c839badb-9d3b-4183-a4ce-f410e3dd771f" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABSwAAAHWCAYAAAB9rceIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3yT9dk/8E/OSdMkLQ1tKeXcclBaQNQprfW0R4Zuk1pF2ebA6fbMAT6KB05uE+WsuAPD7beT+uzxOKHqBJ0oIod5xEOLgFIEORQKLTRp0pyT3x9pQkPSfO82IU3bz/v14rXR753re93fO3cMV+/7vmSBQCAAIiIiIiIiIiIiojQg7+4EiIiIiIiIiIiIiEJYsCQiIiIiIiIiIqK0wYIlERERERERERERpQ0WLImIiIiIiIiIiChtsGBJREREREREREREaYMFSyIiIiIiIiIiIkobLFgSERERERERERFR2mDBkoiIiIiIiIiIiNIGC5ZERERERERERESUNliwJKJuMXToUMycObO70+j1Hn30UQwfPhwKhQLjx4/v7nTCrrjiClxxxRXdnQYRERHROTdz5kwMHTq0y6/NzMxMbkI9HNeTqG9gwZKIEvbUU09BJpPh448/jjl+xRVXYOzYsQnPs3HjRjz00EMJx+kr3nzzTTzwwAMoKyvDk08+iWXLlnW47cyZMyGTycJ/NBoNRo4ciV/96ldwOp1dmn/37t146KGHcPDgwS7uAREREdG58eKLL0Imk6G6ujpqbNy4cZDJZHjnnXeixgYPHoxJkyalIsVOaW1txUMPPYQtW7Z0dyoAUvfvg3Ml3daTqC9SdncCRNQ3ffnll5DLO/c7k40bN2Lt2rUsWkq0efNmyOVy/O1vf4NarRZur9Fo8Ne//hUAYLFY8Morr+CRRx7B/v378cwzz3R6/t27d2Px4sW44ooron4L/uabb3Y6HhEREVGylJeXAwC2b9+OysrK8M+tVit27doFpVKJHTt24MorrwyPHT58GIcPH8Ytt9zSqbn+8pe/wO/3JyfxDrS2tmLx4sUA0OvvYuF6EvUNLFgSUbfQaDTdnUKn2e126PX67k5DshMnTkCn00kqVgKAUqnEj370o/Dff/GLX2DSpEl47rnn8PjjjyMvLy9puUnNiYiIiOhcKCgowLBhw7B9+/aIn7/33nsIBAK46aabosZCfw8VO6VSqVSJJUsRuJ5EfQNvCSeibnH2Myw9Hg8WL16M4uJiaLVa5OTkoLy8HJs2bQIQvGV57dq1ABBx63KI3W7Hvffei0GDBkGj0WDUqFF47LHHEAgEIuZ1OBy46667YDabYTAY8P3vfx9Hjx6FTCaLuHLzoYcegkwmw+7du/GDH/wA2dnZ4S+nNTU1mDlzJoYPHw6tVov8/Hz85Cc/QVNTU8RcoRhfffUVfvSjH8FkMqF///745S9/iUAggMOHD+P666+H0WhEfn4+Vq9eLWntvF4vHnnkEYwYMQIajQZDhw7FwoUL4XK5wtvIZDI8+eSTsNvt4bV66qmnJMVvH6O8vByBQABff/11+OfffPMNfvGLX2DUqFHQ6XTIycnBTTfdFHHr91NPPYWbbroJAHDllVeGcwjdVnP2Myy3bNkCmUyGF198EUuXLkVhYSG0Wi2uvvpq1NXVReW2du1aDB8+HDqdDhdffDG2bdvG52ISERFRp5SXl+PTTz+Fw+EI/2zHjh04//zzMWXKFLz//vsRV/Lt2LEDMpkMZWVl4Z/93//9HyZOnAidTod+/frhlltuweHDhyPmifXMxaamJtx6660wGo3IysrCjBkz8Pnnn3f4ne3o0aOYOnUqMjMz0b9/f9x3333w+XwAgIMHD6J///4AgMWLF4e/d3V0V9LHH38MmUyGp59+Omrs3//+N2QyGV577TUAQEtLC+6++24MHToUGo0Gubm5+K//+i988sknHS9sAnriehLRucErLIkoaSwWCxobG6N+7vF4hK996KGHsHz5ctxxxx24+OKLYbVa8fHHH+OTTz7Bf/3Xf+G///u/UV9fj02bNuEf//hHxGsDgQC+//3v45133sHtt9+O8ePH49///jfuv/9+HD16FL/5zW/C286cORMvvvgibr31VlxyySV49913cd1113WY10033YTi4mIsW7YsXPzctGkTvv76a9x2223Iz8/HF198gT//+c/44osv8P7770cUUgHg5ptvxpgxY7BixQps2LABS5YsQb9+/fD//t//w1VXXYWVK1fimWeewX333YeLLroIFRUVcdfqjjvuwNNPP40bb7wR9957Lz744AMsX74ce/bsCT+H6R//+Af+/Oc/48MPPwzf5t2V5y2FipDZ2dnhn3300Uf4z3/+g1tuuQWFhYU4ePAg/vjHP+KKK67A7t27kZGRgYqKCtx11134/e9/j4ULF2LMmDEAEP7fjqxYsQJyuRz33XcfLBYLVq1ahR/+8If44IMPwtv88Y9/xOzZs3HZZZfhnnvuwcGDBzF16lRkZ2ejsLCw0/tIREREfVN5eTn+8Y9/4IMPPgj/0nPHjh2YNGkSJk2aBIvFgl27dqG0tDQ8Nnr0aOTk5AAAli5dil/+8peYNm0a7rjjDpw8eRJr1qxBRUUFPv30U2RlZcWc1+/343vf+x4+/PBD3HnnnRg9ejReeeUVzJgxI+b2Pp8PkydPxre+9S089thjeOutt7B69WqMGDECd955J/r3748//vGPuPPOO1FZWYkbbrgBAMJ5n+3CCy/E8OHD8eKLL0bN+cILLyA7OxuTJ08GAPz85z/HSy+9hNmzZ+O8885DU1MTtm/fjj179uCCCy4QrnFn/n3QU9eTiM6RABFRgp588skAgLh/zj///IjXDBkyJDBjxozw38eNGxe47rrr4s4za9asQKyPrZdffjkAILBkyZKIn994440BmUwWqKurCwQCgcDOnTsDAAJ33313xHYzZ84MAAj8+te/Dv/s17/+dQBAYPr06VHztba2Rv3sueeeCwAIbN26NSrGz372s/DPvF5voLCwMCCTyQIrVqwI//z06dMBnU4XsSaxfPbZZwEAgTvuuCPi5/fdd18AQGDz5s3hn82YMSOg1+vjxjt725MnTwZOnjwZqKurCzz22GMBmUwWGDt2bMDv98fd//feey8AIPC///u/4Z/985//DAAIvPPOO1HbX3755YHLL788/Pd33nknACAwZsyYgMvlCv/8d7/7XQBAoLa2NhAIBAIulyuQk5MTuOiiiwIejye83VNPPRUAEBGTiIiIKJ4vvvgiACDwyCOPBAKBQMDj8QT0en3g6aefDgQCgUBeXl5g7dq1gUAgELBarQGFQhH46U9/GggEAoGDBw8GFApFYOnSpRExa2trA0qlMuLnM2bMCAwZMiT893Xr1gUABH7729+Gf+bz+QJXXXVVAEDgySefjHgtgMDDDz8cMc+ECRMCEydODP/95MmTUd9n41mwYEFApVIFTp06Ff6Zy+UKZGVlBX7yk5+Ef2YymQKzZs2SFLO9zv77oKevJxElH28JJ6KkWbt2LTZt2hT1R8pvI7OysvDFF19g3759nZ5348aNUCgUuOuuuyJ+fu+99yIQCOD1118HALzxxhsAgs9mbG/OnDkdxv75z38e9TOdThf+/06nE42NjbjkkksAIObtMXfccUf4/ysUClx44YUIBAK4/fbbwz/PysrCqFGjIm69jmXjxo0AgLlz50b8/N577wUAbNiwIe7r47Hb7ejfvz/69++PoqIi3HfffSgrK8Mrr7wScdVo+/33eDxoampCUVERsrKyEr496Lbbbot4vuVll10GAOF1+fjjj9HU1ISf/vSnUCrP3CTwwx/+MOIqUCIiIiKRMWPGICcnJ/xsys8//xx2uz18V8qkSZOwY8cOAMFnW/p8vvAjgtavXw+/349p06ahsbEx/Cc/Px/FxcUxO4yHvPHGG1CpVPjpT38a/plcLsesWbM6fM3Z30kvu+wy4ffGeG6++WZ4PB6sX78+/LM333wTzc3NuPnmm8M/y8rKwgcffID6+vouzSP13wc9fT2JKPl4SzgRJc3FF1+MCy+8MOrn2dnZMW8Fae/hhx/G9ddfj5EjR2Ls2LH4zne+g1tvvVVSsfObb75BQUEBDAZDxM9Dtx9/88034f+Vy+UYNmxYxHZFRUUdxj57WwA4deoUFi9ejOeffx4nTpyIGLNYLFHbDx48OOLvJpMJWq0WZrM56udnPwfzbKF9ODvn/Px8ZGVlhfe1K7RaLf71r38BAI4cOYJVq1aFG/e053A4sHz5cjz55JM4evRoxHNCY+1/Z5y9VqEi5OnTpwGcOZZn779SqYx6lhERERFRPDKZDJMmTcLWrVvh9/uxY8cO5Obmhr9nTJo0CX/4wx8AIFy4DBUs9+3bh0AggOLi4pix4zWG+eabbzBgwABkZGRE/Lyj76RarTb8TMWQ7Ozs8Pejrhg3bhxGjx6NF154IfxL9BdeeAFmsxlXXXVVeLtVq1ZhxowZGDRoECZOnIhrr70WP/7xjzF8+HBJ80j990FPX08iSj4WLIkoLVRUVGD//v145ZVX8Oabb+Kvf/0rfvOb3+BPf/pTxBWKqXZ2sQ4Apk2bhv/85z+4//77MX78eGRmZsLv9+M73/lOxIPZQxQKhaSfAYhqEtSRs5+TmQwKhQLf/va3w3+fPHkyRo8ejf/+7//Gq6++Gv75nDlz8OSTT+Luu+/GpZdeCpPJBJlMhltuuSXm/nc2h1ikrgsRERFRZ5SXl+Nf//oXamtrw8+vDJk0aVL4mejbt29HQUFBuFDn9/shk8nw+uuvx/z+kpmZmbQcO/p+lKibb74ZS5cuRWNjIwwGA1599VVMnz494i6WadOm4bLLLkN1dTXefPNNPProo1i5ciXWr1+PKVOmJC2X3rCeRJRcLFgSUdro168fbrvtNtx2222w2WyoqKjAQw89FC5YdlSkGzJkCN566y20tLREXGW5d+/e8Hjof/1+Pw4cOBDx29tYXag7cvr0abz99ttYvHgxfvWrX4V/3pVb2bsitA/79u2LaGDT0NCA5ubm8L4mw4ABA3DPPfdg8eLFeP/998O3vb/00kuYMWNGRFdzp9OJ5ubmiNefi6JqaP/q6upw5ZVXhn/u9Xpx8OBBPgydiIiIOiV0xeT27duxY8cO3H333eGxiRMnQqPRYMuWLfjggw9w7bXXhsdGjBiBQCCAYcOGYeTIkZ2ac8iQIXjnnXfQ2toacVVgZ76Tnq0r37tuvvlmLF68GOvWrUNeXh6sVituueWWqO0GDBiAX/ziF/jFL36BEydO4IILLsDSpUuTWrDsDetJRMnFZ1gSUVo4+1bozMxMFBUVweVyhX+m1+sBIKowdu2118Ln84Vv2Qn5zW9+A5lMFv4yFep2+MQTT0Rst2bNGsl5hn4je/YVf7/97W8lx0hE6Ivy2fM9/vjjABC343lXzJkzBxkZGVixYkX4ZwqFImr/16xZA5/PF/Gzjo5XIi688ELk5OTgL3/5C7xeb/jnzzzzDG/jISIiok678MILodVq8cwzz+Do0aMRV1hqNBpccMEFWLt2Lex2e7i4CQA33HADFAoFFi9eHPW9KBAIxH3Mz+TJk+HxePCXv/wl/DO/34+1a9d2eT9ChbrOfO8aM2YMSkpK8MILL+CFF17AgAEDUFFRER73+XxRj/vJzc1FQUFBxHf0ZOgN60lEycUrLIkoLZx33nm44oorMHHiRPTr1w8ff/wxXnrpJcyePTu8zcSJEwEAd911FyZPngyFQoFbbrkF3/ve93DllVdi0aJFOHjwIMaNG4c333wTr7zyCu6++26MGDEi/Pqqqir89re/RVNTEy655BK8++67+OqrrwBI+02q0WhERUUFVq1aBY/Hg4EDB+LNN9/EgQMHzsGqRBs3bhxmzJiBP//5z2hubsbll1+ODz/8EE8//TSmTp0acdVhMuTk5OC2227DE088gT179mDMmDH47ne/i3/84x8wmUw477zz8N577+Gtt95CTk5OxGvHjx8PhUKBlStXwmKxQKPR4KqrrkJubm6X81Gr1XjooYcwZ84cXHXVVZg2bRoOHjyIp556CiNGjOBvw4mIiKhT1Go1LrroImzbtg0ajSb8fTNk0qRJ4btK2hcsR4wYgSVLlmDBggU4ePAgpk6dCoPBgAMHDqC6uho/+9nPcN9998Wcc+rUqbj44otx7733oq6uDqNHj8arr76KU6dOAeja1X06nQ7nnXceXnjhBYwcORL9+vXD2LFjMXbs2Livu/nmm/GrX/0KWq0Wt99+O+TyM9c0tbS0oLCwEDfeeCPGjRuHzMxMvPXWW/joo48i7rRJht6ynkSUPLzCkojSwl133YWDBw9i+fLluOuuu/Duu+9iyZIlEV+GbrjhBsyZMwdvvPEGbr31VkyfPh1AsAvgq6++irvvvhuvvfYa7r77buzevRuPPvpo+MrDkP/93//FrFmzsGHDBsybNw9utxsvvPACgOADuKV49tlnMXnyZKxduxYLFiyASqUKdyJPhb/+9a9YvHgxPvroI9x9993YvHkzFixYgOeff/6czDd37lzI5XKsXLkSAPC73/0OP/7xj/HMM8/g3nvvxbFjx/DWW29FPVsoPz8ff/rTn3DixAncfvvtmD59Onbv3p1wPrNnz8bvf/97HDp0CPfddx+2bduGV199FVlZWZKPIREREVFIqBAZugW8vbKyMgCAwWDAuHHjIsbmz5+PdevWQS6XY/Hixbjvvvvw6quv4pprrsH3v//9DudTKBTYsGEDbr75Zjz99NNYtGgRCgoKwlcEdvX7zF//+lcMHDgQ99xzD6ZPn46XXnpJ+Jqbb74Zfr8fra2tEd3BgeBVhr/4xS/w2Wef4de//jXuuecefPnll3jiiScwd+7cLuUYT29YTyJKHlmAnQyIqI/77LPPMGHCBPzf//0ffvjDH3Z3OtQFfr8f/fv3xw033BBxOxARERFRT/Hyyy+jsrIS27dvDxdKqeu4nkQ9G6+wJKI+xeFwRP3st7/9LeRyecQzeyh9OZ3OqGcb/e///i9OnTqFK664onuSIiIiIuqEs7+T+nw+rFmzBkajERdccEE3ZdVzcT2Jeh8+w5KI+pRVq1Zh586duPLKK6FUKvH666/j9ddfx89+9jMMGjSou9MjCd5//33cc889uOmmm5CTk4NPPvkEf/vb3zB27FjcdNNN3Z0eERERkdCcOXPgcDhw6aWXwuVyYf369fjPf/6DZcuWQafTdXd6PQ7Xk6j34S3hRNSnbNq0CYsXL8bu3bths9kwePBg3HrrrVi0aBGUSv4Opyc4ePAg7rrrLnz44Yc4deoU+vXrh2uvvRYrVqxIqKEPERERUao8++yzWL16Nerq6uB0OlFUVIQ777wzouEkScf1JOp9WLAkIiIiIiIiIiKitMFnWBIREREREREREVHaYMGSiIiIiIiIiIiI0gYf2CaB3+9HfX09DAYDZDJZd6dDRERE1GmBQAAtLS0oKCiAXM7fWfdE/E5KREREPVlnvo+yYClBfX09uwcTERFRr3D48GEUFhZ2dxrUBfxOSkRERL2BlO+jLFhKYDAYAAQX1Gg0dnM2RERERJ1ntVoxaNCg8Pca6nn4nZSIiIh6ss58H2XBUoLQLTdGo5FfDomIiKhH463EPRe/kxIREVFvIOX7KB9gRERERERERERERGmDBUsiIiIiIiIiIiJKGyxYEhERERERERERUdpgwZKIiIiIiIiIiIjSBguWRERERERERERElDZYsCQiIiIiIiIiIqK0wYIlERERERERERERpQ0WLImIiIiIiIiIiChtsGBJREREREREREREaYMFSyIiIiIiIiIiIkobyu5OgIiIiIiIiIiIKJUsrW402tywOj0w6lQw69UwZai7Oy1qw4IlERERERERERH1GfXNDsxbV4Nt+xrDP6soNmNFVSkKsnTdmBmF8JZwIiIiIiIiIiLqEyyt7qhiJQBs3deI+etqYGl1d1Nm1B4LlkRERERERERE1Cc02txRxcqQrfsa0WhjwTId8JZwIurRDh06hMbG2P+xkcpsNmPw4MFJyoiIiIiIiIjSldXpiTveIhin1GDBkoh6rEOHDmH0mDFwtLYmFEeXkYG9e/awaElERERERNTLGbWquOMGwTilBguWRNQl6XBlY2NjIxytrfjhvEeRN3hEl2I0HNqPZ1bej8bGRhYsiYiIiIiIejlzphoVxWZsjXFbeEWxGeZMdgpPByxYElGnpduVjXmDR6Cw+PyEYhAREREREVHvZ8pQY0VVKeavq4koWlYUm7GyqhSmDBYs0wELlkTUabyykYiIiIiIiHqqgiwd1kyfgEabGy1ODwxaFcyZahYr0wgLlkTUZbyykYiIiIiIiHoiUwYLlOlM3t0JEBEREREREREREYWwYElERERERERERERpgwVLIiIiIiIiIiIiShssWBIREREREREREVHaYNMdIiIiIiIiIko7llY3Gm1uWJ0eGHUqmPVskkLUV7BgSURERERERERppb7ZgXnrarBtX2P4ZxXFZqyoKkVBlq4bMyOiVOAt4URERERERESUNiyt7qhiJQBs3deI+etqYGl1d1NmRJQqLFgSERERERERUdpotLmjipUhW/c1otHGgiVRb8eCJRERERERERGlDavTE3e8RTBORD0fC5ZERERERERElDaMWlXccYNgnIh6PhYsiYiIiIiIiChtmDPVqCg2xxyrKDbDnMlO4US9HbuEExERERERUa9naXWj0eaG1emBUaeCWa+GKYOFr3RkylBjRVUp5q+rwdazuoSvrCrts8ct0fcwzwHqSViwJCIiIiIiol6tvtkR1XW6otiMFVWlKMjSdWNm1BEZgCklAzBj0lC4vH5olHKcaHF1d1rdJtH3MM8B6mlYsCQiIiIiIqJey9LqjirUAMFu0/PX1WDN9Am8yizNWFrdeCDGMQOCRba+dswSfQ/zHKCeiM+wJCIiIiIiol6r0eaOWfgCggWbRps7xRmRCI9ZpETXg+tJPRELlkRERERERNRrWZ2euOMtgnFKPR6zSImuB9eTeiIWLImIiIiIiKjXMmpVcccNgnFKPR6zSImuB9eTeiIWLImIiIiIiKjXMmeqUVFsjjlWUWyGOZPP7ks3PGaREl0Prif1RCxYEhERERERUa9lylBjRVVpVMGmotiMlVWlbDbSAUurG/tP2PDpodPYf9IGS2vnn3PY1RidOWYNVif2HrPiwwOnsPe4FQ1WZ6fzFEnGWiSSZ6LvYZ4D1BOxSzgRERERERH1agVZOqyZPgGNNjdanB4YtCqYM9Us1HSgvtkR1VW6otiMFVWlKMjSpSSGlGN2qMmOBdW12FHXFP5ZeVEOllWWYHCOXlKe53o/kpVnou9hngPU0/AKSyIiIiIiIur1TBlqjMjNxPjB2RiRm8lCTQcsre6oAh0Q7CY9f12NpKsLkxEDiH/MGqzOqCIgAGyva8LC6tqkXGmZjP1IZp6Jvod5DlBPwoIlEREREREREQEAGm3uqAJdyNZ9jWi0iYt0yYghctrujioChmyva8Jpe+JzJGM/UpEnUW/EgiURERERERERAQCsTk/c8RbBeLJiiOfwJjQubY5krMW5z5OoN2LBkoiIiIiIiIgAAEatKu64QTCerBjiOeK35BCNS5sjGWtx7vMk6o1YsCQiIiIiIiIiAIA5Ux3VTTqkotgMc6b4uYfJiCGSrVejvCgn5lh5UQ6y9YnPkYz9SEWeRL0RS/lEREREREREBCDYmGVlVSm2fHUSuQYNXF4/tCoFGqxOXDmyv6RGLaYMNVZUlWL+uhpsPau79sqq0qQ0e8kzarGssgSLqndhW92ZOS4rMmNp5VjkGbUJz5GMtQjlubC6FttjdAlPRp4hDVYnTtvdsDq9MOqUyM5QR8S3tLrRaHPD6vTAqFPBrO98l3DRHFIkI49kSJc8KDYWLImIiIiIiIgoLABgY82xiEJgRbEZl4/sLzlGQZYOa6ZPQKPNjRanBwatCubM5BaEZACmlORjZtlQuLx+aJRynLA6IUvaDIDH58fGmnpsa1dsvKwoB2UjYl81GYtaIcfsq4oxb8po2Jw+ZGoVsLt8UCuSd9ProSZ7VDfyUFF0cI4e9c2OqI7nFcVmrKgqRUGWLilzSJGMPJIhXfKgjrFgSUREREREREQAgledzVtXE1GsBIJdseevq8Ga6RMkFx1NGefuirUGqxPzzyqehZQX5WD1tPEJX73YYHVGFegAYFtdExZW10qaw9Lqxv1nFcZCKorNnVrPzua5vS3PVTeOiyrOAZ07pqI5pK5FonkkQ7rkQfHxGZZEREREREREBABotLljFteAYEGn0eZOcUaxnba7YxYrgWAR7bQ98TyTMUcq1lOUp8XhSTiHnrIWUqRLHhQfC5ZEREREREREBACwOj1xx1sE46lidXoTGk/VHKlYT2GejsRz6ClrIUW65EHxsWBJRERERERERAAAo1YVd9wgGE8Vozb+E+5E46maIxXrKcxTl3gOPWUtpEiXPCg+PsOSiIiIiIiIqA+J1x3ZnKlGRbE5ort3SEWxGebM1D3bL16e2Xo1yotyIjpvh5QX5SBbn3ieyZjDnKnGd0vyUXlBIXKNGticPhi0SjRYnaj+5Ein1rOj9cjWq3Ht2DxUTRwUNce6nYdh0qkSPqbJWotUvbd6ynucOsaCJRERERFRHMuXL8f69euxd+9e6HQ6TJo0CStXrsSoUaPC2zidTtx77714/vnn4XK5MHnyZDzxxBPIy8sLb3Po0CHceeedeOedd5CZmYkZM2Zg+fLlUCr5lZyIUkfUHdmUocaKqlLMX1cTUdCpKDZjZVVpypqRiPLMM2qxtLIEi6prI4po5UU5WFpZknDDHQBJmcOUocb93xmNhTG6ay+tLJG8nqL1mDdlTIdzFGTpEj6meUYtllWWYGGMtVjWibVIxXurp7zHKT5+OyIiIiIiiuPdd9/FrFmzcNFFF8Hr9WLhwoW45pprsHv3buj1egDAPffcgw0bNuCf//wnTCYTZs+ejRtuuAE7duwAAPh8Plx33XXIz8/Hf/7zHxw7dgw//vGPoVKpsGzZsu7cPSLqQ6R2Ry7I0mHN9AlotLnR4vTAoFXBnHnuOn53JU8AWPXGXtxWNgzzpoyGzelDplaBE1YXHn1jb6eKgfHyeOS13Rg/OBu3lQ2Dy+uHRinHp4ebseS13XjspnHCOeqbHVGFRCDYqGZRWwfvgiydMI9467GiqjTuHKunjU/KMR2co8fqaeNx2u6G1emFUatEtl7dqeLwuX5v9ZT3OImxYElEREREFMcbb7wR8fennnoKubm52LlzJyoqKmCxWPC3v/0Nzz77LK666ioAwJNPPokxY8bg/fffxyWXXII333wTu3fvxltvvYW8vDyMHz8ejzzyCObNm4eHHnoIanX0P5BcLhdcLlf471ar9dzuKBH1elK6I4cKNqaM7iveSO3ivKH2ODbUHo+53T3/NSrh/Bttbry15wTe2nOiw3HRHBaHR9jBW1SwFK2HaI7TdjfyjNqkHNM8ozbhq1fP5Xurp7zHSYxNd4iIiIiIOsFisQAA+vXrBwDYuXMnPB4Pvv3tb4e3GT16NAYPHoz33nsPAPDee++hpKQk4hbxyZMnw2q14osvvog5z/Lly2EymcJ/Bg0adK52iYj6iJ7SHVlKnqnpvp2E7tpJ6dAdfxvRHMnomN5T9JT3OImxYElEREREJJHf78fdd9+NsrIyjB07FgBw/PhxqNVqZGVlRWybl5eH48ePh7dpX6wMjYfGYlmwYAEsFkv4z+HDh5O8N0TU1/SU7shS8kxN9+0kdNdOSofu+NuI5khGx/Seoqe8x0mMBUsiIiIiIolmzZqFXbt24fnnnz/nc2k0GhiNxog/RESJCHVHjiWduiNLyTMV+5KMOUw6FcqLcmKOlRflwCQoNkrJQzRHMjqm9xQ95T1OYixYEhERERFJMHv2bLz22mt45513UFhYGP55fn4+3G43mpubI7ZvaGhAfn5+eJuGhoao8dAYEVGIpdWN/Sds+PTQaew/aYOl1Z202KHuyGcXdNKtO7KUPFOxL6E5LjtrjsvOmiPeMSvI0mFpZUlUQbF9B28peaysKsXyG0rwtxkX4okfXoC/z7wIy28owaq2ztfLOphDagfvENH7r8HqxN5jVnx44BT2HreiweqUHFuq+mYH9hyz4oOvm7D3mBX1zQ7Jr+0p73ES6zvXBRMRERERdUEgEMCcOXNQXV2NLVu2YNiwYRHjEydOhEqlwttvv42qqioAwJdffolDhw7h0ksvBQBceumlWLp0KU6cOIHc3FwAwKZNm2A0GnHeeeeldoeIKG3VNzuiOhxXFJuxoq0olQw9pTuylDxlAKaUDMCMSUPDHbxPtLg6DtoFPp8fU8bmY2b7OaxOeH1+ANKOmQLA7KuKIrqZ211eKDqRRwDAxppj2FYXOc/lI/sDCF6NFmuOzlylJtqXQ012LDirG3moKDo4R9+JmTr2TZM9quN5qLg7ROIcqXhf0LnHgiURERERURyzZs3Cs88+i1deeQUGgyH8zEmTyQSdTgeTyYTbb78dc+fORb9+/WA0GjFnzhxceumluOSSSwAA11xzDc477zzceuutWLVqFY4fP44HH3wQs2bNgkaj6c7dI6I0YWl1RxWLgGBn4/nrarBm+oSkFRV7SnfkeHlaWt14IMZ6AcEiWzLWq8HqxPyzimch5UU5WHXjOOExc3r9mBcnxupp44VXQIbfG3Wx51lRVZq8OTrYlxVVpVHFSiDYhXxhda2kOUTqmx1RxcrQHIuqa7HqxnHCwn0q3heUGrwlnIiIiIgojj/+8Y+wWCy44oorMGDAgPCfF154IbzNb37zG3z3u99FVVUVKioqkJ+fj/Xr14fHFQoFXnvtNSgUClx66aX40Y9+hB//+Md4+OGHu2OXiCgNNdrcMYssQLBo1GhL3q3hvUEq1uu03R2zCAgEi2gWh0eYgyjGabs4T9G+WhyeHjGHiGgOi6AbOsDzqDfhFZZERERERHEEAgHhNlqtFmvXrsXatWs73GbIkCHYuHFjMlMjol7E6oxfjGkRjPc1qVgvq9Mbf1xQQGtxeuD2xf9viGiO4DaJ7Wu6zCHMQcJ6CmPwPOo1WLAkIiIiIiIi6mZGbfxu0QbBeF+TivUyauOXTIyCDt8GrQqetmdddnWO4DaJ7Wu6zCHMQcJ6CmPwPOo1eEs4ERERERERUTczZ6qjOhuHVBSbYc7kc/faS8V6ZevVUZ23Q8qLcmDSqYQ5iGJk68V5ivbVpFP1iDlERHOYBAVNgOdRb9KtV1guX74c69evx969e6HT6TBp0iSsXLkSo0aNCm/jdDpx77334vnnn4fL5cLkyZPxxBNPIC8vL7zNoUOHcOedd+Kdd95BZmYmZsyYgeXLl0OpPLN7W7Zswdy5c/HFF19g0KBBePDBBzFz5sxU7i4RERERERH1YJZWNxptblidHhh1Kpj1yWteY8pQY0VVKeavq8HWs7o0r6wq7dQ8ycjz6OlWWJ1eWB0emHQqGLRKDMzO6NQcieYR7/WmDDUerSrFKYcHAQAtDk/4Cr0cnSq8XX2zAxaHJ7wfRp0qqnFLR9vkGbVYUVmCIxYH9BolbE4fDFolbC4PCk06FGTpsLKqFFu+OolcgwYurx9alQINVieuHNk/2DQIwKrKEjj9Abi8fljb8tQo5dDKZeFGNfHyNGWosaqqFAdPtUKvUbTLw4th/TKQl6XDssoSLKreFdGY57IiM5ZWjg3PEe+Yit5/A9rmWFhdi+0xuoS3b7jTYHXitN0Nq9MLo06J7Ax1xHhHx7UgS4ellSVYFGOOpZUlwoY7UvYj1ecRdV23FizfffddzJo1CxdddBG8Xi8WLlyIa665Brt374ZeH2xXf88992DDhg345z//CZPJhNmzZ+OGG27Ajh07AAA+nw/XXXcd8vPz8Z///AfHjh3Dj3/8Y6hUKixbtgwAcODAAVx33XX4+c9/jmeeeQZvv/027rjjDgwYMACTJ0/utv0nIiIiIiKinqG+2RHVRbmi2IwVVaWSCilSFGTpsGb6BDTa3GhxemDQqmDO7FyRJBl5ftNkj+rWHCoaDcnRS5oj0TykvN7p82PJht0x85SyH1K28QNYs7kuanxZ2xwBABtrjkUUCiuKzbh8ZP/w3z0AfvnKroTydPn8WLN5X4cxZACmlORjZtlQuLx+aJRynLA6IWvbVsocwRgDMGNSuxgtrvD2g3P0WD1t/JlipFaJbH1kMfJQkz2qm3hovQZLeO8MydFj1Y3jYHF4wueAKUaROZ50OY8oMbKAlKeIp8jJkyeRm5uLd999FxUVFbBYLOjfvz+effZZ3HjjjQCAvXv3YsyYMXjvvfdwySWX4PXXX8d3v/td1NfXh6+6/NOf/oR58+bh5MmTUKvVmDdvHjZs2IBdu3aF57rlllvQ3NyMN954Q5iX1WqFyWSCxWKB0Wg8NztP1IN88sknmDhxIuauXY/C4vO7FOPIvi/w+KwbsHPnTlxwwQU9Og8iop6A32d6Ph5Dou5jaXVj9nOfxuw+XFFsxprpE9Liyqtk5Hn0dCseWFcTs1tzeVEOVlSVYsH62rhzAEgoDyn7YXf7cP9Ln8fNc16c/Vh14zgASDjG2UWts/NscXnjxkhFnqLxlVWlyNQoE37vNFidmPviZwmtV285jyi2znyXSatnWFosFgBAv379AAA7d+6Ex+PBt7/97fA2o0ePxuDBg/Hee+8BAN577z2UlJRE3CI+efJkWK1WfPHFF+Ft2scIbROKcTaXywWr1Rrxh4iIiIiIiPqmRps7ZvECALbua0SjzZ3ijGJLRp5WpzdmwQkAttc1ocXpFc6RaB5SXm9xeIR5xhu3ODxJiSHKUxQjFXmKxq1Ob1LeO6ft7oTXKx30lPO9t0ubgqXf78fdd9+NsrIyjB07FgBw/PhxqNVqZGVlRWybl5eH48ePh7dpX6wMjYfG4m1jtVrhcDiiclm+fDlMJlP4z6BBg5Kyj0RERERERNTzWJ2euOMtgvFUSUaeVkdiMVqcnoTzkPJ6YZ4S9iMZMVIxR8LHRMocyXjvOL0JxehN5xElLm0KlrNmzcKuXbvw/PPPd3cqWLBgASwWS/jP4cOHuzslIiIiIiIi6iZGbfzuxAbBeKokI0+joBOzKIZBq0o4DymvF+YpYT+SESMVcyR8TKTMkYz3jjZ+mxQp65UOesr53tulRcFy9uzZeO211/DOO++gsLAw/PP8/Hy43W40NzdHbN/Q0ID8/PzwNg0NDVHjobF42xiNRuh00Q9L1Wg0MBqNEX+IiIiIiIiobzJnqlFRbI45VlFshjkzPZ5nl4w8jVolyotyYo6VF+XAoFUK50g0DymvN+lUwjzjjZt0qqTEEOUpipGKPEXjRq0yKe+dbL064fVKBz3lfO/turVLeCAQwJw5c1BdXY0tW7Zg2LBhEeMTJ06ESqXC22+/jaqqKgDAl19+iUOHDuHSSy8FAFx66aVYunQpTpw4gdzcXADApk2bYDQacd5554W32bhxY0TsTZs2hWMQERERERERdcSUocaKqlLMX1eDrWd1DV5ZVZryBhyW1uBzIq1OD4w6Fcz6YAdkqXl29HoAGJidgaWVJVhUXYvtMTpKF2ZnhJu4tH/O32VnzbGyqhRbvjqJXIMGLq8fWpUCDVYnrhzZP7xNfbMDFkfwlmeTLnglYUGWDqYMNR6tKsUphwcBBG9pDl1lmKNTte0rsLSyBA9W74ro0H1ZkRlLK8eiULAfoU7PyypLsKOuEblG7Zk8LQ6UFZlRmJ2BZW0xtrWLcVm7GKL9NGWohesZL4dQnsJjUlmCIxYH9BolbE4fDFolbC4PCk064VoMzM4AAKyqKsXBU63QaxTtYngxrF+GpPd4nlGL5ZUl2B5jX8rb9iWdzqOOJPN8j3euUXzdWrCcNWsWnn32WbzyyiswGAzhZ06aTCbodDqYTCbcfvvtmDt3Lvr16wej0Yg5c+bg0ksvxSWXXAIAuOaaa3Deeefh1ltvxapVq3D8+HE8+OCDmDVrFjQaDQDg5z//Of7whz/ggQcewE9+8hNs3rwZL774IjZs2NBt+05EREREREQ9R0GWDmumT2hrpOKBQasKXumX4uJDfbMjqlhYUWzGiqpSFGTphHmKXg8ECwWLrhuDAGRocXhg0KkgQyBcQPD5/JgyNh8zJw2Fy+uHRinHCasTXp8/HNPt82NjTX1UoW/SiOAVeN802bGwujaiSUuogDYkRw+nz48lG3bHHA+RAZhSko+ZZZF5hIj2AwACADbWHovOsyh4hZ1KIce1JQWYWTbszBwtLqgUckn7CQRvbZ19VRHmTRkNm9OHTK0Cdpc3fMurUiHHxtrjkYXXYjMuH5UrOYYfwJrNdVHrtaxtvbQKORZdd164ABxci+DPQ1w+P9Zs3hd3zUU6Ws+ytvUMHrMBmNH+vdPikhw/VZJxvks516hjskAgEOi2yWWymD9/8sknMXPmTACA0+nEvffei+eeew4ulwuTJ0/GE088Eb7dGwC++eYb3HnnndiyZQv0ej1mzJiBFStWQKk88zG0ZcsW3HPPPdi9ezcKCwvxy1/+MjyHSGfarhP1BZ988gkmTpyIuWvXo7D4/C7FOLLvCzw+6wbs3LkTF1xwQY/Og4ioJ+D3mZ6Px5CILK1uzH7u05gdjCuKzVgzfULcgoqU1zu9fsx98bOY3Z7Li3KwsqoUD6yr6XB89bTx8Pj8mBdnm9AVml0dX1lVigCQUAypeS5YX9vhei2/oSTuWqy6cRwCgUDcbURzrJk+AS0ub0L7uurGcVGFs7PnsLt9uP+lz+PGEBXZGqzOuO8dKXn0lqsPEz1Xe6vOfJfp9lvCRbRaLdauXYu1a9d2uM2QIUOibvk+2xVXXIFPP/200zkSERERERERpYNGmztmAQQAtu5rRKPNHbcIIuX1Hp8/ZsEJALbXNcHq9MYdP213IwDE3aZFEEM0HupGnUgMqXnGWy/RWljaunMnMkejzQ234JiI9tXi8CQ8h8XhERYsT9vdCefRW4p4iZ6r1M0FSyIiIiIiIiKSxur0xB1vEYxLeb3bF//CohaHaA6v8OIkqyiGYLzF6YHo+ifxWojzFMZIRp4SYri8/rjbSMkj0TlEMQCEC8mJ5NFbJHquEguWRERERERERD2CUauKO24QjEt5vccXv3Bl0InmUEJ0L6VRFEMwLtpPKdtIyVMYIxl5SoihERyTRPOQMoeUfTFq45eYpOTRWyR6rhIgF29CRERERERERN3NnKlGRbE55lhFsRnmzPi3mEp5fbZejfKinJjblBflwKhVxh3P1qthEGyT6LhRq0w4htQ8462XaC1MOpVwG9Ec5szE19OkUwnnMOlUwhgioveOlDx6i0TPVermpjs9BR9wThQpXZrdpEseREQ9Ab/P9Hw8hr2PpdWNRpsbVqcHRp0KZn3qO05TJNExSXQcAI6cbkWL0wurwwOTToVMrRKF2Rnh8QarE6ftblidXhh1SmRnqJFn1IbHjzU7sOWrk8g1aODy+qFVKdBgdeLKkf2R3/aMwfpmBywOT3gOo04Vfv6glNcfbbLD6vaFO0qHruAzqhUYmKPH4SY7ttc1IteoPRPD4kB5kRmDcvQAgl3AF1XXYnsHXcC/abLjwepdkZ2xi8xYUjlW0jgAHGqyY0eMPMqKzBico8eJJjtcAGxuH6xt+5GpVkADILddnvHmOdHsgM3jg8vrD8fQKOUwqBTon6Xr8PVLK8disMQ8jzc7cPBUK/QaBWxOHwxaJWwuL4b1y0Be2zE50mRHi9sb7ngePCYBGNRKFObocaTJjiMWB/QaZbsYHhSadCjM0Us67qJjJuX9KXpviNZTKlEeqSA63+ubHZi/rgZbz+oSvrKqFAP6aJfwHtN0h4iIiIiIqC+qb3ZEdcutKDZjRVWpsLEFnRuiY5LoOBAsCC2sro1oTNK+IHSoyY4FMcaXVZaEi19unx8ba+qxrd02lxXlYNKIHElzBABsrDkWUWCrKDbj8pH9w3/3AliyYXfMGACCMWqPnZWDGWVFZ64okwOYfVUR5k0ZDZvTh0ytAnaXN3ybpwzAlJJ8zCwbCpfXD41SjhNWJ2QSxzvOIweT2vJwAB2uRYhoHofPj1++sqvDGB29vr2O1iuUp8vnx5rN++Lm6QOwZMOeDrfxAVizua7DcU8H75uyEWeuiBQdMynvT4VCjo21xyMLuMVmXD4qV9J6SiElj3NNyvlekKXDmukT0Ghzo8XpgUGrCl7Nyl9MScIrLCXgb7OJIqXLlY3pkgcRUU/A7zM9H49h72FpdWP2c5/G7CBbUWzGmukT+A/aFBMdk0dvGof7/vl5l8fXTJ+AFpcX89bVxOyiXF6UgxVVpXHHV08bD58/gPtf+rzLMVZWlWL++tq0z1PKOIC0iNEb8kzGMVs9bTy0Snnc82jZDSXC9+fAdlcbx9JgdWLui5/FzeNcX2nJz/Cu4xWWREREREREaarR5o75D10A2LqvEY02N/+xm2KiY3Lanth4o80Nt88fs8gCANvrmtDi9MYdP213IwAkFMPq9PaIPKWMIwlzJCNGb8gzGcfstN0NlUIe9/0l5f05MOboGaftbmEe57pgyc/w1GDBkoiIiIiIKIWsTk/c8RbBOCWf6JhY24pGXR1vcXrg8sbvwtziEOcgukFSGEMwnqo8hXlIyFN0r2gyYqQiTynHJOF9TcExszq9UClk8beRsK8iiZ6LycDP8NRgwZKIiIiIiCiFjNr43XYNgnFKPtExMWrj/9NZNG7QqqDxxS8EGgRdmI1aJUTPcxPGEIynKk9hHhLyFElGjFTkKeWYiAjzSMExM2qVUCnk8bdJxnoleC4mAz/DUyP+u4mIiIiIiIiSypypRkWxOeZYRbEZ5kzeSphqomOSrU9s3JyphkGrRHlRTsxtyotyhOPZejVMOlVCMYxaZY/IU8p4usToDXkm45hl69XC80jK+1MkW68W5nGu8TM8Ndh0RwI+4JwoUro0u0mXPIiIegJ+n+n5eAx7l/pmB+avq8HWszrMrqwqxYAkdgm3tLrRaHPD6vTAqFPBrO+9HWoT3VfRMRGNH2924OCpVug1CticPhi0SthcXgzrl4G8dl3CH6yujerUvKRdl/CF1bXYHqf7sZQYO+oakWvUwuX1Q6tSoMHiQFmRGYNz9DjW7MCWr04i16A5M2514sqR/ZHflueRJjta3F4EIEOLw9N2ZVwABrUShTl6HG+ywwPA5vbB2jaeqVZABSC/Lc/DTXYctTig1yjbrYcHA006DJKQp+j1QLBb9KKXd0U8T/CyYjOWTh2LwTl6fNNkx6IY6xnqmB6KES+Pb5rseDDGHEumjsWQHL1wrc6shTPqvTHQpJW0FqHjHm9fROOitZJy3KW8P2N1z76s2IxVbeeJlGMiOpel5HGupeozvLdh0x0iIiIiIqI0VpClw5rpE9Boc6PF6YFBq4I5M7nFxFiFg4piM1ZUlaKgl/2DOhn7KgMwpWQAZkwaCpfXD41SjhMtrvC46Ji5fX6s2bwvoiFIqIgSIgdwbckAzCwbdmYOqzN866MMwOyrijBvymjYnD5kahWwu7xo/2RAtUKOa0sKImO0uKBuux1XqZBjY+1xbKuLLBhdPio3nOfGmvqoguekEWeuWvMBWLJhT9S+LG3bFxeAhdW1HY4DQADAms11Ha5HAMDG2mPReRQFr1zzd/D69nMAwJSx+ZjZ/phZneExBYBF140JF+AMOhVkbT9vn2d0HuZwHrIO5ggdE9FandmX6PfG0nhrUXwmh473JRDeFxWApZUlaHX7wuMZbUVkKWslZV/UCjlmX1V81vvTF37vAYDP5485j7ftUQM6hRwPXz8WLq8/nKdGKYeuLYaUc3lwjh6rp43HabsbVqcXRq0S2Xr1OW+2014qPsP7Ol5hKQF/m00UKV2ubEyXPIiIegJ+n+n5eAypMyytbsx+7tOYnWwris1YM31Cr/mHdTL2NdEYDVYn5r74WczuxeVFOVg9bTwAxN1mRVUp5q2riTtu0Cjj5vnoTeNw3z8/73B82Q0lcedYWVWKACDMQzSuUsgT3td446tuHAd/IJBQjGTtq2gcSZhDBuCBNMhzwfrauOeI0+uPe9xX3TguqhjZPobo/dubPrf6Kl5hSURERERE1Ic12twx/9EPAFv3NaLR5u41//BPxr4mGuO03R2zSAMA2+uacNruBoC427Q4vcJxl8cfN8/T9vj7IZoj1GE50TxlSYgRb9zS1m06kRjJ2lfReDLmSJc8ReeIx+cXHrdE3r+96XOLxFiwJCIiIiIi6mWsTk/c8RbBeE+SjH1NNEao+NXVcQBocYhzEHVhFuYhYQ7RPZhS8kTETexdyCNFeSYaI1XrmXCMFOXp9sUPkuh51Js+t0iMBUsiIiIiIqJexqhVxR03CMZ7kmTsa6IxRN2NpXQ/NujEOagFBUthHhLmEJGSZ/xypYQ8UpRnojFStZ4Jx0hRnp6251R2dR7R+7c3fW6RWPxPOyIiIiIiIupxzJlqVBSbY45VFJthzuw9t1UmY18TjZGtV6O8KCfmWHlRDrL1auE2Bq1SOC7KM1sff1w0h1GrlJSHaDwZ+xpv3KRTJRwjWfsqGk9GDGOa5Ck6R0TH3aRTJfT+7U2fWyTGpjsS8AHnRJHSpdlNuuRBRNQT8PtMz8djSJ1V3+zA/HU12HpWt92VVaUY0Mu6hB9vduDgqVboNQrYnD4YtErYXF4M65eBvLZ9tbS60Whzw+r0wKhTwayP7OgrJUY8h5rsWFhdi+0xumIPztEDAA432bG9rhG5Ri1cXj+0KgUaLA6UF5kxKEePb5rseLC6Nqpz9pLKEgxpi9HQ7MAphwcBBG/TDV3ll6NTITdLJxw/1GTHjhg5lBWZw3mK8vimyY5FMfZ1abs8jzTZccTijFrPQpMWhTn6tjyakGvUtMvDibKiHAxuG1/08q6IZxpeVmzG0qljw3nWN9nhAdDq9sHatq+hztgFOXoca7LDC8DWbjxTrYASwICIfd0V2VW9yIwllWMl7auUYyaKcajJjh37m5BraLcWVifKR+RgkMRjcrjJjqMWB/QaZbv19mCgSYdBOXocabKjxe0NdxkPvi8CMKiVKJSYp5RzRPQeF30uHWt2YMtXJ6PW4sqR/ZHf7jwUnc+Unth0h4goxQ4dOoTGxtgPiJbKbDZj8ODBScqIiIiI+rqCLB3WTJ+ARpsbLU4PDFoVzJm98x/1bp8fazbvi2j4ESoWAsHi7dndiSuKzVhRVYqCtiKIKIbI4Bw9Vk8bj9N2N6xOL4xtVxrmGbXhbfwANtYeiyo6TSoKXlWmVshxbUkBZpYNg8vrh0Ypx4kWV8St4E6fH0s27I7Kc2lbnqLxgCAHIPgEymtLBkTmYXWFb/VWAFh03Zhw8cugU0GGABTt1sMHxFzPyDzqY+Rx5gq9KWPzMXPS0HY5OCPW3ANgYXVth3O4BeOhfZ1Sko+ZZZHzhPZVDmD2VUWYN2U0bE4fMrUK2F3e8O2qsdfKGXFbvGi9AgA21sRYixFn1kJ0TPwA1myu63BffQCWbNgTdy1EeUo5RxQKOTbWHo8sABebcfmoXADiz6XgWhyLeH1FsRmXj+wf/ruU85l6Pl5hKQF/m00UKV2ubEyXPA4dOoTRY8bA0drapdeH6DIysHfPHhYtieic4PeZno/HkCi2BqsTc1/8LGZ34vKiHKy6cVxUcSOkotiMNdMnwOn1x42xetr4iMJjV9Q3O3D/S593OMfKqlLMX18bN0+72xc3xoqqUsxbV9Pl8ZVVpQgACcVYUVUKJCFGKuZgnmfG5TJZQu+t1dPGQ6uUY/Zzn8Z9D8f7hYml1S18PYCE5qDuxSssiajHOG7z4qkdB9Boc6PZ4YZSLsd5BUaMLTBhdL4Bcrnokd3dr7GxEY7WVvxw3qPIGzyiSzEaDu3HMyvvR2NjIwuWRERERJ1w2u6OWUQBgO11TbA4PDGLGwCwdV8jGm1ueHz+uDFO290JFywtDk/cOaxOrzBPtyDPFqc3ofFQl+ZE50hGjFTMwTyTN8dpuxsqhVz4Ho5XTGy0uYWvB5DQHNRzsGBJRCnnDwRwwCZH/q2P4RcbTwI4GXO7Qf10+NG3hmDahYOQrU///+jkDR7R5Ss9iYiIiKhrQkW2DscdnrjjLU4P3L74Nx6K5pBCSh6icZc3fhdm0RxSchDdg9mShBjCPNIkT1GMZKxnSmKkYi2cXqgU8S82Eb3HrRLOAdEtwqI5qOdgwZKIUupkiwub957AcasSmoLRkMuAS0fkoKh/JkwZarS6vNhVb0HtEQsOn3Jg+et78Zu3vsLPKkbg55cPR4aaH1tEREREdIZRG//7YajpTEcMWhU8vviFQNEcUkjJQzSuEeUpmCPRHADAkIQYwjzSJE9RjGSsZ0pipGIttEqo2j1rtSvzGCWcAyJStqGegf/yJ6KUCAQC+ORQM3bsb0QgAChlAZzc/BTWPz4PV5ddFLW9w+3Dvz6vx9PvHcQX9Vb8/u19ePGjw/jld8/DdaUDumEPiIiIiOhcEXX8jTeerVejvCgnorNxSHlRDkw6FSqKzRFdiUMqis0wZ6rh9Prjxgjd7dNgdZ5pqqNTIjsjsqlOfbMDFocHVocHJp0KRp0q3ATEpFPh6tH9MabAhAmDssIdkD85dBp76i0wapX48SWD8ZPyYXB4/OGu1jqVHH/ffgDmTDXsbh9uvnAg7qgYAa8vEN5GqZDhr1v3w6BVonL8ANxWPhxKhTzcDdrj8+PJ7V/DoFXG3U+jVolA2//vaBuDVolrx+ahauIg5Bo14W7RDVYn1u08DENbcVe0jWgO0X6Eto0XQzQOIO4xMWiVuH3SEMwoGwZ7u07jerUCT+84AINWKXx9qvIUrZfoeMhlsoSOWbZeDa1SLjzXgI7PZ3OmWtLrpWzTm/TVjuhsuiMBH3BOFKmzzW78/gDe+eoEdh21AgCKcjMxUnkKf/wfcbObQCCA13cdx9INe3C02QEA+N64Ajxy/fn4eu+utGi6ky7Nf4iI4uH3mZ6Px5B6K1HHXykdgb9psmNRdW1EMSXUAXlIjh6HmuxYGGN8WWUJBufoJcdYEKPjdCjGN21zxOrCPKTdHPG2SUUM0X5KWYtk5ZmMOUQxpOxrouvZm/I81+8dKef7/HU1EQXJimIzVlaVYkDb+S5lm96it3VE78x3GRYsJeCXQ6JInSnQeX1+bKg9hoNNwQ7al4/sj/GDsjpdoHN6fHjinTqs3bIfPn8AeUYNfjZejzuum9TthUIWLImoJ+D3mZ6Px5B6I1FX4EdvGof7/vm5sMP3wvU1EVefaZRyfHq4GXvqLXhkagl+9coujB5gjBr/8pgVj900Dna3D4+89gVubHd1WaZWgRNWF9btPIyF152XUBfmVTeOgz8QwPx1NR1eoZaqbtFLN+yOu58A8KtXduG8DtZz8fVjk5JnMuZY/e+9EVcVGnQqeNuuKrx38mg89u+9+EmccQAJHxPR6wHg16/s6vD9ufj6sfjTljrccdlwODz+cJ46lRx/2/Y1/vuKoqTkKeoODwAPJHDMlt0QjLFgfU2H2zwytSSq+BbSvsN36IrCFqcHBq0K5szoKwqlbNPTSema3tP2mV3CiSgt+P0BvPHFcRxsaoVSLsN3xuZjRP/MLsXSqhSYe80oXDUmD3Nf+AxfN9rxyFYXsr/9cwiePU5EREREaUrUFfi0Xdw12OPz4+29J/H23tiNHO9zePDWnhN4a8+JDnNw+/x4fVcDXt/VEHObOVePTKiDsqWtYUmsgpPUGMnqFi3aTwDYvPckNne0npOTk2cy5qj+7BiqPzsWc7ufXV6Elz87hpfjjIfixZtHlIfo9QDivz8ne/F/HxzG/31wOOb4Dy4ZmpQ8k9EdPt4xO20PdvCOe1wdHkkdvkN/4pGyTU8npWt6b16D+E9EJSLqokAggM1fnsD+k3Yo5DJcP76gy8XK9sYPysKGuy7DjEuHAACME7+Lt4+rcLLFlXBsIiIiIkotUVdgUXfuFqcnKV3CE+6unYQ5UhKjh+SZjGOWjDzTYS3SJk8J52oyzkU6Q0rX9N6MV1gS0Tnx/ten8EW9FTIAU8bmozA7I2mxdWoFFl8/FkNULfjVhq9gM5jxwseHccXI/ji/wAiZTJa0uYiIiIjo3BF1BRZ155bU4VtCh+REu2/3lK7WPSVPdjPvXIyU5JnguQok57j2Jcnomt6T8QpLIkq6/Sdt+PDgKQDAVWNyk3JlZSzj8zU49uRdyNf64fMH8PbeE9i0pwFewRdOIiIiIkoPoa7AsVQUm5Gtjz9uzlSHu4TH0r5LeLwYJp0qboxQh+Sujpt0qoRjGLTKpMRIxRzMs2fladQqYUwwRrY+OecinSH6fOzt68WmOxLwAedEkeI1mWludeO5jw7D7fVj/KAsXD6yf8wYyWx2c88f1qNBMwD/2d+EQADIM2rw3dICZGrEv+Vj0x0i6iv4fabn4zGk3krU8VdKR+DDTXZsr2tErlELl9cPrUqBBosD5UVmDGrrTCyKIepuLJrjUJMdO2KMlxWZIzqRP1hdi23t5risKAdLOtGF+XCTHUctDug1SticPhi0SthcHgw06STlcaTJjha3FwHI0OLwtF31FoBBrURhRJ67sK2usV2eZiypHBvOM95+SFlPUZ6i/TyzFk7oNYp223hRaNKiUOIxCW7ThFyjpt02TpQV5YS7v4s6fIvWQpSHlDxF65GsTuSiY7YwxviyypKI9Yy3TV/q8J0MvW292HSHiLpFqCO42+vHAJMW5UWxfxuUbDIZcOGQfsg1aLGx9hgarC48/+EhXD9+IPobNCnJgYiIiIi6piBLhzXTJ3TY8Vc0DgAKhRwba49HFtiKzbh8VK7kGENy9Fh14zhYHJ7wNiadCgVtRQE/gI21x84qTJkxqe07byDmeE54HABkAK4tGYCZZcPCHZRPWJ0IPdBIBeDh68fC5T3TLVqjlKP9jZ9+AGs210U0SAkVlTrO40yePgBLNuzp8PWhPKeU5GNm2dCYeYr2Awjezjn7qiLMmzI63I3c7vKGb/MU5SnazzPb7OvyWpzZpj7GcQteKagCsLSyBK1uX/iYZKgV4WMiZS1EeUjJU7QeWgDLK0tga5dnplqB0Dtcq5Bj0XXnIQCEx2VtPw/RKeQx33+6tm3UCjlmX1V81jH1Qd0uxuAcPVZPG4/TdjesTi+MWiWy9WrkGbUApJ2LdEZfXi8WLIkoaXbsb0KjzQ2dSoFrxw6AQp7aZ0kO7peBWy4ahNdqjqHJ7sa6T47g++MKwl8yiYiIiCg9iTr+xhu3tLoxb11NRLESALbta8T8dTVYM32C5M7DBVm6mN8d65sdWFhdG9VFeVtdIxZV12JFVWkH401YVF2LlVWlCABYEGMbIFh4WlFVinlxxldPGw+Pzx9znu1t83ScR/w8278eEvIUjQPAfME2ycgz0bXoKMa2djHiHROpa9G19444z+0S81x147jgORKj43RFsRlrpk8AANwbZ5tHbxqH+wUxQudXnlEbLlDG0hc6fCdTX10vPsOSiJLi6GkHPjvcDAC45rw8ZEp46PK5kJWhxo0TCzHAFLydovrTo/imyd4tuRARERHRuddoc8csogDA1n2NaLS5E57D4vDELAYBwaJRi9Mbd9zq9Aq3EY2ftrsTjiFlPF1iMM/kxbA4PMJzRHQenbaf+/OMqD0WLIkoYR6fH5v2NAAAzhtgxFCzvlvz0aoUqJwwEENyMuD1B/BazTHUNzu6NSciIiIiOjesTk/c8RbBuKQ5HII5RONOT8IxrE5v4nmkIE8pMRIdT1WewmPSQ/IUnQMtTo/wPLI6vQnNQdRZLFgSUcL+sz/4W7tMjRIVI1Pz3EoRlUKO75UWYGhb0fLVz+vRZHN1d1pERERElGRGrSruuEEwLmkOnWAO0bhWlXAMo1aZeB4pyFNKjETHU5Wn8Jj0kDxF54BBqxKeR0bBHXTJOM+I2mPBkogScrLFhc/bbgW/ekwuNEpF9ybUjkIuw7UlA5Df1m3v5c/qYRP8ZpCIiIiIehZzphoVxbF/aV5RbIY5M/Fnv5l0KpS3NWE5W3lRDgxaZdxxo1Yp3EY0nq1XJxxDyni6xGCeyYth0qmE54joPMrWn/vzjKg9Nt0hoi4LBIB3vzqJAIDi3EwMzeneW8FjUSnk+P74Arz08RGcanXj9V3HUHVBIeQpbghERERE1FM1WJ1nOv7qlMjOUMdtqBGLpTX4jDyr0wOjTgWzvnNNJOqbHbA4grfGmnTBK85CzXFMGWqsrCrFlq9OIteggcvrh1alQIPViStH9g/PIyWHjuYpyNJhaWUJHqyujeomvaSyBIXZGVheWYLt+5uicigfkYOB2RkAgl2cj1oc0GuUsDl9MGiVsLk8GGjSoTA7A49WlsANoNXtg9URzDNDrYAGCK+5KI/g+K7IjulFZiypHCvMs7AtT9EcyypLsKOuEbltFwZoVQo0WBwoKzJHxFhUXYvtMbpaS4kh2g8pc4jW+8y+djyPKE+paxFvjhWVJWhxexGADC1txx0IwKBWSt7XlZUlsMaIYVQrUZClw4qqUsxfV4Ot7Z5DWVFsxsqq0vB5EO88yjNqJZ1nUiT6eZBOMejcYcGSiLrsqEOGo80OKOUylHfw27Z0oFMp8L1xA/Dch4dRb3HiP183obwoffMlIiIiSheHmuxRXZDLi3KwrLIEgyX+srq+2RHVobii2IwVVaUxO3Kf7Zsme1SH5FChZkhbDm6fHxtr6qMKbJNG5EjOQTSPHMC1JQMws2wYXF4/NEo5Tlid4dsW/UDcHELbrNlcF3MOAHAjuht0+3EAkHWQh6zd+JSSfMwsGxpzXEqeojkCADbWHouO0e47thzA7KuKMG/KaNicPmRqFbC7vOH1EsUQ7QcAKAAsum5MuEhn0Kkga/u5lPWWMk/sPM3hPGOOF5sj1kI0hw/Akg174uYp2levIEYwhwGYMaldDi2Rj8wKANhYcyyisFpRbMblI/sDCPYuiPXeKRsR++rOWBL9PEinGHRuyQKBQKC7k0h3VqsVJpMJFosFRqOxu9Mh6naffPIJLvzWJIx64CU4fDJ8a1g/XDJc+n+kAODIvi/w+KwbsHPnTlxwwQVdzmPixImYu3Y9CovPF26/70QLNtYeBwB8r3QAhvfP7JY8YklGHkRE8fD7TM/HY0ip1mB1Yu6Ln8XsPlxelIPV08YLr7S0tLox+7lPY3YXrig2Y830CXGvaKpvduD+lz7vMIdVN46DPxDAvHU1HW6zoqoUC9bXxs3B7vbFnWdFValwDtE4gLSIwTx7Xp5ymSzh96foHAAQ91xdUVUaN4dUfB6kUwzqms58l+EzLImoSwwXXQ+HTwaDVomJQ7K7Ox1JinMNGD8oCwCwaXcDWt18niURERFRR07b3TGLEwCwva4Jp+1uYYxGmztmUQAAtu5rRKMtfgyLwxM3B4vDgxanN+42LU6vMAfRPFLmEI2nSwzm2fPyTMb7U3QOiM5VUQ6p+DxIpxh07vGWcCLqNLvbD+PFNwAAJo3IgUrRc373UV5kxpHTrWi0ufHuVydRounujIiIiIjSk1XQrFA0HtzGE3e8RTBudYhfL7pnsEVCDJfXn1geKcoz0RjJWM9UxEjVcU+H9UxGnlLyEM4RfwrxMUvB50E6xaBzjwVLIuq0f31lh0KbCYPKj5F5hu5Op1MUchm+PSYPL3x0GF812GDuz+Y7RERERLEYtfH/uSgaD26jijtuEIwHG4d0/fUAYJAQQ+OLX7AU5pGiPBONkYz1TEWMVB33RGOkS56J5pGUY5aCz4N0ikHnXs+5LIqI0kJzqxuv7bMDAM4z+SCX9byCX55RiwsGB29j//SUEjI1H6pMREREdLZsvRrlRbGfU15elINsvfgZb+ZMNSo6aM5YUWyGOTN+DJNOFTcHk04Fg1YZdxuDVinMQTSPlDlE4+kSg3n2vDyT8f4UnQOic1WUQyo+D9IpBp17bLojAR9wTnTGY//+En94pw7uEwdwy8SBGDSy+5rMJNLsxuPz45kPDsHi8MD60ct469E72XSHiHo1fp/puq1bt+LRRx/Fzp07cezYMVRXV2Pq1Knh8YaGBsybNw9vvvkmmpubUVFRgTVr1qC4uDi8jdPpxL333ovnn38eLpcLkydPxhNPPIG8vDzJefAYUnc41NY5e3ucLuGW1uDz76xOD4w6Fcx6dUTDiuPNDhw81Qq9RgGb0weDVgmby4th/TKQ19aNt8HqxGm7G1anF0adEtkZ6nADj2+a7FgUI4f2XcIPNdmx6OVdEc+lu6zYjKVTx2Jwjl5SDoea7NhR14RcowYurx9alQINFifKinIwOEePw012bN/fhFxDu3GrE5eNyEFhjh7fNNnxYPWuiA7LlxWZsaRybDjP+iY7PABa3T5YHcH1ylAroAJQ0BZDtK/BeWqjOjUvadvmSJMdLW5vuJt08Mq4AAxqZThPSXPEWM8lU4P7ElyrRuQate3WyoGyInP4fXG4yY6jFgf0GmW7NfdgoEmHQaEYMdazfEQOBknM81iTHV4AtnbrmalWQAlgQNsxO2pxRh33gSYtBiVxPWOtVei9J2UOKfva0b4UmrSSjmtDswOnHMFbv8/sB5CjUyG37RyI1Tn7smIzVlWVYkCWLngOxDju5UXm8HqKHGt2YMtXJ6OO+5Uj+yO/Ex2+56+rwdazOnyvbMszVTGo8zrzXYa3hBORZJZWD57ccQAA0Lz9GcgufKCbM+o6lUKOK0f1x8uf1cNwwXdR3+IFy4RERBSL3W7HuHHj8JOf/AQ33HBDxFggEMDUqVOhUqnwyiuvwGg04vHHH8e3v/1t7N69G3p98B9w99xzDzZs2IB//vOfMJlMmD17Nm644Qbs2LGjO3aJSLLBOXqsnjb+TDFRq0S2/kwxMVaBI9RRuKDtH/1unx9rNu+LaNgRKnoCwULhguramOODc/TQKOSYfVUx5k0ZDZvTh0ytAnaXD5qznqM+ZWw+Zk4aCpfXD41SjhNWZ3hMlAMABABsrK2PKipNaruqzA9gY02M8RHBcRmAKSX5mFkWmUP7+5E8ABbG2NelbXkoACy6bky4OGbQqSBDAIp2MWQAri0ZgJllw9rN4wrP4wOwZMOeDudQxpwjsjgg62A9Q3ME1+rYWWthxqSiM1et+QGs2VzXYR4BwXrKAcy+qijquLc/6m7BegZziD7uS9sd99jr6ZS8nh2tVXuiOWLvqzdiX0X7Evu4BsLH1enzY8mG3XHXwufzx9wXb9sjExQKOTbWHo8syhebcfmoXEjl8fljHveyEbGv3oylIEuHNdMnoNHmRovTA4NWFbxSuhOdvZMRg84tXmEpAX+bTRT0xJY6rHrjSwwxKbF14Xe6/YrCZFzZ+MKOL3HcKcdFBRr8865vd1sevMKSiM41fp9JDplMFnGF5VdffYVRo0Zh165dOP/84H8D/H4/8vPzsWzZMtxxxx2wWCzo378/nn32Wdx4440AgL1792LMmDF47733cMkll0iam8eQ0o2l1Y3Zz30as9tuRbEZa6ZPgNPrx9wXP4vZXbi8KAcrq0rxwLqaDsdX3TguqiB69hwtLi/mxYmxoqo07vjqaePh8fkTiiFlHEBaxGCePSvPlVWlCJzjPFfdOA4KuSzuuSrlXBQV+xqszrhzrJ42PvzLEOqdOvNdhs+wJCJJ3F4/nv7PQQDA90dJu9y/JyjJ9iLg8+Kjehf+Uxf9H18iIqJ4XC4XAECrPfMPLLlcDo1Gg+3btwMAdu7cCY/Hg29/+8wvxkaPHo3BgwfjvffeixvbarVG/CFKJ402d8ziBQBs3deIRpsbp+3umMUJANhe1wSr0xt33OLwCOdoEcQQjZ+2Jx5Dyni6xGCePStPawrytDg8wnNVyrkoIprjtF0cg/oOFiyJSJLXaurRYHUh16BB+aDe80wPowpo+XQjAODh13bD5+dF50REJF2o8LhgwQKcPn0abrcbK1euxJEjR3Ds2DEAwPHjx6FWq5GVlRXx2ry8PBw/frzD2MuXL4fJZAr/GTRo0LncFaJOszo9ccdbnB5Ynd74MRziGMI5BDGE405vwjFaJOxHWsRIwhxSjllvWc+ekmdSjvs5PlcBiOcQjFPfwoIlEQkFAgH8ZVvw2ZUzJg2FStHzOoPHY9nxHPQqGfYeb8G/Pq/v7nSIiKgHUalUWL9+Pb766iv069cPGRkZeOeddzBlyhTI5Yl91V6wYAEsFkv4z+HDh5OUNVFyGLWquOMGrQpGbfy2CaHGH/FiCOcQxBCOa5UJxzBI2I+0iJGEOaQcs96ynj0lz6Qc93N8rgIQzyEYp76FBUsiEvrP/ibsOWaFTqXAD781uLvTSTq/swVTR2cCAH771lfwtD1UmoiISIqJEyfis88+Q3NzM44dO4Y33ngDTU1NGD58OAAgPz8fbrcbzc3NEa9raGhAfn5+h3E1Gg2MRmPEH6J0Ys5Uo6LYHHOsotgMc6Ya2Xo1yotiN9MoL8qBUauMO27SqYRzGAQxROPZ+sRjSBlPlxjMs2flaUxBniadSniuSjkXRURzZOvZ8IbOYPmaiIRCncFvurAQWb20a9q1RRn49wEXDja1Yt3OI7jl4t5XmCUionPLZDIBAPbt24ePP/4YjzzyCIBgQVOlUuHtt99GVVUVAODLL7/EoUOHcOmll3ZbvkRSWVrdaLS5YXV6YNSpYNYHO+maMtRYVVWKg6daodcoYHP6YNAqYXN5MaxfRnAbAMsqS7CwuhbbY3ToHpidgeWVJdhe14hcoxYurx9alQINFgfKi8woyNJhZVUptnx1ErkGzZlxqxNXjuwfzmNZZQl2xIhRVmRGYXZG3BxCTT6WVpbgweraqO7FSypLUJidgaWVJVgUI8bSduMPVu+K7KBcZMaSyrEozM4IzxEvxsrKErj8Abi8flgdwfXWKOXQyGUY2C5GvDxFMURrBQDLK0tw1OKAXqNsd1w9GGjShddz0cu7Ip5peFmxGUunjpUcQ7QWKypL0OL2IYDgLc2hK/wMaoXk9RSNJ+u4i+aQsp4dHZOBEvd1RWUJjsSYo1DCehdkBR/5FS9GQZYOK6pKMX9dDba2O+4VxWasrCqV1F07z6iVdC4SASxYEpHAMYsDm/eeAAD8+NKh3ZvMOaRTyXHnFUV45LXd+P3b+1B5wUBolIruTouIiNKAzWZDXV1d+O8HDhzAZ599hn79+mHw4MH45z//if79+2Pw4MGora3F//zP/2Dq1Km45pprAAQLmbfffjvmzp2Lfv36wWg0Ys6cObj00ksldwgn6i71zY6ozsAVxWasqCpFQZYObp8fazbvi2ikESo+hAzO0WP1tPE4bXfD6vTCqFUiW68OFycUCjk21h6PLPQVm3H5qFwAgMfnx8aa+qiCUtmIM1dqBQBsrD121jZmTCoKXhEmBzD7qiLMmzIaNqcPmVoF7C5vxC2HcgDXlgzAzLJhcHn90CjlOGF1hrfRIFh4srl9aHF4YNCpkKlWIHQjrAzAlJJ8zCwbGvH69g9TUiFYeGptFyOjXQwvgF++sitqPZe2W09ZB3nKJMaIvVY54bUCAD+ANZvr4uYxZWw+Zk6K3Nf2RDEUMY+JD6Fv4D4ASzbsjptD7OPqCx8zBYBF141BALLwesvafi51PWPHCIRjSHlvidZCyjHRKuRYdN154QJuaF+0Cnl4veLNoVHIMfuq4qi10ijOZNpRnqHzuSBLhzXTJ7Q1u/LAoFXBnKmWVKwMEX0eEIWwYElEcb3w0WH4A8C3hvVDUW5md6dzTv3wW4Pxl61fo97ixLMfHMJtZcO6OyUiIkoDH3/8Ma688srw3+fOnQsAmDFjBp566ikcO3YMc+fORUNDAwYMGIAf//jH+OUvfxkR4ze/+Q3kcjmqqqrgcrkwefJkPPHEEyndD6LOsrS6o4qVQLAj8Px1NVhRVYoF1bVRXX+31zVhYXUtVk8bHy5C5Bm1MQsS4TnqIufYJphjW7s5PD4/FsbcphGLqmuxoqoU82KMA8FizOpp4wEA8+NsI4rRUZ7txwEIY8Taj+11TeH9ACCcRxQj9lpFziGKIWVfRTGSsRaJHjNAvJ6iGKIcpKxFvGOysqoUmRol7otxLgLBXyAsu6FEfMzW13b4+jXTJ8Dp9Us6n0NXNSeio88DovZYsCSiDvn8AbzwUfAB/z/ohc+uPJtWpcDsq4rw4Mu78Mct+zH94sHQqniVJRFRX3fFFVcgEAh0OH7XXXfhrrvuihtDq9Vi7dq1WLt2bbLTIzpnGm3umAUOIFi0tDg8MQs1QLDIcdruFhYlkjFHAIi7TYvTK4yBBGNIGU/GHMyz7+VpdXrh9PjjnidS8oj3+kabGx6fP+HzmSiZ2HSHiDq05csTOGZxIjtDhcnnd9wUoDe56cJCFJi0ONHiwosfsxsrERER9V1Wpyf+uEMw3lasOddziLZpkRJDkKswhigHpyfhPKXESMUcqYiRLuspjJGqPBM8T1oErw/OEf8ckHI+EyUTC5ZE1KHnPjwEAKi6oLDPXGmoUSpw5xUjAAB/3LIfLq+vmzMiIiIi6h5GrSr+uE4wrhXf0JeMOUTbGKTEEOQqjCHKQatKOE8pMVIxRypipMt6CmOkKs8EzxOD4PXBOeKfA1LOZ6JkYsGSiGJq32xneh+4Hby9aRcNQr5Ri2MWJ/758ZHuToeIiIioW5gz1agoNsccqyg2w6RTobwoJ+Z4eVEOsvXi59wlYw6DVhl3G9F4tl6NbL06oRhSxtMlBvPsWXkatUrheSJljnivN2eKzwEp5zNRMskC8R7IQwAAq9UKk8kEi8UCo9HY3ekQpcQTW+qw6o0vcfHQfnjx55dGjH3yySeYOHEi5q5dj8Li87sU/8i+L/D4rBuwc+dOXHDBBV2KcS7zeGrHATz0r90YmKXDO/ddAbWy49/vpMt6EBHFw+8zPR+PIXWH+mYH5q+rwdazuoSvrCrFgCwdDjXZsai6Nqq78dLKEgzO0UfEsTiCt8eadMGrzgqydOGxs5v7XFZsxqpOzHGoyY5FL++KirF06lgMztHjaJMdVrc33Ok5eEVaAEa1EgPbYpxsssMJwOb2wdq2TaZaAS2A/jl64fjhJjuOWpzQaxSwOX0waJWwubwoNGlR2DZHfZMdHgCt7WKEuoQX5OhxpMmOFrcv3Ak6dOWcQa0IxwjO44Beo2w3jwcDTToMytHjUJMdO+oakWvUwuX1Q6tSoMHiQFmRGYNz9B3moAYwoN16xotxqMmOHfubkGvQnBm3OlE2Iid8TL5psuPBGMdtSWUJhoT3NfqYGNRKFErYjzNz7IrsMF9kxpLKsRgiMU/RPImudzLmAICGZgdOOTxR740cnQq5bedJvDlONDtg8/jg8vrDx12jlMOgUqB/27l4uMmO7TFilBeZw3kkg6XVjUabG1ZnMA+zvvONfJIRg1KvM99leE0vUQ9z6NAhNDbGfmCyVGazGYMHd3zVZCAQQPUnRwEAVRMHJjRXT3XLxYPxxJb9ONrswLpPjmD6xX3rKlMiIiIiACjI0mHN9AlotLnR4vTAoFXBnHmmMKBSyHFtSQFmlg2Dy+uHRinHiRYXVIozv+z9pske1cG4vK3gOCRHD6/Pjylj8zFz0tAzMaxOeHx+yXMAiBkjxAtgyYY9MXMIaUV0N+f224jG/QDWbN4Xdw6PIIYPwJINu+PGCM5T1+E2AQAba49FFgqLzZhUZJaUQ4cxis7ECADYWFMfVYycNOLMFXoyANeWDIg8blYnZG3jwX3t+JiI9iM0x5SSfMwsGxpzDil5iva1S+tdFJlnonMAgNPnF743Yq1XWdscDp8fv3xlV9zXKxRybKw9HlkALjbj8lG5SJZYv6CoKDZjRVVp+JcYqYhB6Y9XWErA32ZTujh06BBGjxkDR2trQnF0GRnYu2dPh0XL2iMWfO8P26FRyvHRg9+OemZKulxReK7z+Nv2A3jktd0ozA5eZXn2l+JU5UFElAz8PtPz8RhSurG0ujH7uU9jdh+uKDZjzfQJsLt9uP+lz2N2Hy4vysGKqlLMW1cTd3zB+tq4c7S4vMIY8cZX3TgO/kAgoRhSxgGkRQzmyTzPHl9ZVYpMjVJ4Pid6BaOUzwzRHMmIQd2HV1gS9VKNjY1wtLbih/MeRd7gEV2K0XBoP55ZeT8aGxs7LFiu/zT43Mb/Oi9P+IDn3uwHFw/GH7fsx5HTDlR/chTTLhrU3SkRERERpY1Gmztm0QAAtu5rRKPNDbfPH7NIAgDb65rQ4vQKx8/1HJa2DsuJ5ikaT8YczJN5nos8rU4vnB6/8FxLtBAo5TNDNEcyYlDPwIIlUQ+UN3hEl6/kE/H4/Hj1s3oAwA0X9M3bwUN0agX+u2I4lm7cgz+8U4fKCwZ2eJUlERERUV9jdXrijrc4PXB5/fFjOAQxROMS5pASQ3TfoTBGKuaQECMZ68k8z+hLeYr+ndMiON+lkPKZkYoY1DPwX95EFGHbvpNosruRo1fjsuL+3Z1Ot/vhJYORo1fj0KlWvNJWyCUiIiIiCO/EMWhV4cYgHcYQjBtE4xLmSEmMNMkzLdaCeXZqjrTJU8L5nKhkzJGKPCk9sGBJRBHWtTXb+f74Al5NCCBDrcRPK4YDAP6weR+8vvi/wSciIiLqK8yZalQUm2OOVRSbg815dCqUF+XE3Ka8KAcGrVI4LppDSox44yadKuEYUsbTJQbzZJ5njxu1Sknnc6KSMUcq8qT0wFvCiSis1e3F23saAACVE/r27eDt3XrJEPy/d/fjYFMr/lVTj8oJhd2dEhEREZEkllY3Gm1uWJ0eGHUqmPXqTj/frb7ZAYvDA6vDA5MueLVXQZYOpgw1VlSVYv66Gmw9q1vvyqpSmDLUMGUAyypLsKOuEblGLVxeP7QqBRosDpQVmVGYnYGllSVYVF2L7TG6FxdmZ4QbhrR/bt1lEXOohTHi5RDqKiyKsbKyBC5/AC6vH1ZHcD01Sjk0chkGtu3Hg9W7IjssF5mxpHIsCrMzwnPE20a0VlLylLQW+5uQa9CcmcPqRNmIHMl5iuZIRp7BHGqjOnwv6cQcUtYz0fen1LWIty/JWM9llSVYGGN8mYT1HNg2x8qqUmz56mTUe+PKkf3DnxuJfKZI+cxIRQzqGViwJKKwzXtPwOnxY3C/DJQMNHV3OmlDr1HijsuG49F/f4k1m+vw/XEDoZDLujstIiIiorjqmx1Rhb6KYjNWVJWGi3Qi3zTZsbC6NqJhR6hIMiRHDxmAKSUDMGPSULi8fmiUcpxocUXF2Vh7LLJQUmxGWVHwKik5gNlXFWHelNGwOX3I1Cpgd3nDtwP6fH5MGZuPme3nsDoj7nxRIVjQaXX70OLwwKBTIUOtQOjm0EAHOUwqOnOllhLAw9ePhcvrD8fQKOXhfzR7AfzylV0x1wJA21rkY2ZZZJ7tvzWKtomZZ1FknqJ9VQBYdN0YBCALj8sQgKL9HDX1UYWrSSPOXIEnylO0VlLyEI3LAFxbMgAzy4Z1uJ6S9lVw3EXbiN6fscd9EbezxtyXFlen1lO0jVohx+yriqPyULfdNSfKAQj2M4j13ihre28k4zOlIEuHNdMnoNHmRovTA4NWFbwauxOFxmTEoPTXrQXLrVu34tFHH8XOnTtx7NgxVFdXY+rUqeHxmTNn4umnn454zeTJk/HGG2+E/37q1CnMmTMH//rXvyCXy1FVVYXf/e53yMzMDG9TU1ODWbNm4aOPPkL//v0xZ84cPPDAA+d8/4h6mg01xwAA15UOgEzGglx7MyYNxV+2fY2vT9rxWk09rh/PK1CJiIgofVla3VGFBSDYRXf+uhqsmT5B+I/7+mZHVLESCHYVXlRdi5VVpZi/vjZmx96KYjPWTJ8Ap9ePBTFibNvXiIXVtcErpWKMA8FioGh89bTx8Pj8mCeIEWs/tu1rxKK2HAB0KUZoLVZUlcbcz/avByDcJmaedZ3Ls0tr0W4/pOQpmiMZeUpZz2Qcd9E2ibw/k7WecpkMD8TZRnQuLr+hJG4Oq24cB4VcFvtcrWvCwuparLpxXMKfKSGhK6MTkYwYlN669QF1drsd48aNw9q1azvc5jvf+Q6OHTsW/vPcc89FjP/whz/EF198gU2bNuG1117D1q1b8bOf/Sw8brVacc0112DIkCHYuXMnHn30UTz00EP485//fM72i6gnsru82Lz3BADgupIB3ZxN+snUKHF72TAAwJrNdfD5Ba36iIiIiLpRo80ds3gBBAsMjTa3MIbF4YlZ4ACChTqr0yuc47TdHTdGi9Ob0PhpuzvhGC1Ob1JipGIO5tk380z0XLQK5rA4PMJz1eLwJPyZQtQZ3XqF5ZQpUzBlypS422g0GuTn58cc27NnD9544w189NFHuPDCCwEAa9aswbXXXovHHnsMBQUFeOaZZ+B2u/H3v/8darUa559/Pj777DM8/vjjEYVNor7u7b0n4PL6MTQnA+cXGLs7nbQ0oyx4lWXdCRte33UM3y0t6O6UiIiIiGKyOj1xx1sE4wBgdSQWo8XpgdsX/5e8LaI5BONWpxeBQPw5pOyHIIQ4RirmSEKMZMyRin1NyTFLxr6myXqKzkVp53L8O+wS/Twg6qy0bwG8ZcsW5ObmYtSoUbjzzjvR1HSm4v/ee+8hKysrXKwEgG9/+9uQy+X44IMPwttUVFRArT5zqfDkyZPx5Zdf4vTp0zHndLlcsFqtEX+IersNNfUAeDt4PEatCj8pb7vK8u06+HmVJREREaUpo1YVd9wgGAcAoy6xGAatCkZt/GtkDKI5BONGrVKYp5T9SDhGKuZIQoxkzJGKfU3JMUvGvqbJeorORUlrIThXE82BqLPSuunOd77zHdxwww0YNmwY9u/fj4ULF2LKlCl47733oFAocPz4ceTm5ka8RqlUol+/fjh+/DgA4Pjx4xg2bFjENnl5eeGx7OzsqHmXL1+OxYsXn6O9Iko/NpcX73x5EgBwXQmvGozntknD8LdtB/BlQwv+/cVxTOHt80RERJSGzJlqVBSbI7rohlQUm2HOFHf8NelUKC/Kieg6HFJelAOjVimcw+n1x41h0Cpx9ej+GFNgwoRBWeHOxJ8cOo099RbheLZeDY/Pj5svHIg7KkbA6wuEO3grFTL8det+GLRKXDs2D1UTByHXqIHN6YNBq0SD1Yl1Ow/D0FaoEeUpGpcyRyL7Goox9+oRqLxgEGxuX3hfM9UKVH9yWFIeov2QshaV4wfgtvLhUCrkaGnLwePz48ntX4djJJqHlDxTsa+Jvn+lzCGKIZfJEjoXjYL9MOlUUMjjz2HSqSR9pkiRSKdx6jvSumB5yy23hP9/SUkJSktLMWLECGzZsgVXX331OZt3wYIFmDt3bvjvVqsVgwYNOmfzEXW3t/c0wO31Y7hZjzEDDN2dTlozZahwW9lQ/H5zHX739j5MPj/2IyuIiIiIupMpQx1sCLKuJqLAUFFsxsqqUpgy1MKOvwVZOiytLMGi6tqIIkaoM/bA7AwsmToWC2OML5k6NtgUA4gbozA7A7/63vlYWF2LP2yu6/R4nlELAPjFlcUddjMvzM7AvClj4o5DQp6icSlzJLKvoRjXXzAoqtFLZ/IQ7YeUtbj7v0YJ9zXRPKTkmYp9TfT9K2WORGMMzM6Ie74PEJzLoQ7fyypLYp7Py9q2EX2mSJGMTuPUN6R1wfJsw4cPh9lsRl1dHa6++mrk5+fjxIkTEdt4vV6cOnUq/NzL/Px8NDQ0RGwT+ntHz8bUaDTQaDTnYA+I0tNr7A7eKT8pH4a/7ziIvcdbsGlPA/p3d0JEREREMRRk6bBm+gQ02txocXpg0KpgzgxeySSlizgA/O6tr/DAd0ZjYduVdAadCl6fH7976yvMmzIGD7+2G+MHZ+O2smFwef3QKOX49HAzHnltNx67aRycXj8W/+uLmNs8/K8v8PD1Y7EoTvftVTeOw4Mv74o5/suXd2HN9AlocXmFHbxF4wDwcJw8F18/Fn/Zuh9Lpo6Fw+MPr4VOJcdft+7Hf19RJGmOePu6oqpUOA7E7mrdmX1d+84+/Pr758PrC4T3Q6mQ4Yl39mHO1SMlrYWUfRVts+L1PbitbBjmTRkNm9OHTK0CJ6wurHx9DxZed17c983i68dKmkPKvormEeUZ75itrCpFQMIcove4KUONITl6rLpxHCwOT/h8NulU4SJfvPMdgPD1ADA4R4/V08bjtN0Nq9MLo1aJbL06/IsB0RwiUj53eKUlhfSoguWRI0fQ1NSEAQOCt2BeeumlaG5uxs6dOzFx4kQAwObNm+H3+/Gtb30rvM2iRYvg8XigUgWfqbBp0yaMGjUq5u3gRH1Ni9ODd0O3g5fy9mYpsjLUmDFpCNa+sx+/f3sfHi7L6O6UiIiIiGIyZcQuJkjtIr7+03qs/7Q+5nY/qxiBt/acwFt7TsQcb7S54fH5sXnvSWzeezLmNvdN9sa8BRWQ3pnY7fMn3IUZAN7eexJvx8nz/z44jP/74HDM8R9cMlTSHPH2tcUZfy1CMRLd1xc/PooXPz4ac5uZZcMBiNdCyr6Ktnl9VwNe39UQc5s5V48Uvm+kzCFlX0XziPKMd8ysbWshmkP0Hg+dw6ErnzvS0fkeIno9AOQZteECZVfmiEfK5w4LlhTSrU13bDYbPvvsM3z22WcAgAMHDuCzzz7DoUOHYLPZcP/99+P999/HwYMH8fbbb+P6669HUVERJk+eDAAYM2YMvvOd7+CnP/0pPvzwQ+zYsQOzZ8/GLbfcgoKC4HP4fvCDH0CtVuP222/HF198gRdeeAG/+93vIm75JurL3trTALfPj+H99RiVx9vBpbq9fDgy1Ap8UW/Fx8dc3Z0OERERUadI6SIu2iZUjIkfI/42yehEnowO3onGkLIfyeiMnXCMFKxFuqxnb8qzt5DyuUMU0q1XWH788ce48sorw38PFRFnzJiBP/7xj6ipqcHTTz+N5uZmFBQU4JprrsEjjzwScbv2M888g9mzZ+Pqq6+GXC5HVVUVfv/734fHTSYT3nzzTcyaNQsTJ06E2WzGr371K/zsZz9L3Y4SpbENNcEGVd8t4e3gndFPr8aPLx2KP727Hy9+YevudIiIiIg6JSldxEUdwLXBRixxYyShE7lGMIeULswiwm7lSZgjJTFSsBbpsp59Kc+eIhmfO9R3dOsVlldccQUCgUDUn6eeego6nQ7//ve/ceLECbjdbhw8eBB//vOfwx2+Q/r164dnn30WLS0tsFgs+Pvf/47MzMyIbUpLS7Ft2zY4nU4cOXIE8+bNS+VuEqUtq9ODrV+Fbgdnd/DO+ullw6BTKbD/tAfa4Rd2dzpEREREkoW6iMcS6vgr2iZbL46RrVejvCgn5jah7sbxxkOdiePNYRDEkDKejBipmIN59qw8jRLnEL3HewspnztEIT3qGZZElFxv7Q7eDl6Um4mReZniF1CEnEwNbr10CP689Wtkld2CQKC7MyIiIiKSJtRF/OwGGJed1fH3sapS2Dw+uLx+WB0eGHUqaJRyGFQK9DdqsbKqFFu+OolcgwYurx9alQINVieuHNk/3CV8eWUJttc1IteoPbONxYHyIjMGZmcEx/c3RcW4bEROuDNxvDxNGWphF+bllSU4anFCr1HA5vTBoFXC5vKi0KQNd2F+tLIEXgA2ty+8r5lqBVQA8rMzsLKyBC5/IGotNHIZBrZ1k36wuhbb2uVwWVEOlpzV6fnB6l3YVtduX4rMWFI5NtyRWkqMePu6rLIEO2Ksd1mRGYXZGVhRWYIWtxcByNDSth9AAAa1MjyHaJtllSVY9PKuqGOydOrYcIzgmjug1yjbrbkHA006SXmKXn9mPTter46OqRLAgLYYojxE40srS/BgjLVYMnUsBko8Zsnovg0Em9o02tywOoP7atZ3/XmT50LocycZ+0q9HwuWRH3YhlB3cN4O3mU/vWw4ntrxNVAwGg1ODwZ1d0JEREREEnl9fkwZm4+Zk4aGOxefsDojbuN2+Pz45SuRHYxDhRYACADYWHMsogBXUWzG5SP7h//uB7Cx9thZRSUzJhWZz4zX1EcVnSaNyJGcpxzA7KuKIjo5213e8C2FfgBrNu/rcD8AwI3ortPtt/ECcddCBuDakgGY2a4T9AmrE+2/ZcsATCnJx8yyoTG3iR3DFRFDtK8BwXr7ACzZsCfuWkjZJtYxaS+45nXx3ztn51kc+b6I93opay46plLWSzQu62At2h8zJYCHrx8Ll/dMh3mNUh4uyATfFwMwo32Mls49J7++2RFV2K8oNmNFVamw0U4qJdppnPoOFiyJ+ii724+t+9gdPFH9DRpMHqHHv76y44tmBSYGAiz+EhERUdqrb3ZgwVmFnJDyohysunEc/IFAVLEHCHY/XlRdixVVpViwvjaiWAkEu/3OX1eDNdMnwObyxoyxra4xHCP2eLs54uS5oqoUADBfsI1oP4DowtbZ2wjXQkKeom3O1b6K1ruzayElz66s57Z9nctTlEdX91X8/myUtBYrq0ohk8nwgGCb+etrY3bPrig2Y830CcJinqXVHVWsBCLPxXQqCCbSaZz6jm59hiURdZ8P653w+AIYmZeJkewOnpAbRuvhd7Wi2SPHlw0t3Z0OERERkZDF4YlZQAGCBR2Lw4MWpzfuNi1Ob8wiCxAslARvTRXHSHQ8XWIwT+Z59rjV6RWea1YJ55FIo82dcAyidMMrLIn6qP8cDt6ycW0Jr65MlEmrgOWDl5Bd8WO8t78JRbmZUMr5+yAiIiJKX1aHJ+54i9MjfD53i4QYLm/8Dt7CPFKUZ6IxUrWeohhcz+TGEO5rMuZwimOIWJMQgyjdsGBJ1AfJNHp83hB8Jsp1LFgmRcvHr2DAlbfC6vSi9ogFEwZnd3dKRERERB0KNlHpmEEbfxwADBJiaHzxC5bCPFKUZ6IxUrWeIlzP5MYQ7msy5hBsI2lfkxCDKN3wEiCiPiij+Fvw+oGReZko5u3gSRHwuHCeyQcA+PDgKbi8vm7OiIiIiKhjJp0K5UU5McfKi3Jg0qlg0CrjbmPQKlFRbI45XlFshjlTDaOEGImOp0sM5sk8zx43apXCc80o4TwSMWeqE45BlG54hSVRH5QxqhwAbwdPtiF6Pw44VTjd6sHHB0+jrCj2lwYiIiIiINgoI/icRw+MOhXM+s43ouhqjIIsHZZVlmBHXSNyjVq4vH5oVQo0WBwoKzKHuwovrSzBoupabI/RZbkwOwMrq0qx5auTyDVozsSwOnHlyP7hxhrLKkuwY39T1DZlI3JQmJ0hnEM0LiXPePsqNcbKyhK4/AG4vH5YHcH11ijl0MhlGJidgeWVJdgeYz/L2/YTgDCP5ZUlOGpxQK9Rwub0waBVwubyYKBJF46xorIELW4vApChpS0PIACDWhlerwera6O6ri9pt57xxkNrEW8bKesp2kY0LuW4JyOGlPdfV9dzoIQ5Bko4j0RMGeqEYxClGxYsifoYtx/QDZsAgLeDJ5tcBpQVmfFazTF8drgZ4wqzkKnlxywRERFFq292RHX1rSg2Y0VVabhYeK5jKBVybKw9HtHl+7JiMy4flRv+u1Yhx6LrzkMAwef1GXQqyNp+DgAenx8ba+qjijVlI85cURYAYm4zqW0bJYCHrx8Ll9cfnkOjlIf/saoBsLyyBDa3LzyeqVag/U2ucgCzryrCvCmjYXP6kKlVwO7yRtxSuLH2WGQOxeaIXzCLYngB/PKVXRENVEJFJwDwC/ZTSh5+AGs213U4BwD4ACzZsKfDbWQIXpgws2wYXF4/NEo5TlidkLVtKxrvcJsWV3ibQAf7MemsX9jH29eYMYpywjFE7wspeUh57ygQ67j7oGgbl3ewFnKJ4wCgUcgx+6riqDk0beeRu4Pz6Oz3TjzB8+xYxPlcUWzG5SP7S45BlE74L2miPuZYqxwyhRKDjEreDn4ODDfrMcCkxTGLE+8faMK3x+R1d0pERESUZiyt7qhCIxDs5jt/XQ3WTJ8gvCIq0Rjh19dFvn5bu9cDwH0x5gDOFEYXVNdGdUDeVteEhdW1WD1tPLw+PxZ2sM2i6lqsqCrFvBjjQLAIJ2UcAOYLtomZ575GLGzLQUqMWPuxvd1+iPYTgDAP0RwAhNvEmkO0Fu3HO8pTtBbb9jUmvK+deV90tBbt85ASQ7RNvPfFSsH46mnjoVXKcX+c82j5DSVx12LVjeOEv4Do6HzuzGcKUbphwZKojznSGvwt3qRB2m7OpHeSyWQoLzLjnzuPYHe9FRMGZSEnU5Oy+Q8dOoTGxugvQ51hNpsxePDgJGVEREREZ2u0uWMWL4BggaHR5hYWFxKNIeX1AOJuY3F4YhZqgGAB7bTdjQAQd5sWpzfhcSRhjmTEYJ59L0+rYPy03Q2VQh73PBLFsDg8woJlMj5TiNINC5ZEfYjT40ODM3gjx6RCFizPlYIsHUb012P/STu21zXi+vEDUzLvoUOHMHrMGDhaWxOKo8vIwN49e1i0JCIiOkesTk/c8RbBeDJiSHl9QJCDeA4vAoH4UVocghiC8RanB4IpUhMjCXOkJEaa5NlX1tPq9EKlkMXfRkKeIsn4TCFKNyxYEvUhX5+0IwAZ3Ce/wSATn195LpUVmXGg0Y6DTa34psmOITn6cz5nY2MjHK2t+OG8R5E3eESXYjQc2o9nVt6PxsZGFiyJiIjOEaNWFXfcIBhPRoxk5CCeQyksehp0ghiCcUlrlYoYSZgjJTHSJM++sp5GrRIqhTz+NslYzyScz0TpJv6ZQ0S9yr4TLQCA1r3bujmT3i87Q43SwiwAwVup/H7R1/XkyRs8AoXF53fpT1cLnURERCSdOVONimJzzLGKYjPMmeJbNxONIeX1om1MOhXKi2I3BSkvykG2Xg2jVhl3G0MSxtMlBvPse3mK3t/ZevF5JIphEhQ0geR8phClG15hSdRHOD0+HDoVvFXY/uV2APd3b0J9wLeG9cPe41Y02d2orbdgXFsBk4iIiPo2U4Y62MxjXQ22ntXhe2VVqaRnzYVinN1457KzYtQ3O2BxeGB1eGDSqWDUqVCQpZP8+tVVpWj1+dHq9sHq8MCoUyFDrUCGQo7+WTqsrCyB1e0LdxEPXS1mVCuQZww+gujRyhK4gagYagADsjPwaGUJvABs7cYz1Qoo28ZXVJbgiMUJvUYBm9MHg1YJm8uLQpMWhdkZAIAVlSVocXsRgKxdHgEY1EoUZmdgWWUJFr28K2pfl00dG46xvLIERy0O6DXKdvN4MNCkQ2F2BpZWluDBGDGWtMVYWlmCB6t3RXZdLzJjSeWZOTrKY2lEjNqobtFLKksiYuyoa0SuUQuX1w+tSoEGiwNlRWYUZmdgZWUJXP4AXF5/eD01Sjk0chkGtq1nS4xjZlArwnOI9mVpZQkWVddie4xO5cmKIWUtRMdE9L6IFyN0TJZXlmB7XRNyjZp26+1EeVEOBobHo49HeZE5fA6sqirFwVOtUe/hYf0ykJeli7sW7Z9f2WB14rTdDavTC6NOiewMNfKMWsmfKZZWNxptblidwbUw69V8tiWlLRYsifqIr0/a4Q8ARpUf3zQd6e50+gStSoFLhudgy5cn8f7XTRiVZ4BWpejutIiIiCgNyABMKRmAGZOGwuX1Q6OU40SLq1MxfD4/pozNx8z2MaxOeH1+AMA3Tfao7sOhIsiQHD28Hbze0/Z6AGiN0eU7FAMAvACWbNjd4TgAuBHdzbn9NqJxH4A1m/fFncMHYMmGPXG3ibWv7e+B8QNYs7muwxiyDmKEnlAYPKb5mFkWezxeHmgX49qSAZhZNqzduCsiRgDAxtpjUYW8SUXBK+y8AH75yq646yk6ZqJ9kQOYfVUR5k0ZDZvTh0ytAnaXN+IWzkRjxF6LyPUUHRMp74uOYoT4AWysrY+x3jlxjocZZUVnrnh0+fxx38NDcvRYdeM4WBwetDg9MGhVMLX9ciHkUJM9qvN6eVEOllWWYHCOXviZUt/siPoFRUWxGSuqSoVNfYi6AwuWRH1E6Hbwwgw/ars5l76kpMCEmiMWnLK78eGBU6gY2b+7UyIi6jMefvhh3HfffcjIyIj4ucPhwKOPPopf/epX3ZQZ9XWWVjceOKtwEFJRbMaa6ROEVz01WJ2Yf1bxIqS8KAcrqkqjioBAsOvwouparKgqjSp+nP16ILqQeHYM0XgyYiRjjmTsqyiGlDmSESNWntuSvJ6iPETvvWTESMZ6JmNfResd6/Xb6hqxsLoWq6eNh88fiJvHqhvHoSBLF/4TS4PVGXOe7XVNWNgW4+xiZEhFsRmP3hR7fOu+RsxfVyPpM4co1br0DMvhw4ejqSn6hG5ubsbw4cMTToqIkqv97eADM/yCrSmZ5HJZ+Hkynx9pxulWdzdnRETUdyxevBg2my3q562trVi8eHE3ZEQU1GhzxywsAMECQqNN/H3htN0ds8gCBIsYLU5vwuPpEoN5Ms+emudpuxsWhyfuNhZBl3BAfL5bHJ64nymn7Yl/5hClWpeusDx48CB8Pl/Uz10uF44ePZpwUkSUXPtO2OAPADmZahhV/I9Rqg3J0WNoTgYONrVi275GfH9cQXenRETUJwQCAchkZ9+MCXz++efo169fN2REFGR1xi9QtAjGgzG88ccFRRDReIvTg4CgZ2BLKmIwz+TGYJ6diiE8T0TnmdOLgGCSZJzvohiJvp6oO3SqYPnqq6+G//+///1vmEym8N99Ph/efvttDB06NGnJEVFyfHk8eDv46HwD4I6+0oTOvYri/jh06hscaLTjmyY7huTouzslIqJeKzs7GzKZDDKZDCNHjowoWvp8PthsNvz85z/vxgyprzNq43f9NQjGgzHi/1POKOgsLBqXkoMhFTGYZ3JjMM9OxRCeJ6LzTKuEoCaalPNdFCPR1xN1h07dEj516lRMnToVMpkMM2bMCP996tSpuOWWW7Bp0yasXr36XOVKRF1gdXhwtNkBABiVZ+jmbPqubL0apW1dwrfta4TfL/rqQkREXfXb3/4Wjz/+OAKBABYvXozf/OY34T9/+tOfsH37dqxdu7a706Q+zJypDj8y5mwVxWaYM8XPksvWq1He1vTjbOVFOTBolQmPp0sM5sk8e2qe2Xo1TDpV3G1MgqInID7fTTpV3M+UbH3inzlEqdapKyz9/uCz74YNG4aPPvoIZnPsNzwRpY8vG9qa7WTpYNCqYOnmfPqybw3rh73HrGiyu7Gr3hIuYBIRUXLNmDEDQPA766RJk6BS8coRSi+mDHWw6ci6Gmw9q2PvyqpSSc0v8oxaLK8swfa6RuQatXB5/dCqFGiwOFBeZEZhdgaWVpZgUXUttsfoTFyYnYFllSXYEeP1ZW2vB4CllSV4sHoXttWdyfOyIjOWVI4Nz/FgdW1UB+UlbXOEYsTLIxl5Lq8swVGLE3qNAjanDwatEjaXFwNN2jN5vrwr4jl+lxWbsXTq2JTmKYqxorIELW4fAgjebhy6ws+gViQtT9G4lDmWV5Zg+/4m5Bo0Z/bV6kT5iBzJx0S0Xh29vrDt9QCEMZJxTEQxVlSW4IjFAb1G2S5PDwpNOuQZtcI5pHTozjNqsayyBAtjxFjWFiPeZ0qeUZvwZw5RqnXpGZYHDhxIdh5EdI6Ebgcflc+rK7ubVqXAJcNzsOWrk3jv6yaMyjNAo1J0d1pERL3W5ZdfDr/fj6+++gonTpwI//I9pKKiopsyIwIKsnRYM30CGm1utDg9MGhVMGeqO1U4UCjk2Fh7PLKYWGzG5aNyAQRvp5t9VRHmTRkNm9OHTK0Cdpc3fJtdAMDG2mNRxcZJRWcuTJEBmFKSj5llQ+Hy+qFRynHC6oSs3fi1JQMws2xYzHEAUAF4+PqxcHn9aHF4YNCpoFHKEfpVggLAouvGIABZeFyGAELfkmLnaY7I0w9gzeZ9EY1JQgWh8H6MzcfMSZH70Z5ovbqWZ+R6iubwAViyYXeH+9FxDF84hrKD9Q7941/RwevbfyvVIlhwtLl94RiZagVC704/gI019dH7OuLMVYCiYyJaL9HrO45x5r2hFJwjAJChkMfcV63izA2pUXMUm1HWNocPwJrNdXHzjL3mXnTmXwKDc/RYPW08TtvdsDq9MGqVyNarw0VR0WdKMj5ziFKpSwVLAHj77bfx9ttvx/zy9/e//z3hxIgocSdbXGiyu6GQyVCcm9nd6RCAkoEm1By14JTdjQ8OnELFyP7dnRIRUa/1/vvv4wc/+AG++eabqKYHMpksZhNJolQyZXS9WGBpdWPeupqIQgwQfPTM/HU1WH5DCeZX18bsLFxelIMVVaVYGGN8W10TFlXXYkVVKQBggSCGaBwA5gm2EY3HzrMxIs9Y22xvty9S8hStV9fyjFzPrhyT7Z2Mkeh6A+JjJmVfRfsiiiFlLUTvjQXrazs8R9ZMnwAAmLuuJmYH7Ypic4fvnW37GrFQQp6rbhwHhVwWdz1XTxsfLjqK5Bm1cbcVfaYk8plDlGpdKlguXrwYDz/8MC688EIMGDAgZvdFIup+oasrh5ozeCVfmpDLZagoNuPlz+rx+ZFmlAw0IVvPLw1EROfCz3/+c1x44YXYsGEDv7NSr9Noc8cssgDA1n2NsDq9MQskQLCY0iJhHEBaxGCezLOrc8Q7RxptbgCIu43F4UkoT4vDA5kgz9N2t+SCJVFf0qWC5Z/+9Cc89dRTuPXWW5OdDxElid8fwJ7jVgDA6HxjN2dD7Q3J0WNoTgYONrVi676TuH78wO5OiYioV9q3bx9eeuklFBUVdXcqRElndXrijrc44o9bBeMtTg8Cgh6BojmkxBDlkS55pmI9U7GvPSXPVLy3WpweYQdvYQwJcwDxf1lmbSu+ElGkLhUs3W43Jk2alOxciCiJvjnVila3DzqVAsPM+u5Oh85SMbI/Dr3/DQ42teJAox1sB0FElHzf+ta3UFdXx4Il9UpGbfxvDwZB52GjYNwgiC9lDikxRHmkS56pWM9U7GtPyTMV762kxJAwh+jafqO2y0/qI+rV5OJNot1xxx149tlnk50LESXRF/XBfuCj8w1QyNP3Frg9e/bgk08+6dKfPXv2dHf6XZadocaEwdkAgHe/Ogmf6Ne7REQkSU1NTfjPnDlzcO+99+Kpp57Czp07I8Zqamq6O1WihJgz1agoNsccqyg2w6hVorwoJ+Z4eVEODBLGpWyTihjMk3l2dY5454g5Uy08j0w6VUJ5mnQqZOvVcbfh46GIYutSKd/pdOLPf/4z3nrrLZSWlkKlivytwuOPP56U5Iioa1rdXhxotAMAzitIz9vBradOAgB+9KMfJRzLZrMlHKM7XDy0H/Ycs8Li8KDO2qXfHxER0VnGjx8PmUwW0WTnJz/5Sfj/h8bYdIfSgaXVjUabG1anB0adCma99IYYpgw1VlaVYstXJ5Fr0MDl9UOrUqDB6sSVI/sjP0uHpZUlWFRdi+0xuhcXZmdgWWUJdtQ1IteoPfN6iwNlRWYUZmcAgDCGaBwAVlSW4IjFCb1GAZvTB4NWCZvLi0KTFoXZGVheWYKjFgf0GmW7cQ8GmnThOR6s3hXZ6bnIjCWVYyXnmYp9DeZZG9X1ekm7tUjGeiaah5T1XFFZgha3DwEEb3sOXWloUCtSup6JrsWKqtJgc6p9kV3CV1aVhs+1FVWlmL+uBlvbbVPRts2ALB2Wtc1x9npKybMgSwcAWFZZgoUxtllWWcLnVxJ1oEsFy5qaGowfPx4AsGvXrogxPsycqPt9ebwF/gCQa9DAnKnp7nRictiCz9e87r8XYVTpxC7F2PPhu3j96d/B6XQmM7WUUSvlKC8y483dDdhjVUCRGfs3r0REJN2BAwe6OwUiSeqbHVGFlFBX4lCRQyQAYGPNsYjCU0WxGZeP7A8g+NzsVTeOg8XhQYvTA4NWBZNOFY4fALCx9thZhRgzJhWdueJMDmD2VUWYN2U0bE4fMrUK2F3e8K16CgCLrhuDAGRocXhg0AVvgW3f7tEHYM3mfRGNR0IFHQDwA1izua7DcRmAKSX5mFk2FC6vHxqlHCeszohbbaXkEbWvxWaUJXFfZQCuLRmAmWXDzuTZ4orIUzSHEsDD14+Fy+sPz6FRyiP+4a4GsLyyBDa3L7xNploR3kbeQR6hOaSspw/Akg27OzwmUt47mg7yDF3uJNpX0X5KmcPn82PK2HzMnBS5r16fPxyjIEuHNdMnoNHmDp8n5swzvzxQKeS4tqQgaj1ViuCKahRyzL6q+Kxj6oNGceaChME5eqyeNh6n7W5YnV4YtUpk69UsVhLF0aWC5TvvvJPsPIgoSQKBAL44FiwGpuvVle3lFAxBYfH5XXptw6H9Sc4m9UbnG1B71IJjFieyr7itu9MhIurxhgwZ0t0pEAlZWt1RxUog2JV4/roarJk+QXilZThGXfwYBVm6mAXQI6dbsbC6Nqp78ba6RiyqrsWKqlIAwPwY2wDB4tWKqlLME4wDiDnP9rqm8Dyi8QUS5hDlESvGtn2NWJjEfZWSZzLWU7SNaA4peXblmJ393hHlmei4SiHHvXG2WSlYi9XTxocLhqaM2Fc3W1rdeCDGuQoEfznw6E3jcH+c8fbncp5RywIlUSfw6a5EvcyJFheabG4o5DKMyjN0dzokIJPJcPnI/nj+o0PQn38F9px044LuToqIqJd49dVXY/5cJpNBq9WiqKgIw4YNS3FWRECjzR2zwAEEC46NNrewYJlojBanN2YhBwgWplraOheLtklFDObJPGONywRzWAUxTtvdwgKi6Dw7bU/8XCai2LpUsLzyyivj3vq9efPmLidERInZdTTYbKeofya0KoVga0oHeUYthur9OGhX4K+fWnDLfwXSulESEVFPMXXq1KjnWQKRz7EsLy/Hyy+/jOzs7G7Kkvoiq9MTd7xFMJ6MGFaH+PUBQVPAliTEEObRQ/JMxnqmJEYPWU8pc0DQf1sUw9pWWI2/TWIxpJzLRBRbl7o8jB8/HuPGjQv/Oe+88+B2u/HJJ5+gpKQk2TkSkUQurw9fNrQAAEoGmro5G+qMsVk++Jw2HGj24rkPD3V3OkREvcKmTZtw0UUXYdOmTbBYLLBYLNi0aRO+9a1v4bXXXsPWrVvR1NSE++67r7tTpT7GqFXFHTcIxpMRI9REJd7rhdskIUYq5khFnslYz5TE6CHrKWkObfzrr0QxRK8PbpNYDCnnMhHF1qWC5W9+85uIP3/4wx+wfft23H333VEdw4kodfYeb4HHF0A/vRoFWXw+Sk+iUQCWbf8HAHjszS/R3Oru5oyIiHq+//mf/8Hjjz+Oq6++GgaDAQaDAVdffTUeffRR3H///SgrK8Nvf/tbbNq0qbtTpT7GnKlGRbE55lhFsRnmTPEtpInGMGiVKC+K3fCvvCgHBq1S0japiME8mWes8Wy9Ou42RkGMbH3i51m2PvFzmYhiS+ozLH/0ox/h4osvxmOPPZbMsET/n707j4+qPhc//pk1M1lmEjIkIYQAkggIE0Dc2OJeROsSYm2p3ivV1ra/Ym9rr8piFy271S5Ur/e2Vu127e1F7CJ6XaiyiBtKCRqQIBq2BIYkM5lk9pnfH5MMCZnMGTKTzCR53q8XLyXfM8/3+X5nDpAn55xHxCEUClHTcTu4dbQ55mMbRHpq/WAz06qXcNjh49FXPuahG6emOiUhhBjUDh48iMnUswGdyWTik08+AaC8vBybLfrzxzpt3bqVhx9+mF27dnH8+HE2bdrETTfdFBl3Op0sXbqU559/nlOnTjF+/Hi+/e1v841vfCNyjNvt5nvf+x7PPvssHo+H+fPn8/jjj1NYWJicxYoBZ2/3YnN6cbh9mIw6LFnRm3ZEY87U83B1BU0uHyHCt652XnGWb9RF4sSaw5ypDzcmOaPhx7xyC+uqKyLHHW1ux+H243D5MBt15Bi0jM7LpCQvk1VVVh7YtLdb4555ZRZWVk2lJC8TgHVVVjzBEB5/EEdHnhlaNRlqFaPzMnm4yooXaPcGIuOZeg16YFRHjDVVVo7aXWRlaHG6A+QYtDg9PkabjZTkZSqOr62y0ur1R7pzh/cqRI5eG8kzHMNNVoamSww/o80GSvIyWV1lZUedjQKTAY8/iEGnodHuYk6ZJRLj4SorfsDZZS2dXalHRfII9HjPcvSauPfz0SornihzZAAFHTFWbKphe5Tu3J0x1ldZ8UXZcx1Q3LnWg6coyMk4vVaHmzkT8uPez1VVVh54fm+Pz9aqm6ZG1qqUp9J+Kb1nSjl0fj4dUeYw6TWM7tiL5VHyXF1l7fb8ymMtLuwuX+Q8MRl1FOcaFc+zQpMh3Oho4x62dhmvPOM8TJZE/twRYrBJasFy586dGAxyVZcQqdDgcHPK6UWrVjG5SJrtDEqhIF+dYeKHbzTx+7c+Y9FFpUwelf6d3oUQIl3NnDmTe++9l9/+9reMHDkSgJMnT3Lfffdx4YUXAnDgwAHGjBkTM05bWxvTpk3jjjvuYOHChT3G77nnHrZs2cLvf/97xo0bx8svv8z/+3//j+LiYm644QYAvvvd7/LCCy/w5z//GbPZzJIlS1i4cCE7duxI8qrFQDjW4upRwKgst7C2uiJqR+5o3IEgK1/4qFtTkM6CT7xz+ANBFkwtYvHscXj8QTK0ak443PgCQQA+O9XWo5tz5xxj87NQAQusRSye0/31XX/s7Qe+/5e9vebppWdH6a7jAEFgw5a6Xo9RGg8AK1+ojWOOA70eEwI21xxnW5fxeWUWZpedvjpOaS3hPHp/z+LZT5fCHGpgyRVl3L9gEk53gGyDhjaPv9utkT6FGCFg855jZ6w1n9kT8uPeTxVE/Wx10gArrpscKXrmGHWoCNH1CfpK+6X0ninlAOHPZ6w5SvOzeOSW6TS3eXG4/Zg6rszsWqxUOk+UzrPw+z6K27uOt3pItmT8uSPEYNKnguWZ/1ALhUIcP36c9957j+9///tJSUwIcXZqjoSvrjy3MIcMabYzaFkLM7jWWsTmmgZ++NcP+dNdl8jVskII0UdPPvkkN954IyUlJZGi5OHDhznnnHP4y1/+AoSvjnzggQdixlmwYAELFizodfzNN9/k9ttv57LLLgPgrrvu4j//8z955513uOGGG7Db7Tz55JP88Y9/5IorrgDgqaeeYvLkybz11ltccsklSVitGCj2dm+PogGEOwIv3biHDYtmKF7xdLS5vUeBBMKdi1dsqmFtdQXLnquJOUebN8CyKDEgXGxZW12hPIfC66FnYezMGErjyYjRX3Nsq7MlNc9k7OfSfnpPtp3lfiqt5f4B+OwkYz9L8jIpNBl67QZ+rMWVcB7RzlUIFxPj+fMgHsn4c0eIwaZPBUuzuXszD7VazcSJE3nooYf43Oc+l5TEhBDxa/f6+fiEE5BmO0PBiuvOY8u+E7xzqInndx+lakZJqlMSQohBaeLEiXz00Ue8/PLLfPzxx5GvXX311ajV4euVut7a3VezZ8/mr3/9K3fccQfFxcW8/vrrfPzxx/z0pz8FYNeuXfh8Pq666qrIayZNmkRpaSk7d+7stWDp8XjweE5fpeNwOBLOVSTO5vRGLU5AuHhgc3oVCwcOtz9qAQTChZJWt19xDm8gqBgj0XEgLWJInpJnX+dQYnf5Es4j0T8P4pGMP3eEGGz6VLB86qmnkp2HECIBHx5zEAiGKDRlUGSWxzIMdqNzjdx9RTkP/99+Vv69lismFmLOlIZmQgjRF2q1mmuuuYZrrrmm3+bYsGEDd911FyUlJWi1WtRqNb/61a+orKwEoKGhAb1eT25ubrfXFRYW0tDQ0GvcNWvW8OCDD/Zb3qJvHG5fzPFWhXEAhyuxGK1uHx5/MPYxCnPEk0MoFPMQxTmSEkPyTGqMYfW+J+NcTMK5mgzJ+HNHiMEmoWdY7tq1i9raWgCmTJnCjBkzkpKUECJ+wWCIPR23g08ryU1tMiJpvjbvHDZ9cJS6E07W/d8+Vnd5ppAQQoje/eIXv+Cuu+7CYDDwi1/8Iuax3/72t5My54YNG3jrrbf461//ytixY9m6dSvf+ta3KC4u7nZV5dlatmwZ99xzT+T3DodD8Xmbov+ZDLF/iJijMA5EGoP0NUaOQUdGIHbBMkdhjkRziGeOpMSQPJMaY1i978k4F5NwriZDMv7cEWKwUSsf0tOJEye44ooruPDCC/n2t7/Nt7/9bWbOnMmVV17JyZMnk52jECKGgzYnTo8fo05DeWF2qtMRSaLXqll5U7hL+H+/U8/79c0pzkgIIQaHn/70p7S1tUX+v7dfP/vZz5Iyn8vlYvny5Tz66KNcf/31VFRUsGTJEr74xS/yk5/8BICioiK8Xi8tLS3dXtvY2EhRUVGvsTMyMjCZTN1+idSzZOupLLdEHasst2DJVr4t02TQMrcsP+rY3LJ8cgxaxTnMRp1ijETH0yWG5Cl59nUOJck4jxL98yAeyfhzR4jBpk8Fy7vvvpvW1lY+/PBDmpqaaGpqYu/evTgcjqT9pFoIEZ9/Hg5fXTl1tAmtuk+ntEhTl5yTT/X5JYRCsGLTXvwKV1IIIYSAQ4cOkZ+fH/n/3n598sknSZnP5/Ph8/kiz8TspNFoCAbDf27PnDkTnU7Ha6+9Fhnfv38/9fX1zJo1Kyl5iIFjztSztrqiR/GgstzCuuqKuJ4jNzovk1VV1h6FkM7OxCV5mYpzFOcaFWOsrrKypmoqT95+AY/fej6/WXwha6qmsrpjfE2VlWfvupi/3T2H//7aJfz97rk8e9fFrOkYL4kjT6XxzmPmnXHMvDNiKI3HM0cie5GMGMnIM1kx+ns/ByJGPHMovSdK4jmPEj1XkyEZf+4IMdj06Zbwl156iVdffZXJkydHvnbeeefx2GOPSdMdIQaQzenhaIsLlUqa7QxVy6+dxKu1jdQed/D0m5/y1XnnpDolIYQYdLxeL4cOHWLChAlotWf/z1+n00ldXV3k94cOHWL37t2MGDGC0tJSLr30Uu69916MRiNjx47ljTfe4Le//S2PPvooEG5Yeeedd3LPPfcwYsQITCYTd999N7NmzZIO4YNUca6RDYtmYHN6aXX7yDHowlc9nkXRwKhR89CNU/H4g7S6fOQYdWRo1Rg14eK3ClhgHcXts8fh8QfJ0Ko50erpFkMNLLmijPsXTMLpDpBt0NDm8UeuSgkBm2uOs61L05B5ZfnMLgsXPYLAhi113ZqKdBZiOmmAFddNJoQqkqeq4+sAOmBVlZV2byAynqnX0PUGVRVwrXUUi+eMP70WhxtVnOPRcwhFcuh9LwJx70U8MYgWo9zCnI4Y8exFJrCmyoqzyzHZeg2dT6HX9zLe9U8uQy/HdH76ou5nqyeyn0qvjydPLUT9/HbNU+nzqeslRud+jc3PYm11Ba1uf+Q8yzFoexQiY70n8Ribn8X6m6dhd/ki85iNOopzjXHlkYw/D+IxUPMIkS76VLAMBoPodD2fkaDT6SI/SRZC9L9/Hm4BYMLIbHluyRCVn53BsgWTWPpcDY++8jHXWkdF/vEkhBAitvb2du6++26eeeYZAD7++GPOOecc7r77bkaPHs3SpUvjivPee+9x+eWXR37f+VzJ22+/naeffppnn32WZcuWceutt9LU1MTYsWNZtWoV3/jGNyKv+elPf4paraa6uhqPx8P8+fN5/PHHk7haMdDMmX0vFNjbvXxv456oXX8ryy08/IVp3BdjfMOiGbR5AyzdVBO1g/HcsnzWVlewPMr4trpTrNhU0+v49i7jAPcrzKE0DrBM4Ril8XjmSHQv4okRLc9tB2ws74gRT57J2E+lY5Kxn8nIU2k/Y8V45JbpFJoMMa+SPNrcHvM9WVddweg4rrKEcDEw1r+xla7WTOTPg7MxUPMIkQ76dP/oFVdcwb/9279x7NixyNeOHj3Kd7/7Xa688sqkJSeE6J3bF2BfQysA06XZzpB2ywVjmDk2j3ZvgIf+9lGq0xFCiEFj2bJl/POf/+T111/HYDBEvn7VVVfxpz/9Ke44l112GaFQqMevp59+Ggg/o/Kpp57i6NGjuFwu9u3bxz333INKpYrEMBgMPPbYYzQ1NdHW1sZzzz0X8/mVYmizOb1Ri5EAWw/YaG6LPW5zerG7fFGLPRAuOra6/QmPp0sMyXP45dnc5o061pVDIYbD7VeMIYRIX30qWP7yl7/E4XAwbtw4JkyYwIQJExg/fjwOh4MNGzYkO0chRBQfHXfgD4bIz9ZTnGtQfoEYtNRqFauqpqJRq3jpwwZe/agx1SkJIcSg8Pzzz/PLX/6SuXPndiseTpkyhYMHD6YwMzHcOdw+hfHYhZZWtw+HSyFGguPxzNE6EDHSJM+02IshlKdSjHiKjfF8hoUQg1efbgkfM2YM77//Pq+++ir79u0DYPLkyVx11VVJTU4IEV0oBHuOhJvtTC/J7fZNmBiaJhWZ+Oq88fznG5/w/b/s5eJzRshjAIQQQsHJkycpKCjo8fW2tjb5u1OklEnh73CTQnfjHIOODIVmfCajwhwK4/H8OyNnIGKkSZ6K+yV5JjWG0jkAyfkMCyHS11kVLLds2cKSJUt46623MJlMXH311Vx99dUA2O12pkyZwhNPPMG8efP6JVkhRFiDW4Xd5SNDq2ZiUU6q0xED5DtXnsuLNQ3UN7Xzk//bz4M3Tk11SkIIkdYuuOACXnjhBe6++26ASJHy17/+tXTnFglrdLhpbvPicPsxGbXkZeopNJ2+68Xe7sXm9OJw+zAZdViyTj97zpKt5+rJBUwcZWLGmFw8/iAGnYb365vZf9xBXpaehTOKWTxnPFqNmlZXOIYvEOTpHYewZOtp8wa4dmoh1TPHUGDKwOkOkGPQ0uhws3HXYXIMWqqmj+Irc8/pEeOp7Z+QY9Aytyyf7b08QzCno2B05aSRTC4298iz9pidHIOW7105gZvOH4PTG8DRMUe2XsPz7x+OxFCaR2mOL14wmq9WTsAfCEXm0GpU/HrrwbjzVBoHFPdTaR3fmDeeWy8Z22Mv/vDWZ5E5rptayMIoczzXMce/XDyGO+edg8sXjMQw6tQ8ue2TSAyl/VDKMxn7qbRX8bzvsWLkZekVzzOTwlo7i55K5yrEPl/jjSHEYKZ0DqTCWRUsf/azn/G1r30Nk8nUY8xsNvP1r3+dRx99VAqWQvSzg63hnohTik3oNH16soMYhIx6DaurrNz25Nv89q3PuHHGaM4vzUt1WkIIkbZWr17NggUL+Oijj/D7/fz85z/no48+4s033+SNN95IdXpiEKs/1daj2cfcsnxWV1kpzc/iWIuL+89omlNZbmFtdQXFuUbMmXq+//nzWLaphl9uqesRo9Bk4N+uOrdHo5jODt7hxhtw/4LJvR5TkpfJd66eGHN8VZWVFZtquhV8uo4D/OD6KSyPkmfnMTecP6ZHc5UzYyjNozTH/7u8POY64slTaRyU91NpHYsuGau4F/cpzPHVygmKa1XaD6U8k7GfSnsVz/seK0ahyaB4no1WWOvovEzFGIDi+RpPDCEGM6VzIFXOqtLxz3/+k2uuuabX8c997nPs2rUr4aSEEL3T5hXT6A6fuhXSbGfYmVtuofr8EkIhWLaxBq8/9u1gQggxnM2dO5fdu3fj9/uxWq28/PLLFBQUsHPnTmbOnJnq9MQg1ehwR+1MvL3uFMs31UT9xg/CzXKWbtyDvd2Lvd3Liuf3Ro3xwPN7OdrcHrOD97EWl+IxR+IYf/BvHzK9NI8nb7+Ax289nydvv4DppXk89LcPOdLczpHmdlYkOMeR5nYeUpgnGXMoxVAaT8Z+xZNnou9ZPMco7Xcy9jOeGInuV6zzrNHh5liLS3EOpRj2dm/M8/VYi0sxhhCDmdI5YG9XboDVX87qCsvGxkZ0ut6fA6HVajl58mTCSQkhepc9PfxDg3H5mZgVntsihqYV103mH/tPsL+xlf/aepAlV5SnOiUhhEgrDocj8v8jR47kkUceiXpMtLuGhFDS3OaN2ZnY7vIpdvgGYh6j1P3Y3tFsJNFOzlv2nWTLvujfv/37fH/k2ETmAHht30leizFPMuZQiqE0Dsr7qbRf8eSZ6HsWTwyl/U7GfsYTI9H9UuoiHkpwjuY2LzqNOua5aHf5FGPIreFiMLM5vYp/Z6Xq1vCzKliOHj2avXv3UlZWFnV8z549jBo1KimJCSF68vhDZFvDza2sJeYUZyNSZUSWnh98/jy+86fd/GJLHddaR3HOyOxUpyWEEGkjNzd2Q7pQKIRKpSIQCAxgVmKoUOpeHE/n4pDCHPF0YQ4pBElGp+eE50iTPAcixoDsRTLWOkj2M54u4iGFSZS6hDvcfnSa2A3YFLuyx9HNXIh05lA4T5TOo/50VgXLa6+9lu9///tcc801GAzdf4rgcrn44Q9/yOc///mkJiiEOO3NIy40RhOZmhDj5Hkpw9qN04t57oOjbP34JMueq+G/v3ZJqlMSQoi08Y9//CPy/6FQiGuvvZZf//rXjB49OoVZiaFCqXtxunTfHohu0clY65Dpap0m+zlYuq4nmqfJoFUs/CvlYTJoFfsBKL0n8XQzFyKdmRTOk3jO5/5yVs+wfOCBB2hqauLcc89l/fr1/OUvf+Evf/kL69atY+LEiTQ1NbFixYr+ylWIYe+lunYAxmcHUMe4ckQMfSqVilU3TcWo0/D2oSb+573DqU5JCCHSxqWXXhr5ddlll6HRaLjkkku6ff3SSy9NdZpikMrL0jO3LD/q2NyyfMxGHZXllqjjleUWLNl6LNn6mMd0dj+ONYfSMTlJGE+XGJKn5HnmeF6WHrNRl3AMpXNRaY7ObuZCDFZK54AlO3Wf8bP6cUBhYSFvvvkm3/zmN1m2bFnkEmyVSsX8+fN57LHHKCws7JdEhRju9h61c6DJRyjgY1y20s8TxXAwZkQm3/vcuax8oZbVm2v56dUjUp2SEEIIMeQVmgysrrKyPEpn4tVVVopzjaytrmDpxj1sPaPj6rrqisizwNZXV/BpUztZGRqc7gA5Bi1Oj5/xIzIpzDWypsrKUbuLrAxtl3Efo83GSNdWpS7Mq6us7KizUWAy4PEHMeg0NNpdzCmzUJKXydoqK61ePyFUtLp8HVeThcjRa7t1en5gUw3buswxryyflWfRaVzpmGTN8cDze7s9i21euYWVN02lJC8z5n7Gm6dSDKX9jncvkrGfic6htJaBiBHrPOt8bmQyYqyrruD1j09SkJNxOk+Hm8vPHUlRrjGuGEIMVuZMfVx/Z6XCWV+/PHbsWDZv3kxzczN1dXWEQiHKy8vJy8vrj/yEEB3+8PZnALTvfxPD+Fkpzkaki8Wzx/GX3ceoOWrnyd0O5RcIIYQQImGl+Vk8cst0mtu8ONx+TAYteVn6SPGiONfIhkUzsDm9tLp95Bh0WLL13b7x8wSCbNhyoFtDj85CC0AQ2LClrtdxCN8ut+SKMu5fMAmnO0C2QUObxx+5jS4EbK453r0QWG5hdln4apoAsPKFWsU5rrWOYvGc8Xj8QTK0ak60eiJzaIGHbpyKxx+k1eUjx6gjQ6vu9o2m0jFKc+gIF6bavYHI6zP1GrreqKgCFkwtYvHscadjONx03pMUz35qou5nAM1ZxIi233PKTl+9pDSH0nsaz34qzRHPe6b02TFq1FFjGM+4xTrWfmRq1KypsuLs8r5m6zUYOmLoNWqWXFHeYx36LnOMzc9i/c3TsLt8kXPNbNRFivrx7GcI2LznONvquhdrLj13JKB8vgsx2MXzd1Yq9PmBC3l5eVx44YXJzEUI0QuH28fzHxwDoPWDzXCNFCxFmFajZs1CKzc+toM3D7sxTpA/l4UQIppYTXiE6ItCkyFmwcKc2fs3e0ea21m+qaZH9+HtdadYsamGtdUVMcfXVVegUqlYGuUYCBfReoux7YAtrjnWVlcAKM5xv8I4oHhMMuZY1oe9OHOtSvMoxYiWw7YDNpafxRxKexFPjETHAcXPzrLnaqJ2Fq4st7Bh0QycHr/ifsSK8fAXpnHvxj0x5+g8v4pzT1913FWjwx1zrY/cMh2DVs39G/d0K1ZCuDvy0o17IvMone9CDHax/s5KFXlCrBCDwKb3j+LyBRhj0vLZkQ9TnY5IM1NHm/nq3PH859ZPGPG5b+IPpjojIYRIrYULF3b7vdvt5hvf+AZZWd0b1j333HMDmZYQEa1uf9QiCoQLYErjnZ2JE4kRz3gy5pA8h2ae0QqJEC702ZxevIFgQjGa27yKcygVV5rbvDFzaG7zotOoE55HCNE/pGApRJoLhUL8/q3w7eDzJ2SyPcX5iPT0navO5fldn9FIAbX2AONSnZAQQqSQ2Wzu9vvbbrstRZkIEZ3D5Ys53qo07vYRUnikudIcijnEMcdA5JmMOQYiRrrsp2KMAcrTo/AT9Fa3wn52FE77+vp4YjjcfnSa2FffxzOPEKJ/SMFSiDT3zqEmDpxwYtRpuHRsz1sdhAAw6jXcOcPE6u3NHGhVc5HTQ352RqrTEkKIlHjqqadSnYIQMYWb2/QuR2ncEHs8njkUc4hjjoHIMxlzDESMdNlPxRgDlGdGIHbBUmkekyF2qSKuz5ZCDJNBi+6MZ272ZR4hRP+IfXYKIVLu92/XA3DTjGKy9HLK9pfa2lref//9Pv2qra1NdfoAXFBsoP3AW4RQ8fr+k4SUfjwuhBBCiJTIMWiZW5YfdWxuWb7iuMmgxWzUJRQjnvF0iSF5pl+eleWWqOOV5RYs2XpMCcbIy9IrzqEkL0sfM4e8LD2W7MTnEUL0D7nCUog0ZnN6eGnvcQBuu2QsnoaDKc5o6HE0nQSSc7ug0+lMOEaiml79L3LOvZgjLS72N7YyqciU6pSEEEKIIcne7sXm9OJw+zAZdViy4m9YUJKXyaoqKys21bA9SsfpzvEHNtV077Bcls/KKiuj8zIBeLjKih9wegM4XOE8svUatMCoSIy93RqKzCuzsLJqalw5AKyusrLj4CkKcjLw+IMYdBoaHW7mTsinJC8zPF5no8BkOD1udzGnzBKJsabKylG7i6wMLU53gByDFqfHx2izkZK8TNZWWTlid5OVoeky7qfEbKAkL1Px9YDiWuLJM9H9Cs9xigJTl72yu5lTln9Wc/T2vse7n0p5xrOfSvu1trqCpRv3sPVA987a66orIs07lPJ4uLqCJpePEOHbzDuvUs036igwGVhXXcHrH5/s8dm7/NyRcZ1rhSYDq6usLI+Sw+oqa6SJjtJaBpNE/lwSIt1IwVKINLbp/aP4AiGmjcllSrGZ9xtSndHQ43I6ALju6yuYWDGzTzFq33mDF5/5OW63O5mp9UnAcYJJpgAf2rXsqDvFhJHZire6CCGEEOLsHGtxhTsLn1HgWFtdEbVbcTRaYMV1kwmhotXlI8eoQ0Uo8g2aCrjWOorFc8bj8QfJ0Ko54XDT9Yl7Xnp2c+4sCHXGWGAtYvGccVFjZBAufjm9gUgO2XoNXW+CDQGb9xzrUUCbPSH/9HjN8Z7jZaevWgsCG7bU9ZpnANiw5UCv40qvh/Ctg0uuKOP+BZNwugNkGzS0efyRWwqj52nplqfSfukIFxzbu+xXZpf9Cs8RZa+6XOWnNEf0993T7X1X2g+lvYhnP5Xe1/A6RnH77C7raPXQlRZ46MapePzByH5laNWRz7g7EGTlCx/1mkf4s3e8W3G3stzCpeeOJF6l+Vk8cst0mtu8ONx+TAYteVn6bh2/i3ONbFg0A5vTS6vbR45BhyV78BX6kvHnkhDpRAqWQqSpUCjEn947DMAXLxiT4myGvvzisZSUT+nTaxvr0+vK13JTkHqPlla3n12fNXPJOdFvhRFCCCHE2bO3e3sUBSDcUXjpxj1sWDRDsdDR6HBz3xmFxk5zy/JZW13BMoVx6FmshHD34xWbauKKcX8f59jWZQ6l8XjyTHQcYKnCWqLnaesWI9H9imcvlOZIxvvel704cz+V1rLsuZqo3bUryy1sWDSDNm9A8TMeK4911RUsfa6mW7ESzu4861RoMnQrUEbTeVXoYJWMP5eESDdy2Y0Qaer9+hbqOprtXD9tVKrTEYOIRhW+YgBg12fN0t1QCCGESCKb0xu1UAPh4oDN6VWM0dzmjVrIgXDBptXtVxyP55h0mEPyHJp5Kp0DdpcvoTwcccwhTkvGn0tCpBu5wlKINPU/74avrrzWOkq604mzVlaQTXGugWMtbnYcPMU1U4pSnZIQQggxJDgUfhAYzw8KHW5/7HGX8hxKvfValWIkYY5k5KkYI03yVMpjQN6zdMkzjnPA44/dJVwpj3jyFKcl488lIdJNSq+w3Lp1K9dffz3FxcWoVCqef/75buOhUIgf/OAHjBo1CqPRyFVXXcWBAwe6HdPU1MStt96KyWQiNzeXO++8s0fjiz179jBv3jwMBgNjxoxh/fr1/b00IRLi9Pj5255jAHzxwv65HXwodMUWvVOpVFSWh5/vs7+hlQZH6p+vKYQQQgwFJoUfJMfzg2aTIfZ1I53NR2LNoXhMouNxzJGMPBNexwDlqZTHgLxn6ZJnHOdAou9JojkMN8n4c0mIdJPSgmVbWxvTpk3jscceizq+fv16fvGLX/DEE0/w9ttvk5WVxfz587s1trj11lv58MMPeeWVV/j73//O1q1bueuuuyLjDoeDz33uc4wdO5Zdu3bx8MMP86Mf/Yj/+q//6vf1CdFXL+w5Rrs3wDmWLC4cl5fU2F27Ys+cObNPvzo7aqdDV2zRu0KTgUlFOQC8WRf9FhEhhBBCnB1Ltp7KckvUscpyC5Zs5efE5WXpmVsW/RnTc8vyyTFoFcfjOSYd5pA8h2aeSueA2ahLKA9THHOI05Lx55IQ6Salt4QvWLCABQsWRB0LhUL87Gc/44EHHuDGG28E4Le//S2FhYU8//zzfOlLX6K2tpaXXnqJd999lwsuuACADRs2cO211/KTn/yE4uJi/vCHP+D1evnNb36DXq9nypQp7N69m0cffbRbYVOIdPKnjtvBb7lwDCqVSuHoszPUumKL2Gadk8+BRieHm13UN7VTOiIz1SkJIYQQ/a7R4T7dFdioJS+ze1dge7sXm9OLw+3DZNRhyYq/4YY5U8+66gpe//gkBTkZePxBDDoNjQ43l587MhIn1hyFJgPrq6y4gyE8/iAOV/iYDK0ag1pFcV4mq6qsPLCppkeX5pVVVkrywn+fr6qysmJTDdujdFkuiSPGo1VWPIDTG4jkkK3XkAEUdMyxtsrKEbubrAwNTneAHIMWp8fPGLOB0XmZrK6ysqPORoHJcHov7C7mlFm65Rkrj0TXASiuJZ4Y4bWcosDU5X21u5lTlk9JXibrqqx4orxnGWpV3HuhNEe8+xlrv9ZXWfEB7V32orObeXEc+306z97zWF9dwadN7T0+F+NHZHY0sFGOEWt8dF5muIHQxj1sPaPr9brqCmkgcwZzpl72Sww5afsMy0OHDtHQ0MBVV10V+ZrZbObiiy9m586dfOlLX2Lnzp3k5uZGipUAV111FWq1mrfffpuqqip27txJZWUlev3pE3T+/PmsW7eO5uZm8vJ6Xr3m8XjweDyR3zscjn5apRA91Z1o5f36FjRqFQvPH91v8wylrtiidyajDmuJmd2HW9hRZ2NMPxTBhRBCiHRSf6qtR6fluWX5rK6yUpqfxbEWV49uupXlFtZWV1Cca4xrDl8gyOY9x3oUv+ZMCF8xFs8cPuD7f9nbI89VVVYAVISfZb54zng8/iAZWjUnWj10/VtcDSy5ooz7F0zC6Q6QbdDQ5vFHbqOLGsPhjsRw0bMbdNccAALAhi0Hej0mBGyuOX7GXliYXXb6ai+lPBJdRzxriWc/w2vp+b7O7rgS0K/wnsWzF0pzxBNDA6y4bjIhVLS6fOQYdag6vg7hz1asvVDa797zyI/k4Q0Eo34uVnf57Gg1ajbXNHTr9D2v3MKlEwviGi/ONbJh0QxsTi+tbh85Bl346k0pvkUl+yWGmrQtWDY0NABQWFjY7euFhYWRsYaGBgoKCrqNa7VaRowY0e2Y8ePH94jRORatYLlmzRoefPDB5CxEiLPUeXXlFZMKKMgxKBwthLILx+Xx4TE7J1o91J1wUl6Yk+qUhBBCiH7R6HD3KFZCuOvw8k01rL95Wo9CIoS76C7duIcNi2YofnPf2xzbzmKOVo+/R0GpM88Vm2pYW10RdQ4IF4XWVlcAsFThGKUYSjlAz8LXmcdEG99WZ+sWQymPRNcRT559jbFNYa1nuxd9mePMGPcn+L4q7Xc8ecY6zx65ZToGrTp8HpzxWKJtHefBw1+YFnO881zs/CXiI/slhpKUPsMyXS1btgy73R75dfjw4VSnJIYJrz/Ic+8fBeCLF/RPsx0x/GTqtZxfGv7hzM5PThFUav0ohBBCDFLNbd6ohRgIF1PsLl+PQmKnrQds2JzeAZmj1e2PGSOe8WTEGIg5JM/hl2dzW/hxCLHOg+a22OPxnItCiKEtba+wLCoqAqCxsZFRo0ZFvt7Y2Mj06dMjx5w4caLb6/x+P01NTZHXFxUV0djY2O2Yzt93HnOmjIwMMjIykrIOIc7Gln2NnGrzUpCTwWUTR6Y6HTGEzCjNZffhFprbfRxodDKxSK6yFEIIMfQ43P7Y4y5fzPFWd+zxZM3h8QdjHxNHDKWfPyrFiCdPpTkGJMYA7EVSYqRJngOxn0pzONx+dJrYjyBSOo/iOReFEENb2l5hOX78eIqKinjttdciX3M4HLz99tvMmjULgFmzZtHS0sKuXbsix2zZsoVgMMjFF18cOWbr1q34fKf/wHvllVeYOHFi1NvBhUilztvBq2eWoNWk7ekpBqEMrSZyleXbh+QqSyGEEEOTyRD7egyTURdzPMcQezxZcygeMwAxkpHngMQYJPuZLnmmwxwmgxaTwrmkdB7Fcy4KIYa2lFZEnE4nu3fvZvfu3UC40c7u3bupr69HpVLxne98h5UrV/LXv/6Vmpoa/vVf/5Xi4mJuuukmACZPnsw111zD1772Nd555x127NjBkiVL+NKXvkRxcTEAX/7yl9Hr9dx55518+OGH/OlPf+LnP/8599xzT4pWLUR0DXY3b3x8EoBb5HZw0Q+mjTGToVVHrrIUQgghhpq8LD1zO5qXnGluWT5mo47KckvU8cpyC5Zs5We/JWOOHIM2Zox4xpMRYyDmkDyHX555WXos2fqY50FeVuzxeM5FIcTQltJbwt977z0uv/zyyO87i4i33347Tz/9NPfddx9tbW3cddddtLS0MHfuXF566SUMhtONSP7whz+wZMkSrrzyStRqNdXV1fziF7+IjJvNZl5++WW+9a1vMXPmTCwWCz/4wQ+46667Bm6hQsThz+8dJhiCi8aPYLwlK9XpiCGo8yrLnZ+c4u1DpygvzEYtHcOFEEIMIYUmA6urrCzfVMP2KN2Li3ON4aYjG/ew9YwO3uuqK7o1q7C3h5/D53D7MBl1WLLCzSw651jx/N5uz+CbV25h1U1T45rDnKlnVZWVBzbV9OjCvLLKSklepuI4wKoqKyuirHVVtxh7u3dhLrOwsmpqZDzW6+OfI3aeq6us7KizUWAy4PEHMeg0NNpdzCmzxJXnmiorR+0usjK0ON0BcgxanB4fo83Gs8oznrXGWks860iX/Yw1h9Lr48kz1nlWaAp/vx7rPCg0GVhXXcHrH5+kICfjdB4ON5efOzKpjWN6O5eFEOktpQXLyy67jFCM2xJVKhUPPfQQDz30UK/HjBgxgj/+8Y8x56moqGDbtm19zlOI/hYMhvjTe+HbwRddJFdXiv4zbYyZ9+ub5VmWQgghhqzS/CweuWU6zW1eHG4/JoOWvCx9pIhSnGtkw6IZHc1vfOQYdFiyuxcwjrW4enT6riy3sLa6guJcIwALphaxePY4PP4gGVo1JxzuyLEqYIF1FLd3HW/1dMtTBVxrHcXiOeO7xVDFGm/10PVHjWpgyRVl3L9gEk53gGyDhjaPP3IbXTiPIhbPGRd1Dh3hwlS7N0Cry0eOUUemXkPXm3ENwJoqK84ux2TrNei7zNFzHd3zBNhcc7x7Ea7cwpwyS1x5BoENW+q6NXrpLJ51yuglz861KK0jnrWEoq2jLJ/ZHevQACuum0wIVWQOVcfXO2l7OabzG3N1tBxaPd1ujYyaR7klkkdmL2s1xHp92enXAxg1ah66cSoefzASI0Orxtjx2Cql8+z0+9r7eRACNu853q1QXVlu4dJzk/cs/3jOZSFEekrbpjtCDCfb62wcaXZhMmhZMHWU8guE6KMMrYYZY3J561AT737WxLmF2ajkKkshhBBDTKHJ0K1wcqbOqxyjsbd7exQ4INy5eOnGPaxZaGXZppqoXZLnluWzrrqCpc/VRO2AXFluYcOiGbR6/DFjrK2uUBwHWJpgjPvjmEPpmHjyjHbMtgM2lm+qiSvG8ijj2+tOsaLj9fHkGc9a+5LHti55JGM/ld5TIHoeB2xx5xF9Hadfn5Oh5XtRzgE4/RnuvNq4t/PM3u7lvhgxHv7CtPB5Vhf9POucIxFK53Iy5hBC9B/p6iFEGvjvd+oBWHh+CQadRuFoIRIzbUwueo2aU04vh2xtqU5HCCGESCs2pzdqkQXChQ6H2x+1GAThIprD7Y/5+vCVnbFjxDOejBgDMYfkOfjyVDoHbE5v1LGulGI0tyU+R6I5JGMOIUT/kSsshUixk60eXvmoEYAvye3gYgAYdBqsJWZ2fdbMu582M96SJVdZCiGEEB0cbl/scVfs8VaF17e6fXj8wdjHxDFHjCdrAcp5xrOOROeIJ4bSWgdijqSsdQjtp04T+7ompc84xHEeuf0Jz5FoDsmYQwjRf6RgKUSKbXz/CP5giOljcplUZEp1OmKYmDEml92HW2hwuDnS7GLMiMxUpySEEEKkBZNBF3vcGHs8R+H1OQYdGYHYBcucBOcA5TwTXUeyYiitdSDmSMpah9B+6hUKlnGtRek8MsQuRcQzR6I5JGMOIUT/kVvChYhTfX0977//fkK/6uvru8UMhUL86V1ptiMGXlaGlqnF4QL5u582pTgbIYQQIn1YsvVUlluijlWWWzAZtMwty486PrcsH5NBG/P1lmw9OQox4hlPRoyBmEPyHHx5Kp0Dlmzl5z4qxcjLSnyORHNIxhxCiP4jV1gKEYf6+nomTZ6Mq709oTjGzEz21dZSWloKwFufNHHI1kaWXsPnK4qTkaoQcTt/bB41R+0cbnbRYHdTZO69OYEQQggxmNjbvdicXhxuHyajDktW7012zmTO1LOuuoLXPz5JQU4GHn8Qg05Do8PN5eeOpCjXyOoqKzvqbBSYDKfH7S7mlFkYnZfJw9UVNLl8hAjfott5VVu+URdp+LOmyspRu4usDC1Od4Acgxanx8dos5GSvExWVVl5YFNNj47UK6uslOSF74xQOmZtlZVWrz/SkTqcR4gcvZaSvMzwOg6e6rHOORPyI3MoxVhVZeWB5/d2e1bgvHILK2+aGomxpsrK9ijzzO2YJ9Z+ds6xYlMN26N0Ce++F3u7NXGZV2ZhZVU4D6X97szzqN1NVoamyzF+RpsNceURd55R9mtVx37F854oxYgnT6XP1trqCpZu3MPWM7prr6uuiOtcMmfqY8YoNBkSniPRHKThjhDpTQqWQsTBZrPham/n1vsfprB0Qp9iNNYf5A/r7sVms0UKls++G77i8obpo8nKkNNRDCyTQcekIhMfHXfw7qdNXD9NiuZCCCEGv2Mtrh6dgSvLLaytrqA41xhXDF8gyOY9x3oUdOZMCF+ZFgI21xzvMT67LHw1lzsQZOULH3VrbtJZMOoUBDZsqev1GBVwrXUUi+eMx+MPkqFVc8LhoetTp6Mf444cEwBWvlDb6xwhiLrO2RNOX4GnFEMFLJhaxOLZ46Lm0LnWWPNE309LZD81wIrrJkeKpjlGHaqOr3fdiwXWIhbPiZ6H0n6fPuZAr8eogSVXlHH/gkk43QGyDRraPP7IbYvRxwPdbmvsbb86xfOeKMXQAQ/dOBWPPxjZrwytms4boPUaNddai7t/blo93W4FL841smHRjI4mUT5yDDos2fEX/uOJkYw5Es1BCJG+pEIixFkoLJ1ASfmUpMRqaffy4t4GQG4HF6lzwdg8Pjru4BNbGzanJ9XpCCGEEAmxt3t7FCsh3BF46cY9bFg0Q7FQ0ehws2xTTY9OytvqTrF8Uw1rqytY3sv4ihjj2zvG1988jWAoFPOYtdUVUXOAcAFtbXUFgOIxSnMorQNISp592a9tdbbI+P0DsBfxrHWpwhxK433N88z3RClGrP1af/O0qOcIhAv7Xc+RzquBE6EUIxlzJJqDECI9ScFSiBR57v2jeP1BzhtlwjranOp0xDCVl6WnvCCbAyecvPtpE9aMVGckhBBC9J3N6Y1aiIFw0dLm9CoWLprbvFGLPRAuXrW6/QmN2zu6NCc6RzJiDMQckmd65Wl3+RI+R4QQYiBIwVKIFAiFQpHbwRddNAaVSqXwCiH6z4XjRnDghJMDjU7Gj0p1NkIIIUTfOdy+mOOtCuPhGP7Y4y6FOZTG3T5Codg5JCOGUp6K60iTPNNlPxVjDMReJCHPeOYQQoh0IAVLIVLg/foWPm50YtCpuXHG6FSnI4a5kTkZjMvP5NNT7ex3aJRfIIQQQqQpk0EXczxHYTwcI/a3SJ0NdHqdQ2k8jhySEUMpT8V1pEme6bKfijEGYi+SkGcy5hBCiIGgVj5ECJFsv3/rMwCusxYr/sNaiIFw4bgRAHzWpkaTY0lxNkIIIUTfWLL1VJZH/3usstyCJVv5Vte8LD1zy/Kjjs0tyyfHoE1o3GzUJRwjx6BNSoyBmEPyTK88zUZdwueIEEIMBLnCUogB1uwK8Pc94WY7i2ePS20yQnQozjVSkmvkSIsL00VVqU5HCCGE6BNzpj7c/GTjHrae0SV8XXVF5Nl89nYvNqcXh9uHyajDknW6KUehycDqKivLN9Ww/Yxu0aurrJTkZbKqysqKKOOr4hjv7FSuFGNNlZWjdjdZGRqc7gA5Bi1Oj58Ss4GSvMxIjAc27WVb3em1ziuzsLJqatx5xno90JGHi6wMbZc8fIw2GynJy2R1lZUddTYKTAY8/iAGnYZGu4s5ZZa4Y4TzqOnRGXtl1zyf39vt2Yvzyi2suul0nmurrLR6/ZFO4uErCUPk6LVd9rP3HJKxn+urrPiAdm8AR0cOmXoNOqC4Yw6l/VLai3hirKmysj3K+NwyC8W5xrjOEaXzJJ5xIYRIhBQshRhgL3/Sji8Q4vzSXKwl0mxHpI8LxuVxZLeL7GnzaXEHUp2OEEII0ScqYIF1FLfPHofHHyRDq+ZEqycyfqzF1aNLcmW5hbXVFZFiYml+Fo/cMp3mNi8Otx+TQUtelp5CkwEADbDkijLuXzAJpztAtkFDmydA54NV1FHH/d1ub4t+TCByTBDYsOVAtwYqncWx7mstYvGcLmt1uFHFnON0HkqvP51HXcw8Ntcc715gK7cwp8wSdwwVcK11FIvnjO/2nnXmoQIWTC1i8ezueXYVAFa+UNvrHPGsQ2k/MggXX53eAK0uHzlGHdkdBUkAHz07jZ85R6iX/ZrdsV9KexHPnms0ajbXNHQvvJZbuHRiQZd19n6OgPJ5Es95JIQQiZCCpRADSa3l/w62A7B4zvgUJyNEd6UjMsnTB2nGwAsH2rhidqozEkIIIc6Ovd3LfWcUUTpVllt4+AvTehRZINwdeenGPWxYNKPblZadBcquGh1u7j+jKNVpbll++Oq1GOPrb55GMBSKecza6ooehS8Id3lesamGtdUVACxLII+11RWKr4eeBbgz84gWY9sBG8u75NmXGMnOMxn7qfS+xzNHtGO2HbDFvRc6jTrmnq+/ueMzXmfrMb504x4e/sK0mOfIhkUzAGKeJ2dzHgkhRF/JMyyFGECZE+fQ4g5SaMpgwdSiVKcjRDcqlYqJpvCVlS/WtWNX6CIphBBCpBub0xu1EAPhYkpzW+xxm9OrOEdzmzdqQQnCxalWtz/muN3lUzwmnvFkxBiIOSTP5M6h9Pmzu3wJnwMDcR4JIYQSKVgKMUBCITBdcD0At108Fp1GTj+RfoqNIbwnP6PdF4o0hxJCCCEGC4c79g/bHG5/zPFWhdfHE8Oh8AO/VrdP8ZiBiJGMOVoHIsYgyXPA3vcEP3/xnAMDcR4JIYQSqZgIMUBOeVRkFE9Cq4ZFF5emOh0holKpwPHWnwF4cvsh2r2x/0EqhBBCpBOTQacwHvuJWDkKr48nRrjZS+w5lI4ZiBjJmCNnIGIMkjwH7H1P8PMXzzkwEOeREEIokWdYCjFA9jvCj2G/fFwmluyMFGcjRO/aarcy5Uv309jm5dl3DnPH3LN/3mp9fT02W/Rbhc6GxWKhtFQK/EIIIeJjydZz9eQCJo4yMWNMbqRD8vv1zew/7iAvK/a4JVu5A3Jelp4rJ41kcrG5R4zaY3ZyDFrmluV36yTdaW5ZPmajjmAoxLVTC6meOYYCU0aka3Wjw83GXYcVY+R0FIyqpo/iK3PPQatRRzpj+wJBntr+SVwx4pljIGIo7afSeDLmiCdGMt6zRD47OQYtOo1a8fNVWW7p1gG8U2W5hbwsfczxznMgGTFAOokLIfpOCpZCDACb00ODW00oFOTGiVmpTkeI2EJBqiZl88QuO/+19RNuvaSUDK1G+XUd6uvrmTR5Mq729oRTMWZmsq+2VoqWQggh4mLO1PP9z5/Hsk01/HJLXeTrc8vyWV1lpdBkiDneWUhR6oD8g+unsDxKjFVVVkryMllVZWXFpppuRaXO8c4OyvcvmNxrR2mlGCV5mQB85+qJCcWIZ46BiKG0n0rjyZgjnhjJeM8S+ex0xlhdZWV5lGNWd3y+fnzT1KgxfnzTVApNBlbeNDXq61feNDVyDsQ6ptBkCDd12rinW9GystzCuuqKuM8jIYSIRQqWQgyAXZ81A9C+fwfFX7wlxdkIoezycUY2HXDT4HCzcddRvnwWjzGw2Wy42tu59f6HKSyd0OccGusP8od192Kz2aRgKYQQIi72di8rnt8btVPzA8/v5eEvTIs5Hm+H5Ad6ifH95/eyZqGVh/72IdNL8/jKnPF4/EEytGo+ONzCQ3/7kB/fZCUYCil2lP7ZK/u575pJLO+4ejLHqMMfCPKzV/bzvfmTAOXO2OterOUrc8Zz/4JJON0Bsg0aTjg8rHuxluXXnac4DsRcy4M3TuVBhXGA3+44xOoqK23eQGQtWXoNz+w4xFfmncMKhXUojQOK+xVPDKU8lfb7GYXXA4p5/PndetZUWXF2iZGt1/A/79Zz2+zxFJoMlOZn8cgt02lu8+Jw+zEZtORl6Sk0GWh0uGO+Jz++ycpDf/8o6viP//4RP/nCtPD7rnBMca6RDYtmYHN6aXX7yDHosGSfvnrS3u6VTuJCiIRIwVKIfuZw+djf2Br+/7f+F5CCpUh/Oo2Kuyon8OO/f8SGLQdYeP5oDLr4r7IEKCydQEn5lH7KUAghhOgpWd2NE4nhcPt5bd9JXtt3Muox/97RFEWpG/Sm3cfZtPt41GPuurQsrhib9zayeW9j1GPuvvJcxXEg9lrm+9my7yRbYowDPPnmZzz5ZvRmfjdfWBr19uau61AaBxT3K54YSnkq7fdv3vyM38R4feexsWL88vVP+OXrn0Q95rppoyk0GQAoNBki/99Vc5s39nvi8vFq7QlerT0RdbzzHFA6xpypj/zq7Rilc00KlkKIWKTpjhD9bFd9M6EQjMwI4m08mOp0hIjbrReXUmw2cNzu5nc7pWO4EEKI9JeM7sYJxxhGXa2TkWdazJEmeSp111b67MVzjNIc8ZwD8XQBT0YMIcTwJgVLIfqRw+Vj71E7AJPMgRRnI8TZMeg0fOfq8NUVj71ep/gPTyGEECLVktHdOOEYw6irdTLyTIs50iRPpe7aSp+9eI5RmiOecyCeLuDJiCGEGN6kYClEP3rn0yaCISjJM1JgCKU6HSHO2sIZoykryKal3cd/viFXCAshhEhvluxw9+JounY37m3ckq1POIapo9NzNJ1dnHMUjolnPBkxBmIOyTN5c+RlKd9CnZelV/z8JXoOdO0C3ptkxBBCDG/yDEsh+klLu5ePjjsAmHVOPsGT9hRnJMTZ02rU3Dt/Il//3S6e3H6If7lkHEXmns9LEkKIoWzr1q08/PDD7Nq1i+PHj7Np0yZuuummyLhKpYr6uvXr13PvvfcC0NTUxN13383f/vY31Go11dXV/PznPyc7O3sgljBsmDP1MbsXx9vd+OHqCppcPkKEb/XtvDIu36ijoCPGmQ1F5nXEGJVrZFWVlQc27WVbXZfxMgsrq6ZGuiOvqbJy1O4mK0OD0x0gx6DF6fEz2mygJC+Tn1RZ8QFObwBHRw7Zeg06oKhLV+sHnt/bI4+VN02lJC9TcY61VVZavX5CqLqsM0SOXht35+w1VVa2HzxFQU4GHn8Qg05Do8PN3An5kRhKeYT3q4ZtXeaYV5bPyo45VldZ2VFno8BkOD2H3cWcMktkjvUd+9XeZb8yO/arOM7u2/HkGStGPHkq7dfaKitH7C6yMrRdcvBRYjZ2e2alvd2LzenF4Q6v1ZIVfp5kocmg2EU8nnNgXXUFr398skeel587Mq5nTyqdi12b80RbhxBCSMFSiH7yzqEmQiEYm59Jca6RI9Gfey1EN7W1tSl5bSyfO6+QmWPz2PVZM+tf2sejX5zeL/MIIUS6amtrY9q0adxxxx0sXLiwx/jx490bfbz44ovceeedVFdXR7526623cvz4cV555RV8Ph9f+cpXuOuuu/jjH//Y7/kPN0rdi5XGAdyBICtf+Khbk5XOwhSAPxBkwdQiFs8eF+mgfMLhxhcIAuHb2BZYi1g8p/t419vbgsCGLQd6ncNDzy7gXccBVBA1D1WccwSAlS/UxpxDDSy5oqxbJ/E2jz+yliCwec+xHsXG2RNOX+WnlIcKuNY6isVdOlJ3XUcI2FxzvPsc5RZml52+gs+nsF9K64gnTw2w4rrJkQJvjlGHihCdbQmj5lnWPU+l/QrnUNcjh9Vd3pNjLa4eBfPKcgtrqysozjXG7CIO8Z0DIWDznuPdiu6V5RYuPXck8VKaR2kdQojhTQqWQvSDU04P+xrCncEvOSf6LRlCdOVoCle0b7vttoRjOZ3OhGN0pVKp+OH153HDL3fw3AdHuW3WWM4vzUvqHEIIkc4WLFjAggULeh0vKirq9vu//OUvXH755ZxzzjlA+AdKL730Eu+++y4XXHABABs2bODaa6/lJz/5CcXFxf2X/DAVq3ux0vixFlePwheEuziv2FTD2uoKlkUZh3BhaW11BUtjjD9yy3R8gaDiHErjgGIeyZgj1lp6i7HtjBiJ7mfUOQ7YzmoOpXXEE+P+Pu2Fcp7bFPZie90plm+q4ZFbpmPQqnsU+SDceXvpxj1sWDQjcqVltC7inWKdA/Z2b3iOuthzxKO3eSJzKKxDCDF8ScFSiH6w7YCNEDBhZBZFMf6hIEQnlzP8+IDrvr6CiRUz+xSj9p03ePGZn+N2u5OZGgAVJbl8YWYJf951hAf/+iGb/t8c1Orot0AKIcRw1tjYyAsvvMAzzzwT+drOnTvJzc2NFCsBrrrqKtRqNW+//TZVVVVRY3k8HjweT+T3Doej/xIXEXaXL2pRCsKFo1a3P6Hx5jYvIUh4DpIQYyDmkDyTN0dzmxedRt2jyNdp6wEbNqc34UKfzekdEnMIIQY3KVgKkWSf2tr4rKkdtQrmlkV/0LQQvckvHktJ+ZQ+vbaxvn+b4tx7zURe3NvAP4/Y2fj+Eb5wwZh+nU8IIQajZ555hpycnG63jjc0NFBQUNDtOK1Wy4gRI2hoaOg11po1a3jwwQf7LVcRncPliznemuC4w+0nFIrdjFFxDrcPhRCJryOOOYZTnorv60DM4faj08T+gXGrO3aMeDgUYgyWOYQQg5t0CRciiQLBUOQnhdPH5JIrPxUUQ0hBjoG7rygDYO2L+2hu86Y4IyGESD+/+c1vuPXWWzEYEr/DYtmyZdjt9sivw4cPJyFDoaSzwU5vchIcNxm0ic9h0CnGGIg5hlOeiu/rQMxh0GIyKM+TqKEyhxBicJOCpRBJtPeonaZ2LwadmovGjUh1OkIk3VfmjOfcwmxOtXlZvbl/mvwIIcRgtW3bNvbv389Xv/rVbl8vKirixIkT3b7m9/tpamrq8fzLrjIyMjCZTN1+if5nNuqYWxb9GeRzy/LJMWgTGs/L0iccI8egTUqMgZhD8kzeHHlZeizZeirLo9/FVVluwZKd+AUTQ2UOIcTgJreEC5EkbR4/Oz8JP3PmkvH5ZOg0Cq8QYvDRa9WsWVjBzU+8yZ93HaFqxuhunS+FEGI4e/LJJ5k5cybTpk3r9vVZs2bR0tLCrl27mDkz/JziLVu2EAwGufjii1OR6pBnb/dic3pxuH2YjDosWd0bfzQ63Kc7KBu15GV276C8qsrKik01bI/SLbokL5PVVVZ21NkoMBnw+IMYdBoa7S7mlFkoyctkbZWVI3YXWRlanO4AOQYtTo+PErMxMs+qKisPbKrp0S16ZZxzAKypsnI0yjyjzca4YiitE0hajBXP7+32zMJ55RZW3TT1dJ4HT1GQk3F6DoebORPyI3M8sGlvtyYw88osrKyaGplDKQ+l/Y5nrcnYi3g+W8ujjK+uskY+O2urK1i6cQ9bz+iuva66IinPfTRn6ofEHEKIwU0KlkIkyfY6Gx5/kJE5GVhHm1OdjhD9ZubYPP7lkrH8dudnLN9Uw0vfqcQgBXohxBDmdDqpq6uL/P7QoUPs3r2bESNGUFpaCoQb4vz5z3/mkUce6fH6yZMnc8011/C1r32NJ554Ap/Px5IlS/jSl74kHcL7wbEWV4/uw5XlFtZWV1Cca6T+VFuPTsydBaHS/CwAxuZnsf7madhdPlrdPnIMOsxGHcW5xshrNtcc71H8mtPxQ7wAsGFLXY85VlVZI79XAddaR7F4zng8/iAZWjUnHG46n1AYijqHpdsPCoMK80SNUX46RibhoqfTG6DV5SPHqCNbr6HrAw2UYmT0EuPMG3oXTC1i8exx3dbabY49x3rs5+wJ+ZG9WmAtYvGccVH3CkBPuBjY3iWPTL2GzrKXOtp+t3p63HIYba1zuux5rPGx+Vmsra6g1e2PfG5yDNpIsTKeY0rzs3jklumnC+oGLXlZ+m4dv8P7MYrbu+5n6+kGXclQnGtkw6IZ2JzeSJ6W7N47i6frHEKIwUsKlkIkweGmdvY1tAJwxcQC6Z4shrx750/k5Q8b+fRUOxu2HODe+ZNSnZIQQvSb9957j8svvzzy+3vuuQeA22+/naeffhqAZ599llAoxKJFi6LG+MMf/sCSJUu48sorUavVVFdX84tf/KLfcx9u7O3eHsVKCHcdXrpxD2urK3oUKyHcgXn5phoeuWV6tystuxYoOzU63FFjbOuIsba6guW9zLFiUw3rb55GMBSKGgPCBcfeYmyrs7GiYw4g5jy9xjhwOsb9Cjn0NsfZxujbWk+vQ+n1gGIeS/uY57YDtsj7Gmu887PTtTjZG6VjCk2GbgXKruztXu6L8hmHcGF+w6IZSSv4mTP7v3g4EHMIIQYnKVgKkSB/MMiW/eHnUlWUmCkyJ/6QfSHSXY5Bx4M3TuHrv9vFf77xCZ+vKGbyKHm2mhBiaLrssssUuzrfdddd3HXXXb2Ojxgxgj/+8Y/JTk2cweb0Ri3kQLhoaXf5ohatIFzoa27z9loo6tTc5o0Zo9Xtjzlu7+gEnUiMVrc/KTEGYo7hkmc8n51kUPqM25xeKQAKIYYEabojRILe/qSJlnYfmXpN5LYVIYaD+VOKmD+lEH8wxLLnaggEY38zL4QQQvQ3h9sXe9ylMN5RuErkGKU5Wt0+5TySEKM10fFkzJGMtaZJnkox4vnsJIPSZ7xVYVwIIQYLKVgKkYAGu5tdnzUDcPnEAjK08hw/Mbw8eMNUsjO07D7cwu92fprqdIQQQgxzJsOZT048Y9yoMG5QvgFN6RilOXIMOuU8khAjJ9HxZMyRjLWmSZ5KMeL57CSD0mc8R2FcCCEGCylYCtFH/kCQVz5qJARMLMyhrCA71SkJMeCKzAbuv2YiAD95+WOO210pzkgIIcRwZsnWU1luiTpWWW7BbNQxtyz6HTFzy/LJy1K+lTYvSx8zRo5BG3PcbNQpHhPPeDJiDMQcwyXPeD47yaD0Gbdky+3gQoihQZ5hKUQfvfVJE03tXjL1Gi6dODLV6QiRMrdePJbnPjjKB/UtPPjXj7hrijSdEkIIkRrmTD3rqyv4tKmdrAwNTneAHIMWp8fP+BGZFOYaWVNlZXvdKQpMGXj8QQw6DY12N3PL8rs9g7DR4T7dqdmoJS9TH2mGEo5ho8Bk6BLDxdwyCyV5mayusrIjyvicMkukkc+qKisPbKrp0Rl7ZZWVkrxMxfHOGCs21bA9SpfwSIzn93Z75uG8cgsrb5pKSV4mP6my4gOc3gAOlw9Tlw7fRV3miBUjvNae+zmnLP/s8oyx1lj72TnHmiorR+0usjK0Xd53H6PNxtMxDp6iIKdLng43cyZ0z1NprcujrGN1lTXy2entc9NVPMf0xpypZ111Ba9/fLLHWi4/d2Tk+ZVKc9jbvdicXhzu8PtuyUrP5jeDJU8hRPJJwVKIPjjc1M6u+vCt4FdOKsCok1vBxfClVqtYs9DK53+xnZc+bGB6bl6qUxJCCDGMeQJBNmw50K1BSmdxDCAIbK451qM4NrvL1XP1p9p6dITuLEyV5md1xDgeJUb4yrdQ1HFLZBxABVxrHcXiOePx+INkaNWccHhQxRx30/XHgmpgyRVl3L9gEk53gGyDhjaPP3IbnQpYMLWIxbPHRY3hoWcX8K57FU+MUBz7qQUeunEqHn+QVpePHKOODK068s2o0l5E3c/y7vsZBDZsqet1LSFg854oeXZ5Br3SWlW97HfnuNLnJt5jlITXcpxtdacLq5XlFi49d2RccxxrcXH/GZ3GK8strK2uiBTU08FgyVMI0T+kYCnEWXL5Arz8USMAU4pNnDNSbgUXYlKRia/OO4cn3jjIrz+wo9L1f5dMIYQQ4kzHWlw9CnAQ7uK8YlMNa6sroo5v6xhff/M0NGpVj2JPZ4zlccTofdwWGQeizgHhwtLa6grFcYClCcZQ2qt48lTaC4D7+yHPbQe672ci7/va6gpUcay1L/vd+bl55Jbp0MscXY9RutLS3u4NF/HquncK33rAxtKNexTzWH/ztB5FwK6v37BoRlpcwRhZZ5rnKYToP/IMSyHOQigEr9U24vT4yc3URX6KKYSAf7uynJI8I7b2ILlzb011OkIIIYYhu8sXtaAE4YJNq9sfc9zu8tHc5k0oRjzj6RJD8jw97ujnPJvbvIqfreY2b9SxrmxOb48iXqetB2yK54Dd5Yv5eptTOYeBoLTOdMlTCNF/pGApxFn4xKnm4Mk21CpYMKUInUZOISE6GfUafnzTVAByLriBFq88y1IIIcTAcrh8CY23un043P7EYsQzRzLyTDTGMMpzIGIorrOjKKp0jBKHO/H3JJHxgaK0znTJUwjRf+SWcCHipC+cwJ7m8LMq50ywUBDng7GFGE4un1jAnDEGdhx2836TivNCIdQqKVwKIYQYGCajLqHxHIMOpb+1FGPEMYeSePJMOMYwynMgYih+9gzK33rHd0zin/FExgeK0jrTJU8hRP+Ry8OEiEObN4jlpmUEUXGOJYsZpbmpTkmItPWV6SaCbifNXjU1R+ypTkcIIcQwYjbqmNul2UtXc8vyyTFoY46bjTrysvQJxYhnPF1iSJ6nx039nGdell7xs5WXpfxMRku2nspyS9SxynKL4jlgNupivt6SnR7PhVRaZ7rkKYToP3KFpRAKgsEQG95tQZdbRKYmxNXnFaKSK8aE6NUIo4bmN54hf/63ePPgKcoKssnKkL9uhBBC9L/iXCOrqqys2FTD9ijdokvyMllVZeWBTXu7NS2ZV2ZhZdXUSOfh1VVWlkeJsbpLDKU5Yo0DrKmyctTuIitDi9MdIMegxenxMdpspCQvk9VVVnbU2SgwGfD4gxh0GhrtLuaUWSIxlI6Jby9qenTOXtklz0T2M5l5Ku1nMvJMNI9Yn5vOZjprqqxsj7IXc8ssig13AMyZ+nADoI172HpG9+x11RWMyjXGzKM41xjz9enSyEZpnemSpxCi/8h3kEIo+OU/6njnqIeQ38clhWDQaVKdkhBpz7n7Jcqu/ybNXtj5ySmumlyY6pSEEEIMExkaNUuuKOf+BZNwugNkGzS0eQJkdDx7XAUssBaxeM44PP4gGVo1JxzubreCl+Zn8cgt02lu8+Jw+zEZtORl6SMFJTWw5IqyM+bwR25fUxoHCAIbttR1a5DSWfwCCAGba473KCbOLut+1VmPY8otzOk4Jp48r7WOYvGc8af3otXTLU8tsOK6yYRQ0erykWMM3zbf+Y1kPPsZdS3llshaNFHzDND5r25NLzl0/Vd5PGuNlmfXtUafJxSZx6hR89CNU/H4g5HxDK0aY5fPVrQcuu6FRqNmc01D98JpuYVLJxYQr+JcIxsWzcDm9NLq9pFj0GHJ1keKeEqfX6XXp4vBkqcQon9IwVKIGF7+sIFHX/kYgFMvP07eN76Z4oyEGCxCTMsL8Hqjmg+POagoMVOQI899FUII0b/s7V7u3bgnanfhynILqxdaWbapJmoX5bll+ayrrmB0x9V2hSZD1Cvejja3szRGjLXVFYrjAMujHLO97hQrNtWwtroi6vi2LuNqlSrqWrYdsLG845hk5Hm/wjGx9jPWWrcdsEXWojRHrPF11RWEIKG1PnLLdALBkOI8S5+r6fWztWahNeYc62+eRpZew/0b93QrVnbuxdKNe9iwaEbcxThzZuzCXW+f33hfny4GS55CiOSTZ1gK0YuPG1v57p92A3BtWSZtNa+kNiEhBpn8jBATC3MAeOPjk4RCoRRnJIQQYqizOb1RC0oAWw/YaHX7oxaUIFwsjK9Lc+wYSnO0uv1xHaM0bnf5Eo4xEHkmI4bSe5ZojOY2r+J+Otz+mJ8tpc+F3eVT/HzanN6oY0IIMRxJwVKIKFravXztt+/R5g0w65x8Fk83pTolIQalOWX5aNUqjrW4qTvhTHU6QgghhjiH2xd73BV7vFXh9fHEiGeOgYjRmuh4MuYYJHk63P6EPxtxvWcKMeL5/AkhxHAhBUshzuAPBLn7vz/gs1PtlOQZeezW89GqpcmOEH2RY9Axc2weADsOniIQlKsshRBC9B+TQRd73Bh7PEfh9fHEiGeOgYiRk+h4MuYYJHmaDNqEPxtxvWcKMeL5/AkhxHAhBUshzrD2xX1sO2DDqNPwq3+9gBFZ8swUIRJxfmkeRp0Gu8vHR8ccqU5HCCHEEGbJ1lNZbok6VlluIcegZW5ZftTxuWX5mAzKj/g3KcRQmiPHoI3rGKVxs1GXcIyByDMZMZTes0Rj5GXpFffTZNDG/GwpfS7MRp3i59OSLd93CCFEJ2m6I0QXf3y7nl9vPwTAo7dMY/IouRVciETptWouGj+CNz4+yduHTjFpVA46jfy8TAghRPKZM/Wsq67g9Y9PUpCTgccfxKDT0Ohwc/m5IynKNbKmyspRu4usDC1Od4Acgxanx8doszHScAeg0eE+3WXZqCUvM9xleXReZswYJXmZrK6ysqPORoHJcDoHu4s5ZRZKOuZYVWVlxaYatkfpEp6sGPGMP/D83m7PVZxXbmHlTVMjc4TzOEWBqct+2t3MKcuPa47TMXpfSyJ7Mfos9nN5lPHVVdZIc5pYMUbnZYab92zcw9Yu+1VZbmFddQWjco0xX1+cawSIGUOaywghxGlSsBRprb6+Hpst+oOp42WxWCgtLVU87h/7TvD9v+wF4N+uLGeBdVRC8wohTps62sQH9c043H7+ebiFC8aNSHVKQgghhqgQsHnP8W6dmCvLLVx67kgAgsCGLXXdGqR0FpU61Z9q69H9urO4VZqfRaiXGKs7YoSAzTXH2dZlfF65hdllp6+uUwNLrijj/gWTcLoDZBs0tHn8kVvgkhFDBzx041Q8/iCtLh85Rh0ZWjWdNx6rgAVTi1g8exwef5AMrZoTDjddH4YUzuNY9zzK8pndcTVhBrCmyorTG4jMka3XoOsR43iUGJa41kEvezGny16Mzc9ibXVFR6MfHzkGHTkGbaRoGs8cY/OzWH/zNOwuXySG2aiLFBuLc41sWDQDm9MbGbdkn+5irfT6eGIIIYQIk4KlSFv19fVMmjwZV3t7QnGMmZnsq62NWbTce9TOt/74PoFgiOrzS/jOVeUJzSmE6E6rVnPJOfm8/FEj733WzNTRZgw6TarTEkIIMcTY273cv3FPt2IlhDswL924hzULw1fZndnNeXvdKVZsqmH9zdPQqFU9ipWdxyzfVMO66oqY42urK6LOse2AjRUd4wBLoxwD4cKnUox11RWE4ohxv8J4tHV0HQei59GxX0pzPHLLdHyBoGIMpXVEy3PbARvLN9XwyC3TI1dIlnS5QrarRodbMc/OGMW5xm4FxjOZM2MXF5VeH08MIYQQUrAUacxms+Fqb+fW+x+msHRCn2I01h/kD+vuxWaz9VqwPNLczleefpd2b4C5ZRbWLLSiUkmTHSGSbWJRDrs+a+ZUm5ddnzV3uypCCCGESAab09vt9uauth6w4XD7oxatIFxwtLt8qCDmMUoxWuMYR2EOpRiOJMQYiDyb27yE+jnP5jZvpNjYm+Y2b8IxhBBCDCwpWIq0V1g6gZLyKf0S297uY/FT73Ky1cOkohwev+189Fp5tp4Q/UGtUjF7Qj5/23Oc3YdbmDYml+wM+WtICCFE8jjcvtjjrtjjrW4fEPsH10ox4pkjFIp5yMDESMIcSjEcbj8hhSCKMeKYQ4nSMfHEEEIIMbCkMiOGLY8/wNd//x51J5wUmQw89ZULMRl0yi8UQvTZeEsWo8wG/MEQbx+KfqWDEEII0VdK/5YzGWOP5xh0ip3ClWLENUc6xEjCHEoxTAZt4jHimEOJ4nsaRwwhhBADSwqWYljyB4J859ndvPVJE9kZWn6z+EJGmWM/a0YIkTiVSsWcCeFbwT885qC53ZvijIQQQgwllmw9leXRHzlSWW7BZNAyt6NZzJnmluVjNurIy9LHPEYpRk4c4/Eco5RDojEGIs+8LH2/55mXpfwsSKX3NJ4YQgghBpb8KEkMO6FQiOWbanhxbwN6jZonbpvJecWmAZu/trY2Ja8VIl2MzjMyLj+TT0+189bBUyywjkp1SkIIIQYRe7sXm9OLw+3DZNRhyTrdwMScqWdddQWvf3ySgpwMPP4gBp2GRoeby88dSVGukVVVVlZsqmF7lC7hnc1SVleFm/OceczqKiuj8zJZU2Vle52NApPh9Bx2F3PLLJTkZcaco7MxjNIxq6qsPLBpb7cGQvPKLKysmsrojhg/qbLiA5zeAA5XeD86O3QX5WWytsrKEbubrAwNTneAHIMWp8dPidlAScd4q9dPCBWtHa+HEDl6bdx5xsqh87mQ4bXU9OgSvrIjhlIesfa767MnGx1umtu8ONx+TEYteZl6Ck0GCk0GVnes48wcVlVZu8WI9fkSQggxcKRgKYaVUCjE6s21/M97R1Cr4BeLpjO3l5/CJ5uj6SQAt912W8KxnE5nwjGESKXZEyx8eqqej084uaDVw8icjFSnJIQQYhA41uIKdwHv0linstzC2uqKSLHRFwiyec+xHoWpORPCV9iNzc9i/c3TsLt8tLp95Bh0mI26bp2dS/OzeOSW6aeLXwYteVn6SGErBGyuOX7GHJZIQ7kMjZolV5Rz/4JJON0Bsg0a2jwBMjSnb3BTA0uuKDvjGH/kFjgVsMBaxOI54/D4g2Ro1ZxwuLs9YdNDzy7encVEgACwYcuBmOMrX6jtdbz3PAORPJVy6FzLtdZRLJ4zPupalPKIvt/53Rr41Z9q69FNvLPIXJqfhU6j5lprcfccWj3ourwn8Xy+hBBCDAwpWIph5fHXD/KrbYcAWFtdwTVTB+7KLpfTAcB1X1/BxIqZfYpR+84bvPjMz3G73clMTYgBNzIng3MLsvn4hJOdn5zihmnFqU5JCCFEmrO3e3sUkyDc/Xvpxj1sWDQDtz/Yo2gFsK3uFMs31fDILdMpNBkozjUqFqA6r8w7U6PD3cscNpZvqmH9zdOi5gnh4teGRTNo9fhZGiUGhItsa6sros7RdRx6Fgoh3PV6xaYa1lZXJDwOKOapFEOtUimuRSmG0nsKRD1me8cx8bwngOLnS660FEKIgSMFSzFs/O6tz3j4//YD8MB1k7nlgjEpySO/eGyfu5431h9McjZCpM4l5+Rz4ISTQ7Y2jttd8hxZIYQQMdmc3qgFJwgXlWxOL75AMGphDMLFq+Y2b9Qi5NlobvPGnMPu8inm6VXIs9XtVxwHEo4xEHP0d57NbV7FOeJ5TwDFY6RgKYQQA0ea7ohh4Y3P2vnBX/YC8O0ryvjqvHNSnJEQIi9Lz+RR4efH7jwoHcOFEELE5nD7Yo63un04OgpkvceIPR5fHrFjtMaTpyv2MUrj8cRoTXR8gPJMdB0Otz8570kcxwghhBg4coWlGPIyJ81jwzt2QiH411lj+e7V56Y6JSFEh4vHj2Bfg4PDzS4ON7UzZkRmqlMSQgiRpkwGXczxHIMOXyCoECPxb3+UYuTEkWeGUp5G5RhKcpRiJGGOZOSpGENhPJ73NJ73JNEYQgghkksKlmJIO9quwnL9vxMMwRcvGMOPrp+CSqVSfqEQYkCYjDqmjjaz54idnZ+coiTPKOeoEEIMc711abZk66kst7C1l+cQWrL1uP1B5pbld+to3WluWT55WfqYc8QjL0sfcw6zUaeYZ6vHHzNGjkGrON75/4nEuHLSSCYXm5kxJjfSffv9+mZqj9kjcygdozSHWqVKOM943tNE35PO/1c6RgghxMCQW8LFkPXJSSdv27So1BouG2tkzUIrarUUQoRINxeNG4FWreK43c2np9pTnY4QQogUOtbiYsl/f8CVj75B1eNvcuUjb3D3f3/AsRYX5kw9a6srqCy3dHtNZbmFddUVmDPDXbxXV1mZW5bf7ZjObtGFJkPMOeKhNEdxrpEf3zQ16viPb5qKOVNPSV4mq3qJsarKGtd4MmL84PopfFDfzJ3PvMf/+8P73PH0u+yub+YH10+JzKF0jNIcxbnGhPNUek8LTYaYMYpzjYqfnXg+X0IIIQZOWl9h+aMf/YgHH3yw29cmTpzIvn37AHC73Xzve9/j2WefxePxMH/+fB5//HEKCwsjx9fX1/PNb36Tf/zjH2RnZ3P77bezZs0atNq0XrpI0Ke2NjbXNBBCRdtHr/Otm78kxUoh0lRWhpZpJbnsqm9m58FTjMvPlKsshRBiGIqnC3hxrpENi2Zgc3ppdfvIMeiwZHe/OrI0P4tHbplOc5sXh9uPyaAlLytczIxnjngKU7HmaHS4efBvHzK9NI+vzBmPxx8kQ6vmg8MtPPS3D1m9sAJ/IMivtx5k5U1TcfmCtLp85Bh1GHVqfr31IF+/rIyHYsT48U1WsvQann27njVVVpzeQCRGtl7DH9+u57ZZY/mVwhwrYnTnXn/zNEKhUMxj1lVXMDY/i7XVFbS6/ZH3JMegpSQvM/K+/vjvH0Vdy8q/f8TKKis/f/Vj7rtmEss16kie/kCQn7/6MT+8fkrM/e6cY/1L+/jKnPHcv2ASTneAbIOGEw4PD7+0L1K0VPrsxHOMEEKIgZH2VbspU6bw6quvRn7ftdD43e9+lxdeeIE///nPmM1mlixZwsKFC9mxYwcAgUCA6667jqKiIt58802OHz/Ov/7rv6LT6Vi9evWAr0UMjM9OtfH3muMEQiFGG4O8+fdH0fxoUarTEkLEMHNcHjVH7Zx0eqg74aS8MCfVKQkhhBhg8XQB77wSTqmA1HnVXV/niEdvczS3edmy7yRb9p2M+rrmNi8h4HdvH+Z3bx+OesyXLxnHa/tO8lovMf7d5cPlDfAfWz/hP7Z+EvWYG2aM5vdvH+b3MeaIdgs1nO6s3fn/vR3jcPsZDZHiZDQ2p5dXa0/wau2JqOPf+5yX5z44xnMfHIs6/q3LyyNXz/bW4d3m9PJCTQMv1DREHf/u1RPj/uzEc4wQQoj+l/YFS61WS1FRUY+v2+12nnzySf74xz9yxRVXAPDUU08xefJk3nrrLS655BJefvllPvroI1599VUKCwuZPn06P/7xj7n//vv50Y9+hF4f/S8ij8eDx+OJ/N7hcPTP4kTSfXqqjb/vOU4gGOIcSxbTjM28GYr9UHMhROoZdRpmlOby9qEmdn5yigkjs1OdkhBCiAE2EF2aB2YO5U7loVAo9jFxdN/WaWI/3Uuxu3YccyikGdd+Ke15oh2+45lDOnwLIcTgk/bPsDxw4ADFxcWcc8453HrrrdTX1wOwa9cufD4fV111VeTYSZMmUVpays6dOwHYuXMnVqu12y3i8+fPx+Fw8OGHH/Y655o1azCbzZFfY8aM6afViWT6xObk7/88XaxcYC1C7gIXYvCYUZqLQaemud3HR8flB0VCCDHcxNMFfHDMEfuaEJNBq9gZO57u24prScYcyegCrnBMol3X45lDOnwLIcTgk9YFy4svvpinn36al156if/4j//g0KFDzJs3j9bWVhoaGtDr9eTm5nZ7TWFhIQ0N4VsBGhoauhUrO8c7x3qzbNky7HZ75Nfhw9FvoxDp4+BJJy/sCd8GPmFkFtdaR6FVp/XHWwhxhgythovGjQDgrU9O4ZeLo4UQYljp7AIeTbK6NA/EHJ1dxKPp7Gpt6uh83dsxOQrjZqNOcS3JmEMphlKxEZT3PC8r8fdkIN5XIYQQAyutbwlfsGBB5P8rKiq4+OKLGTt2LP/zP/+D0Wjst3kzMjLIyMjot/giuQ6caOWlvQ0EQ1BekM38KUVo5NJKIQYla4mZ3YdbcLj91LXKDx2EEGI46ezSvHTjHrZ2ec5kMrs0n80c9nYvNqcXh9uHyajDktX92YZHm9txuP04XD7MxnCjmdF5mRSaDKypsrK9zkaByYDHH8Sg09BodzG3zBJ5DuPaKiutXj8hVLS6fB1XM4bI0WsjnbNXbKrp9gzJrl2vAdZWV/RoIjSvYy2jOrpz9xajs/v2jih5zimzROaIdczojmdX9rYX8ex5ockQ13sS6/0YiM9OvJQ+N0IIIeKT1gXLM+Xm5nLuuedSV1fH1VdfjdfrpaWlpdtVlo2NjZFnXhYVFfHOO+90i9HY2BgZE4Pfx42tvPRhA6EQTCzM4XPnFUo3cCEGMa1azawJ+fzfh43sd2hQG02pTkkIIcQAGoguzfHMcazF1aMQWFluYW11BcW5Rj471cbyM7pndxYCx+ZnEQQ21xxnW5fxeWX5zC47fRVgAFj5Qm3UGAAZGjVLrijv1vW6zRMgo8uzKwOBIAumFrF49rhI9+0TDjf+QPg2BYNGzYrrziMEke7bqo6vA4Si5mnplifRjim3MKfjGKW9iGfPVcAC6yhu77qO1tM9BZTej3hiDIR48hRCCBGfQVWwdDqdHDx4kH/5l39h5syZ6HQ6XnvtNaqrqwHYv38/9fX1zJo1C4BZs2axatUqTpw4QUFBAQCvvPIKJpOJ8847L2XrEMmxr8HByx82EgImF+Vw1XmFqFVSrBRisJtYmMP79S2cbPVgnvPlVKcjhBBigA1El+ZYc9jbvT2KThDuIr504x5WL7T2KNBBuGv2ik01rK2uiDq+rcu4WqWKGWNddQVLn6uJ2tG8stzChkUzcPuDLI0SA8IFw/U3T4u6js4Ya3pZx7Y6Gys21bD+5mlo1CqWRTvmgI3lMdbadR1dr7SMtuf2di/3xcjz4S9EX0fn+7Fh0QyAmDE2LJrR758ppc/NQOQghBBDSVoXLP/93/+d66+/nrFjx3Ls2DF++MMfotFoWLRoEWazmTvvvJN77rmHESNGYDKZuPvuu5k1axaXXHIJAJ/73Oc477zz+Jd/+RfWr19PQ0MDDzzwAN/61rfklu9Brva4g1c+Chcrzxtl4srJBVKsFCKJamtrU/JaAJVKxbwyC899cJScGQs4bPdxfkIRhRBCiPjZnN6ohS8IF59a3f6oRUIIF+riGQdiHuNw+2PmYHN68QWCMWPYXb6YMRwKedpdPlQKeSqt1eH2Mzrq6GlK+93cFnvc5vQCKB7T38VCpXUMRA5CCDGUpHXB8siRIyxatIhTp04xcuRI5s6dy1tvvcXIkSMB+OlPf4paraa6uhqPx8P8+fN5/PHHI6/XaDT8/e9/55vf/CazZs0iKyuL22+/nYceeihVSxJJ8OExO6/WngBgarGJKyYVoJJipRBJ4Wg6CcBtt92WcCyn09nn144ZkUmxMcgxl4an/9nKjZcnnI4QQggRF4fbF3vcldh4q9tHKBQ7h1aFHFrdPryB2EGUYsSTZ/hG6xjHxBUjNsX97ijwxppDYTvjyiNRSusYiByEEGIoSeuC5bPPPhtz3GAw8Nhjj/HYY4/1eszYsWPZvHlzslMTKVJz1M6WfeFiZcVoM5dNHCnFSiGSyOV0AHDd11cwsWJmn2LUvvMGLz7zc9xud0K5WHP9HHWq+KAB/rH/BJdPLEgonhBCCBEPk0EXe9yY2HiOQvx4jskx6PB1PKeyrzHiyVPpX9k5SVir4n4rdCJPxn4mg9I6BiIHIYQYSqQFqxg0/nm4JVKsnD4mV4qVQvSj/OKxlJRP6dOvEUUlSckhWweO9/4KwMq/f4TXH/sbMyGEECIZLNl6KsstUccqyy3kGLTMLcuPOj63LD+ucbNRF/MYk0EbMwdLtp68LH3MGGajLmYMk0KeZqNOcQ6ltSoVG0F5v/OyYo9bsvWKMSzZ/X8rdjrkIIQQQ4kULMWg8N6nTbz+cfhW1fNLc6kst0ixUohhwP7mnzBnqDl4so2ndhxKdTpCCDGk2du9HDzh5IP6Zg6edGJv96YkRqqZM/Wsq65gzUIrT95+AY/fej6/WXwhaxZaWV9dQUleJquqrD0KdZ2dseMZL841xjxmdF4ma6srehTAKsstrKuuwJypp9BkYE2VlTVVZ+TZ8bXiXGPMGKM78px3RkfweWUWVnW8vtBkYHWVlXln5DmvLJ/Vcay1s+GO0n7HyrPQZFDcC6UYA/HsyGTmMBTOIyGESFRa3xIuBMDeFg37HeGHeV84Lo9Z5+RLsVKIYSLkbedfp+Ww4R07P3/tADdML2aU2ZjqtIQQYsg51uLq0eG4stzC2uoKinPj+3M3GTHSRQjYvOc42+q6r+XSc8PP0s/QqFlyRTn3L5iE0x0g26ChzRMgQxO+HmRsfhZrqytodftpdfvIMejIMWgp6VLA0wIrrptMCBWtLh85Rh0qQpFv0IpzjWxYNAOb0xuJYcnu3mk7CGyuOca2Lo1v5pXlM7ujgKgUQw0ssBaxeM44PP4gGVo1Jxzuble16DRqrrUWs3jO+NPHtHrQdVnruuoKHF3WajJo4ypWdlLKM569iOeY/paMHIbSeSSEEImQgqVIW8FQiLwr72K/QwPAnLJ8Lhg7IsVZCSEG2mVjjbx1Qs27nzbz479/xOO39u3ZmkIIIaKzt3t7FEgg3Nl46cY9bFg0Q7HgkowY6SKylrroa3n4C9O4N8paIVxY6lxrSYyCXaPDzX2baqJ22J5bls8jt0yn0GSIXD0YzbEWF8ujxNhWd4oVm2pYf/M0inONvcZodLhZqpCDQavmvjjWOjovU7EbuJJYa41nPN5j+lsiOQyl80gIIRIlt4SLtOQPBHnsXTumC24AQlw+caQUK4UYplQqFQ/dOBWNWsXmmgbe6Hg8hBBCiOSwOb1RC1IQLpTYnMq3oyYjRrpQWktzW+JrbW7zRi0UAmyvO0Vzm3IMu8sXM4ZdoYN3PDkMpfd1MJD9FkKI06RgKdKO1x/k289+wD8+dREKBrgwP0BFSW6q0xJCpNDkUSZunzUOgAeer6Hd609tQkIIMYQ43LELW60K48mKkS6U1uJwx/47KL79ih1DaRzAoVCQVMojnhyG0vs6GMh+CyHEaVKwFGnF5Q1w1+/eY3NNA1o1nHx+LaVZ0hlYCAH3fO5cis0GDje5ePTlj1OdjhBCDBkmgy7meI7CeLJipAultSh1vo5vv2LHiKe7tsmY2J7Hk8NQel8HA9lvIYQ4TQqWIm20un3c/tQ7vL7/JAadmuVzR+A6sDPVaQkh0kR2hpZVVVYAfrPjEP883JLahIQQYoiwZOt7dDbuVFluwZKt/My8ZMRIF0pryctKfK15WfoenbU7zS3LJy9LOYbZqIsZw6xQ0Iwnh6H0vg4Gst9CCHGaFCxFWjjhcPOl/3qLdw41kZOh5Xd3Xsz0ooxUpyWESDOXTyrgxunFBENw/8Y9eP1yBbYQQiTKnKlnbXVFj0JJZbmFddUVcTX5SEaMgWRv93LwhJMP6ps5eNKJvf30swE71zLvjLXM61hLockQ11obHW72HXfwzqEm9jU4aHS4I8cWmgysrrL2KBjOLctndZWVQpNBcQ3FuUZW9RJjVZU10lG6tzziycGcqWdddQVrFlp58vYLePzW8/nN4gtZs9DK+jR8Xwe7wXYeCSFEf5Iu4SLl6k44uf0373C0xUV+lp5n7riIqaPNvN/0aapTE0KkoR98/jy2fnySfQ2t/HLLAe753MRUpySEEINeca6RDYtmYHN6aXX7yDHosGSfXbfjZMQYCMdaXD06MVeWW1hbXREp8gUCQRZMLWLx7HF4/EEytGpOONz4A+EflCmttf5UG8vO6MDdWQgszc8CoDQ/i0dumU5zmxeH24/JoCUvSx9XsbLT2Pws1t88DbvLF8nDbNRF1qGURzw5hIDNe45365peWW7h0nNHxp2niN9gOY+EEKK/ScFSpNR7nzbx1d++R0u7j/GWLJ7+yoWM7fhHnBBCRJOfncGPb5rKkj9+wGOvH+TySQXMKM1LdVpCCDHomTMTL4okI0Z/srd7exQrIdyBeenGPWxYNAO3P8jSM4p8neaW5fPILdMjVx9GW2ujw92jSAjhztvLN9VEXg/hqxzPpkAZTXGuMVKg7EsesXKI7Fdd7/uVzu/3YJXu55EQQgwEKViKlHlpbwP/9uwHePxBpo/J5cnbLyA/u39uA6+trU3p64UQyfX5imJe/rCRv/7zGN/7n3/ywrfnYdRrUp2WEEKINGdzensUKzttPWDD5vTiCwSjFishXOxrbvPGLDI2t3kTen2yJCOPePZLCmtCCCH6gxQsRUr8duen/PCvHxIKwVWTC9iw6Px+KTY4mk4CcNtttyUlntPpTEocIUTiHrpxCm99copPbG2sebGWh26cmuqUhBBCpDmH2xdzvNXtwxsIKcTw9+t4siQjj3j2SwghhOgPUrAUAyoYDLH+//bzxBsHAfjyxaU8dMMUtJr+6f/kcjoAuO7rK5hYMbPPcWrfeYMXn/k5brdb+WAhxIDIzdSz/uYKFj/1Lr/d+Rnzykdy9XmFqU5LCCFEGjMZYnfOzjHo8AViN3QzGWJ/C5XoeLIkI4949ksIIYToD1KwFAPG6w9y3//+k+d3HwPg3z93Lt+6jnMolwAAL5ZJREFUvAyVStXvc+cXj6WkfEqfX99YfzCJ2QghkuWyiQXcOXc8T24/xL3/+09e/Ld5jDL3fI6XEEIIAWDJ1lNZbmFrlNucK8stWLL1uP1B5pbls72XZ1jmZcW+BTovS5/Q65MlGXnEs19CCCFEf+ify9qEOEOr28dXnn6H53cfQ6NW8fDNFSy5onxAipVCiKHtvmsmMnW0iZZ2H995djeBYPdb+err63n//fcT+lVfX5+i1Qkh0sHWrVu5/vrrKS4uRqVS8fzzz/c4pra2lhtuuAGz2UxWVhYXXnhhtz873G433/rWt8jPzyc7O5vq6moaGxsHcBVDh73dy8ETTj6ob+bgSSf2dm/crzVn6llbXUFluaXb1yvLLayrrsCcGe6QvbrKytyy/G7HdHbXVnru49m8/mhzO7XHHbz9ySn2HXdwtLk97rUoiTePWPsZz34JIYQQ/UGusBT9rtHhZvFT71J73EGmXsN/3DaTS88dmeq0hBBDRIZWw4ZF5/P5X2zj7UNNPPrKfu6dPwkIFysnTZ6Mqz2xbwCNmZnsq62ltLQ0GSkLIQaZtrY2pk2bxh133MHChQt7jB88eJC5c+dy55138uCDD2Iymfjwww8xGE4Xpr773e/ywgsv8Oc//xmz2cySJUtYuHAhO3bsGMilDHrHWlw9unxXlltYW10RtVN2NMW5RjYsmoHN6aXV7SPHoMOS3b0rc2l+Fo/cMp3mNi8Otx+TQUtelj7uZjnxvP6zU20sP6OL99yyfFZVWRmbnxXXPInmEc9+xrNfQgghRLJJwVJEVV9fj80WvSNgvCwWC56MPBY/9S5HW1xYsjN4avGFWEvMScpSCCHCxluyWL3Qyr89u5vH/nGQaSW5fG5KETabDVd7O7fe/zCFpRP6FLux/iB/WHcvNptNCpZCDFMLFixgwYIFvY6vWLGCa6+9lvXr10e+NmHC6T9z7HY7Tz75JH/84x+54oorAHjqqaeYPHkyb731Fpdcckn/JT+E2Nu9PYprEO5WvXTjHjYsmhF3Ec2cqVxwKzQZEurmHev1R5vbexQrIdy9e8WmGtZVVzA6L7PPc8eTx9nsZzz7JYQQQiSTFCxFD8m6IslUdj5jvrwSpyfIOZYsnrnjIsaMSM4/vIQQ4kw3Th/NB/UtPP3mp3zvf/7JX+/OiYwVlk5I6Dm2QgjRm2AwyAsvvMB9993H/Pnz+eCDDxg/fjzLli3jpptuAmDXrl34fD6uuuqqyOsmTZpEaWkpO3fu7LVg6fF48Hg8kd87HI5+XUu6szm9PYprnbYesGFzegdNUc3h9vcoVnbaXncKh9vP6H7OYSjtpxBCiKFHCpaih2RckfRh/Qlq/QU4PUHOL83l17dfyIgBesC4EGL4WnHdZPYetfPeZ818/Xfv8YPZybmlTgghenPixAmcTidr165l5cqVrFu3jpdeeomFCxfyj3/8g0svvZSGhgb0ej25ubndXltYWEhDQ0OvsdesWcODDz7YzysYPBxuX8zxVoXxdOJwpX4tQ2k/hRBCDD1SsBS96usVSXuP2tmHDpVWxUXFGTzz1Usw6jX9kKEQQnSn06h5/Nbz+fyG7Xzc6OTRnT5QSX85IUT/CQaDANx4441897vfBWD69Om8+eabPPHEE1x66aV9jr1s2TLuueeeyO8dDgdjxoxJLOFBzGTQxRzPURhPJyZj6tcylPZTCCHE0CPfxYmkCYVCvPdpE6/tOwGoaP3n/3Hv7DwpVgohBlSBycCvb78Ag07N+w0e8q64M9UpCSGGMIvFglar5bzzzuv29cmTJ0e6hBcVFeH1emlpael2TGNjI0VFRb3GzsjIwGQydfs1nFmy9T26VXeqLLdgyR48d/OYDNoe3bs7zS3Lx2To/+tKhtJ+CiGEGHqkYCmSIhQKsb3Oxo6D4WfxTDQFaHppAxq1KsWZCSGGo4qSXB69ZToApgtu5GCr/HUnhOgfer2eCy+8kP3793f7+scff8zYsWMBmDlzJjqdjtdeey0yvn//furr65k1a9aA5juYmTP1rK2u6FFkqyy3sK66YsCft2hv93LwhJMP6ps5eNKJvd0b92tH52Wyqsrao2jZ2SU8WQ13Ykm3/RRCCCG6klvCRcKCwRCv7muk9ngrAPPKLBR4j/FyivMSQgxv11pH8eWpOfxxbyu7mzUUN7ZSXpij/EIhhDiD0+mkrq4u8vtDhw6xe/duRowYQWlpKffeey9f/OIXqays5PLLL+ell17ib3/7G6+//joAZrOZO++8k3vuuYcRI0ZgMpm4++67mTVrlnQIP0vFuUY2LJqBzeml1e0jx6DDkj3wHayPtbh6dNiuLLewtrqC4lxjXDHG5mexrroCh9sfWYvJoB2QYmWndNlPIYQQ4kxSsBQJCQRDvLS3gbqTTlQquGpSIecVmzhy4FiqUxNCCKonZ/Gfv/1vcs7/PP/3YSMGnYYxIwbuG0EhxNDw3nvvcfnll0d+3/lcydtvv52nn36aqqoqnnjiCdasWcO3v/1tJk6cyMaNG5k7d27kNT/96U9Rq9VUV1fj8XiYP38+jz/++ICvZSgwZ6a2oGZv9/YoVkK4s/bSjXvYsGhG3PmNzsvs927gSlK9n0IIIUQ0UrAUfRYIhnhx73EOnmxDo1KxwFrEhJHZqU5LCCEiVCoVTa/+F5PmXMtRl5q/7TlG1YzRjDLHd/WLEEIAXHbZZYRCoZjH3HHHHdxxxx29jhsMBh577DEee+yxZKcnBpjN6e1RrOy09YANm9MrBUAhhBAiQfJQL9EngWCIzTUdxUq1is9PGyXFSiFEegoFudDiZ0yeEV8gxPMfHKPB7k51VkIIIQYph9sXc7xVYVwIIYQQyuQKS3HW/MEgm2saOGQLFyuvrxjF2PysVKclhBiiamtrE36tRgXXTyvmL7uPcbTFxabdR6maMZoikyFZaQohhBgmTAZdzPEchXEhhBBCKJOCpTgrUqwUQgwUR9NJAG677baEYzmdTko0am6YVsxfdh/lmN3NpvePcv20UZQMYHMDIYQQg58lW09luYWtUW4Lryy3YMmW28GFEEKIREnBUsTNHwzywp7jfHqqXYqVQoh+53I6ALju6yuYWDGzTzFq33mDF5/5OW53+BZwvVbNjdNH87c9xzjS7OL53ce41lrEORZ5pIUQQgwl9nYvNqcXh9uHyajDktW9sUyjw01zmxeH24/JqCUvU09hnFfdmzP1rKuu4PWPT1KQk4HHH8Sg09DocHP5uSPl+ZVCCCFEEkjBUsTFHwjyQk24WKlVq7h+WjGl0mlXCDEA8ovHUlI+pU+vbaw/2ONreq2aG6cV8+LeBj6xtfH3Pce5YmIBU0ebE01VCCFEGjjW4urRxbuy3MLa6gqKc43Un2pj2aYadtSdiozPLctndZWV0jh/GB8CNu85zra67nNceu7IpK1DCCGEGM6k6Y5Q5A8E+XuXYuUNUqwUQgxyWo2aa62jmFyUQygEr+07wfY6m2IXYCGEEOnN3u7tUayEcPfupRv3cKzF1aNYCbC97hTLN9XQ6FBuyhaZoy76HPZ2b+ILEUIIIYY5KViKmPyBIH/bc5zPuhQrx0ixUggxBGjUKq4+r5CLx48AYNdnzbxQcxyPP5DizIQQQvSVzentUazstPWADbvL16NY2Wl73Sma25SLjUpz2JxSsBRCCCESJQVL0atAEP625zj1TeFi5Y3TpVgphBhaVCoVl5yTz/zzCtGoVBw82caf3j3MKacn1akJIYToA4fbF3vcpTDu9ic8R6vCuBBCCCGUyTMsRVQqXQY7Tmo56WlHp1Fx47TRjM4znnWc2traPueQyGuFEOJsTBplIjdTzws1x2lu9/Gn9w5z+cQCJhXlpDo1IYQQZ8Fk0MUeNyqMG5S/PVKaI0dhXAghhBDKpGApemjzBim45cec9Kj7XKx0NJ0E4Lbbbks4H6fTmXAMIYRQUmQ2sOiiMby4t4EjzS5e/qiRT0+1MUm+7xRCiEHDkq2nstzC1ii3bFeWWzAbdcwty2d7lNvC55blk5el3OFbaQ5LtnQJF0IIIRIlBUvRzSmnhx+8fgpDyXnoVCGqZpQwynz2V1a6nA4Arvv6CiZWzOxTLrXvvMGLz/wct1v54edCCJEMmXotVTNG896nzbx16BQfNzo5otFhGDcj1akJIYSIgzlTz9rqCpZu3NOtoFhZbmFddQWjco2srrKyfFNNt6JlZ5fwQpMh4TnMmVKwFEIIIRIlBUsR0ehwc+uv3+ZQi59AWwtXTsjqU7Gyq/zisZSUT+lbPvUHE5pbCCH6Qq1ScdH4EYwZYeT/PmzE7vJR+MUf89i7LTwyyUuufCMqhBBprTjXyIZFM7A5vbS6feQYdFiy9ZFCYml+Fo/cMp3mNi8Otx+TQUtelj6uYmW8cwghhBAiMVKwFAAcbmrn1l+/TX1TOyOMamp+tZTcH/8i1WkJIUTKjDIb+fJFpby862PqWlW8dsjFZT95ne9dfS6LLipFq5G+dUIIka7MmbGLh4Umw1kVKPsyhxBCCCH6Tr7bEuw9aufmJ96kvqmd0hGZrLo8H3/TkVSnJYQQKafXqpk+IkDjH5ZSatbS0u7j+3/5kOt+sZ0ddT2fXSaEEEIIIYQQInFyheUw98pHjXz7vz/A5QtQXpDN7796MUfrPkp1WkIIkVY8Rz/ikast7PPl88grH7O/sZVbf/02V59XyNIFk5gwMlsxRn19PTZbYkVOi8VCaWlpQjGEEEIIIYQQIt1JwXKYCoVC/GrbJ6x5cR+hEMwts/DYredjNuo4murkhBAiDWnUKv5l1jiun1bMz149wO/e+oxXPmrktdpGrp9WzJLLyygvzIn62vr6eiZNnoyrvT2hHIyZmeyrrZWipRBCCCGEEGJIk4LlMOQLBPn+83t59t3DAHz54lIevGEKOnkemxBCKMrN1POjG6Zw68WlrHtpP6/WNvKX3cf46z+Pce3UUSy5oozJo0zdXmOz2XC1t3Pr/Q9TWDqhT/M21h/kD+vuxWazScFSCCEGgL3di83pxeH2YTLqsGR1f2al0rgQQggh+k4KlsNMU5uXJX98nzcPnkKtggeuO4+vzBmHSqVKdWpCCDGolBfm8OvbL2DvUTu/3FLHSx828ELNcV6oOc5Vkwu4Y+54Zp2T3+3P18LSCZSUT0lh1kIIIeJxrMXF/Rv3sO3A6Ud5VJZbWFtdQXGuUXFcCCGEEImRS+qGkfc+beLan2/jzYOnyNJr+PXtF3DH3PFSrBRCiARMHW3miX+ZyUvfmcd1FaNQqeDV2hN8+Vdvs+Dn2/if9w7jDYRSnaYQQog42du9PYqRAFsP2Fi6cQ+NDnfMcXu7dyDTFUIIIYYkucJyGOh8XuW6l/YTCIY4Z2QW/3HrTCYWRX/WmhBCiLM3qcjEY18+n4MnnTy941P+d9cR9jW0ct//7sGUocY898u4A6nOUgghhBKb09ujGNlp6wEbzW2xx21Or9waLoQQQiRICpZDXEu7l3//8z95tfYEADdOL2ZVlZXsDHnrhRCiP0wYmc2Pb5rKv39uIs++W88zb37KMbub3DlfZvPREJMCDUwfk0uByZDqVIUQQkThcPsUxv0xx1sVXi+EEEIIZVK1GsJ2fdbEt/97N0dbXOi1an54/Xl8+aJSuQVcCCEGgDlTx9cvncCdc8fzxN93svLPb2IoOY/ahlZqG1opzjUwfUwuEyzZqNXy57IQQqQLk0GnMB77W6gchdcLIYQQQpk8w3II8gWCPPryfr7wxE6OtrgYm5/Jc9+cza0Xj5VipRBCDDCtRs3sMUYa/3Aflxf6OLcwG7UKjrW42VzTwNM7P2XXZ814fHK/uBBCpANLtp7KckvUscpyC3lZscct2XI7uBBCCJEoKVgOMYdsbdz8xE5+saWOYAgWzhjN3+6ey9TR5lSnJoQQw96IjBALpo7iK7PHc+G4PAw6Na1uP9vrbDy54xD/2HeC5jZp1iCEEKlkztSztrqiR1GystzCuuoKCk2GmOPD8fmV9nYvB084+aC+mYMnndJ4SAghRMLklvAhIhQK8ey7h3nobx/h8gUwGbSsqrJy/bTiVKcmhBDiDNkGLbMnWLho3Aj2Nbayu76FU21e9hy1s+eonbH5mcwYk0vpiEy5Ml4IIVKgONfIhkUzsDm9tLp95Bh0WLL1kWKk0vhwcqzF1aNremW5hbXVFRTnGlOYmRBCiMFMCpZDwCmnh6XP1fDKR40AzJ6QzyO3TGOUWf6BIIQQyVJbW5v012o1aqYWm5kyysSRZhcfHG7hkK2Nz06189mpdkZk6pk2xszkUaY+zy2EEKJvzJmxC5BK48OBvd3bo1gJ4W7pSzfuYcOiGcN+j4QQQvSNFCwHuX/sP8G9f96DzelBr1Fz7/yJ3Dl3vDRwEEKIJHE0nQTgtttuSziW0+mM+nWVSsWYEZmMGZFJS7uXfx628+FxO03tXv6x/yRvHjzFWKMGjWlkwjkIIYQQyWJzensUKzttPWDD5vRKwVIIIUSfSMFykHL7AqzZXMszOz8D4NzCbH72xRmcVyxX4QghRDK5nA4Arvv6CiZWzOxTjNp33uDFZ36O2+1WPDY3U8+lE0dyyYQRfHTMwT+P2LG7fHzcqmH013/N+jeb+W7uKS4aP0JuFxdCCJFSDrcv5nirwrgQQgjRGylYppn6+npstug/pez0SbOPn73dwhGHH4DryjO5zZqNu6GO9xvA4/GQkZHR5xwSue1RCCGGqvzisZSUT+nTaxvrD571azK0GmaU5jFtTC6f2tp4a/9RTno0vHXEzRf/6y2mFJtYPHsc108rxqDT9CkvIYQQIhEmgy7meI7CuBBCCNEbKVimkfr6eiZNnoyrvT36ASo1pguryK28DZVGh9/ZxKnNP+PxQ+/zePcDgVDC+fR266IQQoiBo1apOGdkNvoWPxt++B1uX/U02w67+fCYg3v/dw9rX9zHly8u5ZYLxjBmRGaq0xVCCDGMWLL1VJZb2BrltvDKcguWbLkdXAghRN9IwTKN2Gw2XO3t3Hr/wxSWTug21u6Hd09psXnUABQbg5w/OpuM8x7odlznbYcDdeuiEEKIgeOz1fPNC8ysv3UOz757mN/t/JRjdjcbttSxYUsdc8ryueWCMcyfUiRXXQohhOh35kw9a6srWLpxT7eiZWW5hXXVFfL8SiGEEH0mBcs0VFg6odtth/sbWtmy/wRefxCdRsWl547kvFGmqM8u67ztcKBvXRRCCDFw8rL0fPOyCXxt3nhe/qiR/36nnu11NnbUnWJH3SlMBi03Th/NjdOLOb80TxqxCSGE6DfFuUY2LJqBzeml1e0jx6DDki0d1IUQQiRGCpZpzOUL8Pr+E3zcGL41u8hkYP6UQnLlL38hhBCAVqPmWusorrWO4nBTO/+76wj/u+sIR1tc/O6tz/jdW59RbDZwXcUoPl9RTEWJWRr1CCGESDpzphQohRBCJJcULNNU3QknW/adwOULoFLBReNGcNG4EXKVjBBCiKjGjMjku1efy7evLGdHnY3nPzjKyx81cszu5lfbDvGrbYcYM8LIJSWZTM0LMcmiR6fp298pFouF0tLSJK9ACCGEEEIIIcKkYJlm1EYTb9s0HKk/DsCILD1XTy6kyGxIcWZCCCEGA41aReW5I6k8dyRuX4DX95/k73uO8VrtCQ43uTjc5OLPQNDThuvQ+7jq3sX96QcE2prjnsOYmcm+2lopWgohhBBCCCH6hRQs08ibh10U3/k4R9o1qFRwwdg8Lho/Aq1anerUhBBCpIna2tqzOr4AuGMSfLnMwt/e+4RfvfAmedbL8WVkkTVpHlmT5gGQrQ0x0hCkICOExRDE0EvPnsb6g/xh3b3YbDYpWAohhBBCCCH6hRQs08Teo3Z+srMFTVYuJl2Qa6ePpdAkV1UKIYQIczSdBOC2225LONbCypnkTZjGIVsbn55q40SrB6dfhdOp4VD4scmYjTqKTAYKTRkUmgwU5GSg1cgP0IQQQgghhBD9TwqWaWLqaDNXn2Pkz79/ipu+uFCKlUIIIbpxOR0AXPf1FUysmNmnGLXvvMGLz/wcj8dNkdlAkdnArAn5uH0Bjra4ONLs4khzOzanF7vLh93lY39jKwAqFYzI1GMMaTDP+iJvH3WTV9pG6YhMNPJ8ZSGEEEIIIUQSScEyjXxjpplff/33aL60MNWpCCGESFP5xWMpKZ/Sp9c21h+M+nWDTsOEkdlMGJkNgNsXoNHhptHhocHhptHhpt0b4FSbF9CQW/kvrNvRzLodr6PXqBkzwsi4/CzG5mcxzpLJ2PwsxudnUZxrkKsyhRBCCCGEEGdNCpZpRKWSK1SEEEKknkGnYWxHARIgFArh9PixOb188lk9b23fSsW8z3G0NYjHH+TgyTYOnmzrEUerVjEq10BJbiaj84yMzjUyOs9ISZ6RktxMiswG9FopaAohhBBCCCG6k4KlEEIIIWJSqVTkGHTkGHTomoO88MKj3LnofM6dOIlTrgANzgDHnf5u/21w+vEGQpHO5FHjAnlGNSMzNVgyNeQa1OQZNJgNavIManIN4a+ZM9RRbzu3WCzS+EcIIYQQQoghaFgVLB977DEefvhhGhoamDZtGhs2bOCiiy5KdVpCCCHEoBF/8x8VmpwRaE2FaM0FaEwj0ZrD/681jURjKkCty6DJFaTJFWT/KV+vkUKhICFPO0FPO0FvO0FPG0FPO2q/hy8uvIFRljxyDFpMBi3ZBi2Zei1Zei1ZGRqyMrRk6jUdv9fKFZ1CCCGEEEIMAsOmYPmnP/2Je+65hyeeeIKLL76Yn/3sZ8yfP5/9+/dTUFCQ6vSEEEKIQSFpzX8e/Sbzv/EjRp07jfYAuPwq3EEVngC4AyrcAfAEVLiDoFKpURmyURuye8T6y4dNQFPcc2vVYNCqMGhVGLVq9OoQmXpNx+9VGLTq0+M6Vcf/qzvGVJH/ZmhV6NQq9BoVowotTBg3Vh7tIoQQQgghRJIMm4Llo48+yte+9jW+8pWvAPDEE0/wwgsv8Jvf/IalS5emODshhBBicElG85/CUcVUTD0v5rHBUAi3L4DHF35epjcQxOMP8OnHtWzf/L+oM7JQZ2SizshElZGFWm9EpTei1hnC/9UbUekMqHUZAPiD4PSGcHpDQLBjlkCf1tFlRaj4EJ0G9BpV5FdnQVPf8XWdRoVeHf6vVg0alQqNOvysz+wsIzdeWMYl5+QnmIsQQgghhBCD37AoWHq9Xnbt2sWyZcsiX1Or1Vx11VXs3Lmzx/EejwePxxP5vd1uB8DhcPRrnk6nE4AjBz7E42rvU4zObwIbPv2Yg1mZEiMJMdIpF4khMYZLjHTKRWKkXww14Duwg9b3/sKFC75IyfiiLqPejl/hv7sJhH+F3BBATQANQdQEVGoaDn/GgZpdlF14ObkFowigIYCaoEpNMPL/qtOvQU1ApSGEmiBqgqigy1WVAcDdpx0Jywi6Oc8yI4EIsXX+OyYUCvXbHKJ/db53/f1vUiGEEEKI/nA2/x5VhYbBv1qPHTvG6NGjefPNN5k1a1bk6/fddx9vvPEGb7/9drfjf/SjH/Hggw8OdJpCCCGEEP3u8OHDlJSUpDoN0QdHjhxhzJgxqU5DCCGEECIh8fx7dFhcYXm2li1bxj333BP5fTAYpKmpifz8/EH7fCqHw8GYMWM4fPgwJpMp1emIPpL3cWiQ93Hwk/dwaBhu72MoFKK1tZXi4uJUpyL6qLi4mMOHD5OTk5PSf5MOt3Onv8l+JpfsZ3LJfiaX7GdyyX4m10Ds59n8e3RYFCwtFgsajYbGxsZuX29sbKSoqKjH8RkZGWRkZHT7Wm5ubn+mOGBMJpOcyEOAvI9Dg7yPg5+8h0PDcHofzWZzqlMQCVCr1Wl1dexwOncGguxncsl+JpfsZ3LJfiaX7Gdy9fd+xvvvUXW/ZZBG9Ho9M2fO5LXXXot8LRgM8tprr3W7RVwIIYQQQgghhBBCCJFaw+IKS4B77rmH22+/nQsuuICLLrqIn/3sZ7S1tUW6hgshhBBCCCGEEEIIIVJv2BQsv/jFL3Ly5El+8IMf0NDQwPTp03nppZcoLCxMdWoDIiMjgx/+8Ic9bnUXg4u8j0ODvI+Dn7yHQ4O8j0L0jZw7ySX7mVyyn8kl+5lcsp/JJfv5/9u796AorzOO47/lKhcFYyILVBREBRJLUUcGtYFNMepkMmoyNqFoMcZk0qoRJia2Ta2ZOoZoUlKjqaSZVFO1aU0mtQ0WiRfAgBQwxbYmqRol0jGoMwYiKBdhT//KTlcwQVjcRb+fmf2Dc949+7zneF6fefbdXdfytPm8JX4lHAAAAAAAAMDAcEt8hyUAAAAAAACAgYGCJQAAAAAAAACPQcESAAAAAAAAgMegYAkAAAAAAADAY1CwvIk899xzslgsTo+4uDhHf2trq5YsWaJhw4YpODhYDz74oM6dO+fGiHEtZ86c0fz58zVs2DAFBARo/PjxOnz4sKPfGKNf/OIXCg8PV0BAgNLT03XixAk3RoyrjRo1qst+tFgsWrJkiST240DR2dmpVatWKTo6WgEBARo9erTWrFmj//+9Ovaj52tqalJ2drZGjhypgIAATZkyRdXV1Y5+1hDoirzS9cjvXIc8y7XId1yP3KP3Dh48qPvvv18RERGyWCzatWuXU39P5u6LL75QZmamhgwZotDQUD366KNqbm6+gWfhOb5pPt99913de++9GjZsmCwWi44cOdJlDHddUylY3mTuvPNO1dfXOx5lZWWOvpycHL333nt6++23VVpaqs8//1wPPPCAG6NFdxoaGjR16lT5+vqqsLBQH3/8sX71q19p6NChjmPWr1+vV155Rfn5+aqsrFRQUJBmzJih1tZWN0aO/1ddXe20F/fu3StJmjdvniT240Cxbt06bd68WZs2bdInn3yidevWaf369dq4caPjGPaj51u8eLH27t2rbdu26d///rfuvfdepaen68yZM5JYQ+BayCtdh/zOtcizXIt8x/XIPXrv0qVLSkxM1Kuvvtptf0/mLjMzUx999JH27t2rgoICHTx4UI8//viNOgWP8k3zeenSJU2bNk3r1q275hhuu6Ya3DRWr15tEhMTu+1rbGw0vr6+5u2333a0ffLJJ0aSqaiouEERoidWrlxppk2bds1+u91urFarefHFFx1tjY2Nxt/f37z11ls3IkT0wvLly83o0aON3W5nPw4g9913n1m0aJFT2wMPPGAyMzONMezHgeDy5cvG29vbFBQUOLVPmDDBPPvss6whcA3kla5Ffte/yLP6hnzHtcg9XEeS+fOf/+z4uydz9/HHHxtJprq62nFMYWGhsVgs5syZMzcsdk909Xz+v9raWiPJ1NTUOLW785rKHZY3mRMnTigiIkIxMTHKzMxUXV2dJOnDDz/UlStXlJ6e7jg2Li5OUVFRqqiocFe46MZf//pXTZo0SfPmzdPw4cOVlJSk119/3dFfW1urs2fPOq1lSEiIkpOTWUsP1d7eru3bt2vRokWyWCzsxwFkypQp2r9/v44fPy5J+uc//6mysjLNmjVLEvtxIOjo6FBnZ6cGDRrk1B4QEKCysjLWEPga5JWuQ37Xf8iz+o58x7XIPfpPT+auoqJCoaGhmjRpkuOY9PR0eXl5qbKy8obHPNC585pKwfImkpycrK1bt2rPnj3avHmzamtr9d3vfldNTU06e/as/Pz8FBoa6vScsLAwnT171j0Bo1unTp3S5s2bNWbMGBUVFelHP/qRnnzySb355puS5FivsLAwp+exlp5r165damxs1MKFCyWJ/TiA/OQnP9HDDz+suLg4+fr6KikpSdnZ2crMzJTEfhwIBg8erJSUFK1Zs0aff/65Ojs7tX37dlVUVKi+vp41BK6BvNK1yO/6D3lW35HvuBa5R//pydydPXtWw4cPd+r38fHRbbfdxvz2gjuvqT79OjpuqK/eAZOkb3/720pOTtbIkSO1c+dOBQQEuDEyXA+73a5Jkybp+eeflyQlJSXp6NGjys/PV1ZWlpujQ2+88cYbmjVrliIiItwdCq7Tzp07tWPHDv3hD3/QnXfeqSNHjig7O1sRERHsxwFk27ZtWrRokSIjI+Xt7a0JEyYoIyNDH374obtDAzwWeaVrkd/1H/KsviPfcT1yD6DvuMPyJhYaGqqxY8fq008/ldVqVXt7uxobG52OOXfunKxWq3sCRLfCw8OVkJDg1BYfH+/4GNZX63X1r3Kxlp7p9OnT2rdvnxYvXuxoYz8OHE8//bTjroPx48drwYIFysnJUW5uriT240AxevRolZaWqrm5Wf/9739VVVWlK1euKCYmhjUEeoi8sm/I7/oHeZZrkO+4HrlH/+jJ3FmtVp0/f96pv6OjQ1988QXz2wvuvKZSsLyJNTc36+TJkwoPD9fEiRPl6+ur/fv3O/qPHTumuro6paSkuDFKXG3q1Kk6duyYU9vx48c1cuRISVJ0dLSsVqvTWl68eFGVlZWspQfasmWLhg8frvvuu8/Rxn4cOC5fviwvL+f/Kr29vWW32yWxHweaoKAghYeHq6GhQUVFRZo9ezZrCPQQeWXfkN/1D/Is1yDf6T/kHq7Vk7lLSUlRY2Oj092sBw4ckN1uV3Jy8g2PeaBz6zW1X3/SBzfUU089ZUpKSkxtba0pLy836enp5vbbbzfnz583xhjzxBNPmKioKHPgwAFz+PBhk5KSYlJSUtwcNa5WVVVlfHx8zNq1a82JEyfMjh07TGBgoNm+fbvjmBdeeMGEhoaav/zlL+Zf//qXmT17tomOjjYtLS1ujBxX6+zsNFFRUWblypVd+tiPA0NWVpaJjIw0BQUFpra21rz77rvm9ttvN88884zjGPaj59uzZ48pLCw0p06dMu+//75JTEw0ycnJpr293RjDGgLdIa90LfI71yPPch3yHdcj9+i9pqYmU1NTY2pqaowkk5eXZ2pqaszp06eNMT2bu5kzZ5qkpCRTWVlpysrKzJgxY0xGRoa7Tsmtvmk+L1y4YGpqaszu3buNJPPHP/7R1NTUmPr6escY7rqmUrC8iTz00EMmPDzc+Pn5mcjISPPQQw+ZTz/91NHf0tJifvzjH5uhQ4eawMBAM3fuXKd/hPAc7733nrnrrruMv7+/iYuLM7/97W+d+u12u1m1apUJCwsz/v7+5nvf+545duyYm6LFtRQVFRlJ3a4N+3FguHjxolm+fLmJiooygwYNMjExMebZZ581bW1tjmPYj57vT3/6k4mJiTF+fn7GarWaJUuWmMbGRkc/awh0RV7peuR3rkWe5TrkO65H7tF7xcXFRlKXR1ZWljGmZ3N34cIFk5GRYYKDg82QIUPMI488YpqamtxwNu73TfO5ZcuWbvtXr17tGMNd11SLMcb07z2cAAAAAAAAANAzfIclAAAAAAAAAI9BwRIAAAAAAACAx6BgCQAAAAAAAMBjULAEAAAAAAAA4DEoWAIAAAAAAADwGBQsAQAAAAAAAHgMCpYAAAAAAAAAPAYFSwAAAAAAAAAeg4IlAHiQkpISWSwWNTY2ujsUAAAA3CJ6k4M+99xz+s53vtNvMQG4tVGwBIBeWLhwoSwWiywWi3x9fRUdHa1nnnlGra2tPR4jLS1N2dnZTm1TpkxRfX29QkJCXBwxAAAAbgb5+fkaPHiwOjo6HG3Nzc3y9fVVWlqa07FfFSJPnjz5tWP2Vw7aXb4LAD1BwRIAemnmzJmqr6/XqVOn9PLLL+u1117T6tWr+zSmn5+frFarLBaLi6IEAADAzcRms6m5uVmHDx92tH3wwQeyWq2qrKx0egO9uLhYUVFRGj169NeOSQ4KwNNQsASAXvL395fVatWIESM0Z84cpaena+/evZKkCxcuKCMjQ5GRkQoMDNT48eP11ltvOZ67cOFClZaWasOGDY47NT/77LMuH8fZunWrQkNDVVRUpPj4eAUHBzsKpV/p6OjQk08+qdDQUA0bNkwrV65UVlaW5syZcyOnAwAAADfAuHHjFB4erpKSEkdbSUmJZs+erejoaP397393arfZbLLb7crNzVV0dLQCAgKUmJiod955x+m4qz8S/vrrr2vEiBEKDAzU3LlzlZeXp9DQ0C7xbNu2TaNGjVJISIgefvhhNTU1Sbp2vgsAPUHBEgBc4OjRozp06JD8/PwkSa2trZo4caJ2796to0eP6vHHH9eCBQtUVVUlSdqwYYNSUlL02GOPqb6+XvX19RoxYkS3Y1++fFkvvfSStm3bpoMHD6qurk4rVqxw9K9bt047duzQli1bVF5erosXL2rXrl39fs4AAABwD5vNpuLiYsffxcXFSktLU2pqqqO9paVFlZWVstlsys3N1e9//3vl5+fro48+Uk5OjubPn6/S0tJuxy8vL9cTTzyh5cuX68iRI5o+fbrWrl3b5biTJ09q165dKigoUEFBgUpLS/XCCy9Iur58FwCu5uPuAABgoCooKFBwcLA6OjrU1tYmLy8vbdq0SZIUGRnpVFRctmyZioqKtHPnTk2ePFkhISHy8/NTYGCgrFbr177OlStXlJ+f7/goz9KlS/XLX/7S0b9x40b99Kc/1dy5cyVJmzZt0t/+9jdXny4AAAA8hM1mU3Z2tjo6OtTS0qKamhqlpqY68kZJqqioUFtbm9LS0pSQkKB9+/YpJSVFkhQTE6OysjK99tprSk1N7TL+xo0bNWvWLEc+O3bsWB06dEgFBQVOx9ntdm3dulWDBw+WJC1YsED79+/X2rVrryvfBYCrUbAEgF6y2WzavHmzLl26pJdfflk+Pj568MEHJUmdnZ16/vnntXPnTp05c0bt7e1qa2tTYGDgdb9OYGCg0/cOhYeH6/z585KkL7/8UufOndPkyZMd/d7e3po4caLsdnsfzxAAAACeKC0tTZcuXVJ1dbUaGho0duxY3XHHHUpNTdUjjzyi1tZWlZSUKCYmRs3Nzbp8+bKmT5/uNEZ7e7uSkpK6Hf/YsWOON8O/Mnny5C4Fy1GjRjmKlZJzngoAfUHBEgB6KSgoSLGxsZKk3/3ud0pMTNQbb7yhRx99VC+++KI2bNigX//61xo/fryCgoKUnZ2t9vb2634dX19fp78tFouMMS45BwAAAAw8sbGx+ta3vqXi4mI1NDQ47pKMiIjQiBEjdOjQIRUXF+uee+5Rc3OzJGn37t2KjIx0Gsff379PcXSXp/KmOQBX4DssAcAFvLy89LOf/Uw///nP1dLSovLycs2ePVvz589XYmKiYmJidPz4cafn+Pn5qbOzs0+vGxISorCwMFVXVzvaOjs79Y9//KNP4wIAAMCz2Ww2lZSUqKSkRGlpaY72u+++W4WFhaqqqpLNZlNCQoL8/f1VV1en2NhYp8e1vlNy3LhxTvmlpC5/94Qr8l0AtybusAQAF5k3b56efvppvfrqqxozZozeeecdHTp0SEOHDlVeXp7OnTunhIQEx/GjRo1SZWWlPvvsMwUHB+u2227r1esuW7ZMubm5io2NVVxcnDZu3KiGhgZZLBZXnRoAAAA8jM1m05IlS3TlyhWn76FMTU3V0qVL1d7eLpvNpsGDB2vFihXKycmR3W7XtGnT9OWXX6q8vFxDhgxRVlZWl7GXLVumu+++W3l5ebr//vt14MABFRYWXnd+2V2+6+XFfVMAvhlXCgBwER8fHy1dulTr16/XU089pQkTJmjGjBlKS0uT1WrVnDlznI5fsWKFvL29lZCQoDvuuEN1dXW9et2VK1cqIyNDP/zhD5WSkqLg4GDNmDFDgwYNcsFZAQAAwBPZbDa1tLQoNjZWYWFhjvbU1FQ1NTVp3LhxCg8PlyStWbNGq1atUm5uruLj4zVz5kzt3r1b0dHR3Y49depU5efnKy8vT4mJidqzZ49ycnKuO790Vb4L4NZjMXwRGgDcVOx2u+Lj4/X9739fa9ascXc4AAAAuAk89thj+s9//qMPPvjA3aEAuAXwkXAAGOBOnz6t999/X6mpqWpra9OmTZtUW1urH/zgB+4ODQAAAAPUSy+9pOnTpysoKEiFhYV688039Zvf/MbdYQG4RVCwBIABzsvLS1u3btWKFStkjNFdd92lffv2KT4+3t2hAQAAYICqqqrS+vXr1dTUpJiYGL3yyitavHixu8MCcIvgI+EAAAAAAAAAPAY/ugMAAAAAAADAY1CwBAAAAAAAAOAxKFgCAAAAAAAA8BgULAEAAAAAAAB4DAqWAAAAAAAAADwGBUsAAAAAAAAAHoOCJQAAAAAAAACPQcESAAAAAAAAgMf4H6dXRW8D68ZdAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#create hidtogram and scatter plot\n", "\n", "plt.figure(figsize=(16,5))\n", "plt.subplot(1,2,1)\n", "sns.histplot(data['Rating'], kde=True, bins = 30)\n", "plt.title('Histogram of Rating')\n", "\n", "plt.subplot(1,2,2)\n", "sns.scatterplot(x = 'Weight', y = 'Height', data = data)\n", "plt.title('Weight vs Height')\n", "plt.show" ] }, { "cell_type": "markdown", "metadata": { "id": "W74BFAJmuoRW" }, "source": [ "statement??\n", "\n", "- Terlihat dari plot rating dari histogram, rating terdistribusi normal dengan rata-rata 65\n", "- Proporsi antara berat dan tinggi seimbang" ] }, { "cell_type": "markdown", "metadata": { "id": "3UkScDKSvI-W" }, "source": [ "## 5. Feature Engineering\n", "\n", "> Bagian ini berisi proses penyiapan data untuk proses pelatihan model, seperti pembagian data menjadi train-test, transformasi data (normalisasi, encoding, dll.), dan proses-proses lain yang dibutuhkan.\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "eCXtlTinzx_a" }, "source": [ "###Cardinality Analysis" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "pK9tEtLy-XYZ", "outputId": "180d3430-6fa4-4b82-80ad-0be2108630a4" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of categories in the variable Name : 18058\n", "Number of categories in the variable AttackingWorkRate : 3\n", "Number of categories in the variable DefensiveWorkRate : 3\n" ] } ], "source": [ "print('Number of categories in the variable Name : {}'.format(len(data.Name.unique())))\n", "print('Number of categories in the variable AttackingWorkRate : {}'.format(len(data.AttackingWorkRate.unique())))\n", "print('Number of categories in the variable DefensiveWorkRate : {}'.format(len(data.DefensiveWorkRate.unique())))" ] }, { "cell_type": "markdown", "metadata": { "id": "PuBdPhufvi1Y" }, "source": [ "### Split between X (features) and y (Target)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 496 }, "id": "mw3Y_6udufaD", "outputId": "f0fc2306-3482-4168-94c1-de8acd63329a" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameAgeHeightWeightPriceAttackingWorkRateDefensiveWorkRatePaceTotalShootingTotalPassingTotalDribblingTotalDefendingTotalPhysicalityTotal
0L. Messi341707278000000MediumLow859291953465
1R. Lewandowski3218581119500000HighMedium789279854482
2Cristiano Ronaldo361878345000000HighLow879480873475
3K. Mbappé2218273194000000HighLow978880923677
4J. Oblak2818887112000000MediumMedium879278905290
..........................................
19255S. Black1918075100000MediumMedium562729334853
19256Ma Zhen231968550000MediumMedium494745465444
19257Yang Haoyu201837790000MediumMedium572629285156
19258He Siwei2017469100000MediumMedium612532324951
19259Chen Guoliang221867070000MediumMedium552729305054
\n", "

19260 rows × 13 columns

\n", "
" ], "text/plain": [ " Name Age Height Weight Price AttackingWorkRate \\\n", "0 L. Messi 34 170 72 78000000 Medium \n", "1 R. Lewandowski 32 185 81 119500000 High \n", "2 Cristiano Ronaldo 36 187 83 45000000 High \n", "3 K. Mbappé 22 182 73 194000000 High \n", "4 J. Oblak 28 188 87 112000000 Medium \n", "... ... ... ... ... ... ... \n", "19255 S. Black 19 180 75 100000 Medium \n", "19256 Ma Zhen 23 196 85 50000 Medium \n", "19257 Yang Haoyu 20 183 77 90000 Medium \n", "19258 He Siwei 20 174 69 100000 Medium \n", "19259 Chen Guoliang 22 186 70 70000 Medium \n", "\n", " DefensiveWorkRate PaceTotal ShootingTotal PassingTotal \\\n", "0 Low 85 92 91 \n", "1 Medium 78 92 79 \n", "2 Low 87 94 80 \n", "3 Low 97 88 80 \n", "4 Medium 87 92 78 \n", "... ... ... ... ... \n", "19255 Medium 56 27 29 \n", "19256 Medium 49 47 45 \n", "19257 Medium 57 26 29 \n", "19258 Medium 61 25 32 \n", "19259 Medium 55 27 29 \n", "\n", " DribblingTotal DefendingTotal PhysicalityTotal \n", "0 95 34 65 \n", "1 85 44 82 \n", "2 87 34 75 \n", "3 92 36 77 \n", "4 90 52 90 \n", "... ... ... ... \n", "19255 33 48 53 \n", "19256 46 54 44 \n", "19257 28 51 56 \n", "19258 32 49 51 \n", "19259 30 50 54 \n", "\n", "[19260 rows x 13 columns]" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "##Splitting between X and y\n", "\n", "X = data.drop(['Rating'], axis = 1)\n", "y = data['Rating']\n", "X" ] }, { "cell_type": "markdown", "metadata": { "id": "0LtmAYsUwQPU" }, "source": [ "### Split between Train-set and Test-set\n" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 548 }, "id": "83FTnHgmv6vn", "outputId": "9c4fee61-2330-441d-fef2-ef5dc6eee136" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train size : (15408, 13)\n", "Test size : (3852, 13)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameAgeHeightWeightPriceAttackingWorkRateDefensiveWorkRatePaceTotalShootingTotalPassingTotalDribblingTotalDefendingTotalPhysicalityTotal
946Petros32181778500000HighHigh686872757383
5988Janio Bikel26174701700000LowHigh704356696673
13232J. Powell2717762550000MediumMedium625763645466
1042M. Faraoni29180719500000HighHigh747173747176
10193N. Hagglund2818587625000MediumHigh502956526367
..........................................
9529S. López3217872675000HighMedium676167685060
406Everton251747228000000HighLow867573863262
13702S. Guibert3218882250000MediumMedium414751536170
2191Beto23194888500000HighMedium717454682478
10863T. Vecino22183781600000MediumMedium636653632756
\n", "

15408 rows × 13 columns

\n", "
" ], "text/plain": [ " Name Age Height Weight Price AttackingWorkRate \\\n", "946 Petros 32 181 77 8500000 High \n", "5988 Janio Bikel 26 174 70 1700000 Low \n", "13232 J. Powell 27 177 62 550000 Medium \n", "1042 M. Faraoni 29 180 71 9500000 High \n", "10193 N. Hagglund 28 185 87 625000 Medium \n", "... ... ... ... ... ... ... \n", "9529 S. López 32 178 72 675000 High \n", "406 Everton 25 174 72 28000000 High \n", "13702 S. Guibert 32 188 82 250000 Medium \n", "2191 Beto 23 194 88 8500000 High \n", "10863 T. Vecino 22 183 78 1600000 Medium \n", "\n", " DefensiveWorkRate PaceTotal ShootingTotal PassingTotal \\\n", "946 High 68 68 72 \n", "5988 High 70 43 56 \n", "13232 Medium 62 57 63 \n", "1042 High 74 71 73 \n", "10193 High 50 29 56 \n", "... ... ... ... ... \n", "9529 Medium 67 61 67 \n", "406 Low 86 75 73 \n", "13702 Medium 41 47 51 \n", "2191 Medium 71 74 54 \n", "10863 Medium 63 66 53 \n", "\n", " DribblingTotal DefendingTotal PhysicalityTotal \n", "946 75 73 83 \n", "5988 69 66 73 \n", "13232 64 54 66 \n", "1042 74 71 76 \n", "10193 52 63 67 \n", "... ... ... ... \n", "9529 68 50 60 \n", "406 86 32 62 \n", "13702 53 61 70 \n", "2191 68 24 78 \n", "10863 63 27 56 \n", "\n", "[15408 rows x 13 columns]" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Splitting between train set and test set\n", "\n", "from sklearn.model_selection import train_test_split\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.2, random_state = 17)\n", "#70: 30\n", "#80: 20\n", "\n", "print('Train size : ', X_train.shape)\n", "print('Test size : ', X_test.shape)\n", "X_train\n" ] }, { "cell_type": "markdown", "metadata": { "id": "PIMHLSc2ycE0" }, "source": [ "### Handle Outlier\n" ] }, { "cell_type": "markdown", "metadata": { "id": "5nVfASIFyjAz" }, "source": [ "### Handle Missing Value\n" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 492 }, "id": "jcFbvWAdxzCS", "outputId": "890f0ecd-c831-41c8-c267-08b972572b8b" }, "outputs": [ { "data": { "text/plain": [ "Name 0\n", "Age 0\n", "Height 0\n", "Weight 0\n", "Price 0\n", "AttackingWorkRate 0\n", "DefensiveWorkRate 0\n", "PaceTotal 0\n", "ShootingTotal 0\n", "PassingTotal 0\n", "DribblingTotal 0\n", "DefendingTotal 0\n", "PhysicalityTotal 0\n", "dtype: int64" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Check Mising value on X_train\n", "\n", "X_train.isnull().sum()" ] }, { "cell_type": "markdown", "metadata": { "id": "FMm4WfxRy4uu" }, "source": [ "Tidak terdapat misisng value di data train" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 492 }, "id": "yDZSUhrJy3eo", "outputId": "67ac3a66-250b-408d-9848-1c4de9cf8c0d" }, "outputs": [ { "data": { "text/plain": [ "Name 0\n", "Age 0\n", "Height 0\n", "Weight 0\n", "Price 0\n", "AttackingWorkRate 0\n", "DefensiveWorkRate 0\n", "PaceTotal 0\n", "ShootingTotal 0\n", "PassingTotal 0\n", "DribblingTotal 0\n", "DefendingTotal 0\n", "PhysicalityTotal 0\n", "dtype: int64" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Check misisng value on X_test\n", "\n", "X_test.isnull().sum()" ] }, { "cell_type": "markdown", "metadata": { "id": "LzYE3GWxzA6F" }, "source": [ "Tidak terdapat missing value di test set" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "wkhM97ruy_51", "outputId": "dbe5ba14-9064-4afa-ef0a-1a3d823813a2" }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Check missing values on y train\n", "\n", "y_train.isnull().sum()" ] }, { "cell_type": "markdown", "metadata": { "id": "69Bj6rzjzMY6" }, "source": [ "Tidak terdapat missing value data target train" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "osU7N0_RzLii", "outputId": "87e14ad5-4410-48a6-d920-41c18f616508" }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#check missing value on y_test\n", "\n", "y_test.isnull().sum()" ] }, { "cell_type": "markdown", "metadata": { "id": "J8S1MyprzXA2" }, "source": [ "Tidak terdapat missing value di y test" ] }, { "cell_type": "markdown", "metadata": { "id": "qVOU1Pi2zaLE" }, "source": [ "Tidak terdapat missing value di dataset ini" ] }, { "cell_type": "markdown", "metadata": { "id": "jzMeEyN1zhtc" }, "source": [ "###Feature Selection\n", "\n", "\n", "- pearson, spearman, anova, chi square" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 513 }, "id": "DipFpICVzxkF", "outputId": "60adb4c2-7a75-42f1-874d-31cbae56a365" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameAgeHeightWeightPriceAttackingWorkRateDefensiveWorkRatePaceTotalShootingTotalPassingTotalDribblingTotalDefendingTotalPhysicalityTotal
946Petros32181778500000HighHigh686872757383
5988Janio Bikel26174701700000LowHigh704356696673
13232J. Powell2717762550000MediumMedium625763645466
1042M. Faraoni29180719500000HighHigh747173747176
10193N. Hagglund2818587625000MediumHigh502956526367
..........................................
9529S. López3217872675000HighMedium676167685060
406Everton251747228000000HighLow867573863262
13702S. Guibert3218882250000MediumMedium414751536170
2191Beto23194888500000HighMedium717454682478
10863T. Vecino22183781600000MediumMedium636653632756
\n", "

15408 rows × 13 columns

\n", "
" ], "text/plain": [ " Name Age Height Weight Price AttackingWorkRate \\\n", "946 Petros 32 181 77 8500000 High \n", "5988 Janio Bikel 26 174 70 1700000 Low \n", "13232 J. Powell 27 177 62 550000 Medium \n", "1042 M. Faraoni 29 180 71 9500000 High \n", "10193 N. Hagglund 28 185 87 625000 Medium \n", "... ... ... ... ... ... ... \n", "9529 S. López 32 178 72 675000 High \n", "406 Everton 25 174 72 28000000 High \n", "13702 S. Guibert 32 188 82 250000 Medium \n", "2191 Beto 23 194 88 8500000 High \n", "10863 T. Vecino 22 183 78 1600000 Medium \n", "\n", " DefensiveWorkRate PaceTotal ShootingTotal PassingTotal \\\n", "946 High 68 68 72 \n", "5988 High 70 43 56 \n", "13232 Medium 62 57 63 \n", "1042 High 74 71 73 \n", "10193 High 50 29 56 \n", "... ... ... ... ... \n", "9529 Medium 67 61 67 \n", "406 Low 86 75 73 \n", "13702 Medium 41 47 51 \n", "2191 Medium 71 74 54 \n", "10863 Medium 63 66 53 \n", "\n", " DribblingTotal DefendingTotal PhysicalityTotal \n", "946 75 73 83 \n", "5988 69 66 73 \n", "13232 64 54 66 \n", "1042 74 71 76 \n", "10193 52 63 67 \n", "... ... ... ... \n", "9529 68 50 60 \n", "406 86 32 62 \n", "13702 53 61 70 \n", "2191 68 24 78 \n", "10863 63 27 56 \n", "\n", "[15408 rows x 13 columns]" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train" ] }, { "cell_type": "markdown", "metadata": { "id": "9P9AgaC5zwhC" }, "source": [ "Berdasarkan personal judgement, tidak ada kaitannya anatara column `Name` dengan column `rating`. Hal ini dibuktikan dengan nama `Theo Ronaldo` tidak ada kaitannya dengan nama sehebat `Christiano ronaldo` sehingga rating pun tidak akan berbeda" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 443 }, "id": "u9EOXT1w06Ud", "outputId": "c5edd7f4-3c7a-4b00-ea4e-080c6b2c74e4" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AgeHeightWeightPriceAttackingWorkRateDefensiveWorkRatePaceTotalShootingTotalPassingTotalDribblingTotalDefendingTotalPhysicalityTotal
94632181778500000HighHigh686872757383
598826174701700000LowHigh704356696673
132322717762550000MediumMedium625763645466
104229180719500000HighHigh747173747176
101932818587625000MediumHigh502956526367
.......................................
95293217872675000HighMedium676167685060
406251747228000000HighLow867573863262
137023218882250000MediumMedium414751536170
219123194888500000HighMedium717454682478
1086322183781600000MediumMedium636653632756
\n", "

15408 rows × 12 columns

\n", "
" ], "text/plain": [ " Age Height Weight Price AttackingWorkRate DefensiveWorkRate \\\n", "946 32 181 77 8500000 High High \n", "5988 26 174 70 1700000 Low High \n", "13232 27 177 62 550000 Medium Medium \n", "1042 29 180 71 9500000 High High \n", "10193 28 185 87 625000 Medium High \n", "... ... ... ... ... ... ... \n", "9529 32 178 72 675000 High Medium \n", "406 25 174 72 28000000 High Low \n", "13702 32 188 82 250000 Medium Medium \n", "2191 23 194 88 8500000 High Medium \n", "10863 22 183 78 1600000 Medium Medium \n", "\n", " PaceTotal ShootingTotal PassingTotal DribblingTotal DefendingTotal \\\n", "946 68 68 72 75 73 \n", "5988 70 43 56 69 66 \n", "13232 62 57 63 64 54 \n", "1042 74 71 73 74 71 \n", "10193 50 29 56 52 63 \n", "... ... ... ... ... ... \n", "9529 67 61 67 68 50 \n", "406 86 75 73 86 32 \n", "13702 41 47 51 53 61 \n", "2191 71 74 54 68 24 \n", "10863 63 66 53 63 27 \n", "\n", " PhysicalityTotal \n", "946 83 \n", "5988 73 \n", "13232 66 \n", "1042 76 \n", "10193 67 \n", "... ... \n", "9529 60 \n", "406 62 \n", "13702 70 \n", "2191 78 \n", "10863 56 \n", "\n", "[15408 rows x 12 columns]" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Drop column `Name`\n", "\n", "X_train.drop('Name', axis = 1, inplace = True)\n", "X_test.drop('Name', axis = 1, inplace = True)\n", "X_train" ] }, { "cell_type": "markdown", "metadata": { "id": "JonP97Ah05ze" }, "source": [ "Pada feature selection ini, akan dipakai kolom-kolom sebagai berikut:\n", "- Age\n", "- Height" ] }, { "cell_type": "markdown", "metadata": { "id": "0C4V33hc17Jr" }, "source": [ "### Split between Numeric Columns and Category Columns" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "C-RpNqsX15l2", "outputId": "be759e17-b666-4f26-9121-48eff3b8e884" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Num Columns : ['Age', 'Height', 'Weight', 'Price', 'PaceTotal', 'ShootingTotal', 'PassingTotal', 'DribblingTotal', 'DefendingTotal', 'PhysicalityTotal']\n", "Cat Columns : ['AttackingWorkRate', 'DefensiveWorkRate']\n" ] } ], "source": [ "#get numeric columns and categorical columns\n", "\n", "num_columns = X_train.select_dtypes(include = np.number).columns.tolist()\n", "cat_columns = X_train.select_dtypes(include = ['object']).columns.tolist()\n", "\n", "print('Num Columns : ', num_columns)\n", "print('Cat Columns : ', cat_columns)" ] }, { "cell_type": "markdown", "metadata": { "id": "aZXqjaBI4aUw" }, "source": [ "Kolom yang merupakan numerical adalah kolom age, height, wigh\n", "\n", "kolom yang merupakan categorical adalah\n", "\n", "kolom numerical akan selnajutnya dilakukan scaling dan categorical akan dilakukan encoding" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 443 }, "id": "7A_5Zj_G30Aj", "outputId": "0fb925a4-9282-40d2-91ab-d40527a4a2f9" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AgeHeightWeightPricePaceTotalShootingTotalPassingTotalDribblingTotalDefendingTotalPhysicalityTotal
94632181778500000686872757383
598826174701700000704356696673
132322717762550000625763645466
104229180719500000747173747176
101932818587625000502956526367
.................................
95293217872675000676167685060
406251747228000000867573863262
137023218882250000414751536170
219123194888500000717454682478
1086322183781600000636653632756
\n", "

15408 rows × 10 columns

\n", "
" ], "text/plain": [ " Age Height Weight Price PaceTotal ShootingTotal PassingTotal \\\n", "946 32 181 77 8500000 68 68 72 \n", "5988 26 174 70 1700000 70 43 56 \n", "13232 27 177 62 550000 62 57 63 \n", "1042 29 180 71 9500000 74 71 73 \n", "10193 28 185 87 625000 50 29 56 \n", "... ... ... ... ... ... ... ... \n", "9529 32 178 72 675000 67 61 67 \n", "406 25 174 72 28000000 86 75 73 \n", "13702 32 188 82 250000 41 47 51 \n", "2191 23 194 88 8500000 71 74 54 \n", "10863 22 183 78 1600000 63 66 53 \n", "\n", " DribblingTotal DefendingTotal PhysicalityTotal \n", "946 75 73 83 \n", "5988 69 66 73 \n", "13232 64 54 66 \n", "1042 74 71 76 \n", "10193 52 63 67 \n", "... ... ... ... \n", "9529 68 50 60 \n", "406 86 32 62 \n", "13702 53 61 70 \n", "2191 68 24 78 \n", "10863 63 27 56 \n", "\n", "[15408 rows x 10 columns]" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Split train set and test set based on column types\n", "\n", "X_train_num = X_train[num_columns]\n", "X_train_cat = X_train[cat_columns]\n", "\n", "X_test_num = X_test[num_columns]\n", "X_test_cat = X_test[cat_columns]\n", "\n", "X_train_num" ] }, { "cell_type": "markdown", "metadata": { "id": "a7bU5edY5DK1" }, "source": [ "### Feature Scaling\n", "\n", "\n", "\n", "---\n", "\n", "Akan di scaling menggunakan min max scaler karena bla bla" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 320 }, "id": "JAZb8PXP43iT", "outputId": "4a53843b-1c79-4f71-c0e8-d02c51da43c5" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AgeHeightWeightPricePaceTotalShootingTotalPassingTotalDribblingTotalDefendingTotalPhysicalityTotal
count15408.00000015408.00000015408.0000001.540800e+0415408.00000015408.00000015408.00000015408.00000015408.00000015408.000000
mean25.201648181.31172174.9755322.863765e+0667.92198953.63415157.89005763.07885550.01745864.690550
std4.7229226.8826547.0914617.535592e+0610.65154113.7980009.7940959.66210216.4233569.633306
min16.000000155.00000049.0000000.000000e+0028.00000018.00000025.00000026.00000014.00000029.000000
25%21.000000176.00000070.0000004.750000e+0562.00000044.00000052.00000058.00000035.00000058.000000
50%25.000000181.00000075.0000009.750000e+0568.00000056.00000058.00000064.00000054.00000066.000000
75%29.000000186.00000080.0000002.000000e+0675.00000064.00000065.00000069.00000063.00000072.000000
max54.000000206.000000110.0000001.940000e+0897.00000094.00000093.00000092.00000091.00000092.000000
\n", "
" ], "text/plain": [ " Age Height Weight Price PaceTotal \\\n", "count 15408.000000 15408.000000 15408.000000 1.540800e+04 15408.000000 \n", "mean 25.201648 181.311721 74.975532 2.863765e+06 67.921989 \n", "std 4.722922 6.882654 7.091461 7.535592e+06 10.651541 \n", "min 16.000000 155.000000 49.000000 0.000000e+00 28.000000 \n", "25% 21.000000 176.000000 70.000000 4.750000e+05 62.000000 \n", "50% 25.000000 181.000000 75.000000 9.750000e+05 68.000000 \n", "75% 29.000000 186.000000 80.000000 2.000000e+06 75.000000 \n", "max 54.000000 206.000000 110.000000 1.940000e+08 97.000000 \n", "\n", " ShootingTotal PassingTotal DribblingTotal DefendingTotal \\\n", "count 15408.000000 15408.000000 15408.000000 15408.000000 \n", "mean 53.634151 57.890057 63.078855 50.017458 \n", "std 13.798000 9.794095 9.662102 16.423356 \n", "min 18.000000 25.000000 26.000000 14.000000 \n", "25% 44.000000 52.000000 58.000000 35.000000 \n", "50% 56.000000 58.000000 64.000000 54.000000 \n", "75% 64.000000 65.000000 69.000000 63.000000 \n", "max 94.000000 93.000000 92.000000 91.000000 \n", "\n", " PhysicalityTotal \n", "count 15408.000000 \n", "mean 64.690550 \n", "std 9.633306 \n", "min 29.000000 \n", "25% 58.000000 \n", "50% 66.000000 \n", "75% 72.000000 \n", "max 92.000000 " ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train_num.describe()" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "rMyr--B25lr2", "outputId": "b47d2462-e656-495e-8a17-b71daa926d62" }, "outputs": [ { "data": { "text/plain": [ "array([[0.42105263, 0.50980392, 0.45901639, ..., 0.74242424, 0.76623377,\n", " 0.85714286],\n", " [0.26315789, 0.37254902, 0.3442623 , ..., 0.65151515, 0.67532468,\n", " 0.6984127 ],\n", " [0.28947368, 0.43137255, 0.21311475, ..., 0.57575758, 0.51948052,\n", " 0.58730159],\n", " ...,\n", " [0.42105263, 0.64705882, 0.54098361, ..., 0.40909091, 0.61038961,\n", " 0.65079365],\n", " [0.18421053, 0.76470588, 0.63934426, ..., 0.63636364, 0.12987013,\n", " 0.77777778],\n", " [0.15789474, 0.54901961, 0.47540984, ..., 0.56060606, 0.16883117,\n", " 0.42857143]])" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Feature scaling using MinmaxScaler\n", "\n", "from sklearn.preprocessing import MinMaxScaler\n", "\n", "scaler = MinMaxScaler()\n", "scaler.fit(X_train_num)\n", "X_train_num_scaled = scaler.transform(X_train_num)\n", "X_test_num_scaled = scaler.transform(X_test_num)\n", "X_train_num_scaled" ] }, { "cell_type": "markdown", "metadata": { "id": "CiupNwOr7QWP" }, "source": [ "### Feature Encoding\n", "\n", "jelaskan kenapa pilih teknik encoding tersebut\n", "\n", "akan digunakan ordinal encoder karena data yang kita punya berbentuk ordinal" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 423 }, "id": "Sw8mj5p87L3U", "outputId": "bf988c36-cb99-4273-c8d7-280418634b8a" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AttackingWorkRateDefensiveWorkRate
946HighHigh
5988LowHigh
13232MediumMedium
1042HighHigh
10193MediumHigh
.........
9529HighMedium
406HighLow
13702MediumMedium
2191HighMedium
10863MediumMedium
\n", "

15408 rows × 2 columns

\n", "
" ], "text/plain": [ " AttackingWorkRate DefensiveWorkRate\n", "946 High High\n", "5988 Low High\n", "13232 Medium Medium\n", "1042 High High\n", "10193 Medium High\n", "... ... ...\n", "9529 High Medium\n", "406 High Low\n", "13702 Medium Medium\n", "2191 High Medium\n", "10863 Medium Medium\n", "\n", "[15408 rows x 2 columns]" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train_cat" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "WMfPyZLH8SkW", "outputId": "49fc65e3-114f-4b9e-8d03-263e8a330b6b" }, "outputs": [ { "data": { "text/plain": [ "array([[2., 2.],\n", " [0., 2.],\n", " [1., 1.],\n", " ...,\n", " [1., 1.],\n", " [2., 1.],\n", " [1., 1.]])" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Feature encoding using ordinal encoder\n", "\n", "from sklearn.preprocessing import OrdinalEncoder\n", "\n", "encoder = OrdinalEncoder(categories = [['Low', 'Medium', 'High'],\n", " ['Low', 'Medium', 'High']])\n", "encoder.fit(X_train_cat)\n", "\n", "X_train_cat_encoded = encoder.transform(X_train_cat)\n", "X_test_cat_encoded = encoder.transform(X_test_cat)\n", "X_train_cat_encoded" ] }, { "cell_type": "markdown", "metadata": { "id": "KZDtU_6i92Md" }, "source": [ "### Concate Between Numeric Columns and Categorical Columns" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "MxpMWHoO9HuH", "outputId": "eceb2ba9-77b4-442b-abfc-230e15c0fc52" }, "outputs": [ { "data": { "text/plain": [ "array([[0.42105263, 0.50980392, 0.45901639, ..., 0.85714286, 2. ,\n", " 2. ],\n", " [0.26315789, 0.37254902, 0.3442623 , ..., 0.6984127 , 0. ,\n", " 2. ],\n", " [0.28947368, 0.43137255, 0.21311475, ..., 0.58730159, 1. ,\n", " 1. ],\n", " ...,\n", " [0.42105263, 0.64705882, 0.54098361, ..., 0.65079365, 1. ,\n", " 1. ],\n", " [0.18421053, 0.76470588, 0.63934426, ..., 0.77777778, 2. ,\n", " 1. ],\n", " [0.15789474, 0.54901961, 0.47540984, ..., 0.42857143, 1. ,\n", " 1. ]])" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Concate columns\n", "\n", "X_train_final = np.concatenate([X_train_num_scaled, X_train_cat_encoded], axis = 1)\n", "X_test_final = np.concatenate([X_test_num_scaled, X_test_cat_encoded], axis = 1)\n", "X_train_final" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 443 }, "id": "gAVWwKJ6-V_v", "outputId": "63f8bbc4-468a-4111-d595-1b7b72b4c449" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AgeHeightWeightPricePaceTotalShootingTotalPassingTotalDribblingTotalDefendingTotalPhysicalityTotalAttackingWorkRateDefensiveWorkRate
00.4210530.5098040.4590160.0438140.5797100.6578950.6911760.7424240.7662340.8571432.02.0
10.2631580.3725490.3442620.0087630.6086960.3289470.4558820.6515150.6753250.6984130.02.0
20.2894740.4313730.2131150.0028350.4927540.5131580.5588240.5757580.5194810.5873021.01.0
30.3421050.4901960.3606560.0489690.6666670.6973680.7058820.7272730.7402600.7460322.02.0
40.3157890.5882350.6229510.0032220.3188410.1447370.4558820.3939390.6363640.6031751.02.0
.......................................
154030.4210530.4509800.3770490.0034790.5652170.5657890.6176470.6363640.4675320.4920632.01.0
154040.2368420.3725490.3770490.1443300.8405800.7500000.7058820.9090910.2337660.5238102.00.0
154050.4210530.6470590.5409840.0012890.1884060.3815790.3823530.4090910.6103900.6507941.01.0
154060.1842110.7647060.6393440.0438140.6231880.7368420.4264710.6363640.1298700.7777782.01.0
154070.1578950.5490200.4754100.0082470.5072460.6315790.4117650.5606060.1688310.4285711.01.0
\n", "

15408 rows × 12 columns

\n", "
" ], "text/plain": [ " Age Height Weight Price PaceTotal ShootingTotal \\\n", "0 0.421053 0.509804 0.459016 0.043814 0.579710 0.657895 \n", "1 0.263158 0.372549 0.344262 0.008763 0.608696 0.328947 \n", "2 0.289474 0.431373 0.213115 0.002835 0.492754 0.513158 \n", "3 0.342105 0.490196 0.360656 0.048969 0.666667 0.697368 \n", "4 0.315789 0.588235 0.622951 0.003222 0.318841 0.144737 \n", "... ... ... ... ... ... ... \n", "15403 0.421053 0.450980 0.377049 0.003479 0.565217 0.565789 \n", "15404 0.236842 0.372549 0.377049 0.144330 0.840580 0.750000 \n", "15405 0.421053 0.647059 0.540984 0.001289 0.188406 0.381579 \n", "15406 0.184211 0.764706 0.639344 0.043814 0.623188 0.736842 \n", "15407 0.157895 0.549020 0.475410 0.008247 0.507246 0.631579 \n", "\n", " PassingTotal DribblingTotal DefendingTotal PhysicalityTotal \\\n", "0 0.691176 0.742424 0.766234 0.857143 \n", "1 0.455882 0.651515 0.675325 0.698413 \n", "2 0.558824 0.575758 0.519481 0.587302 \n", "3 0.705882 0.727273 0.740260 0.746032 \n", "4 0.455882 0.393939 0.636364 0.603175 \n", "... ... ... ... ... \n", "15403 0.617647 0.636364 0.467532 0.492063 \n", "15404 0.705882 0.909091 0.233766 0.523810 \n", "15405 0.382353 0.409091 0.610390 0.650794 \n", "15406 0.426471 0.636364 0.129870 0.777778 \n", "15407 0.411765 0.560606 0.168831 0.428571 \n", "\n", " AttackingWorkRate DefensiveWorkRate \n", "0 2.0 2.0 \n", "1 0.0 2.0 \n", "2 1.0 1.0 \n", "3 2.0 2.0 \n", "4 1.0 2.0 \n", "... ... ... \n", "15403 2.0 1.0 \n", "15404 2.0 0.0 \n", "15405 1.0 1.0 \n", "15406 2.0 1.0 \n", "15407 1.0 1.0 \n", "\n", "[15408 rows x 12 columns]" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Create dataframe of X_train_final\n", "\n", "X_train_final_df = pd.DataFrame(X_train_final, columns = [num_columns + cat_columns])\n", "X_train_final_df" ] }, { "cell_type": "markdown", "metadata": { "id": "2BWQO5Cb-160" }, "source": [ "## 6. Model Definition\n", "\n", ">Bagian ini berisi cell untuk mendefinisikan model. Jelaskan alasan menggunakan suatu algoritma/model, hyperparameter yang dipakai, jenis penggunaan metrics yang dipakai, dan hal lain yang terkait dengan model.\n", "\n", "\n", "- algoritma yang dipakai adalah linear regression karen akita metrics akan diguunakan adalah MAE karena abla bla" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "id": "Zt3jl-X1-w1c" }, "outputs": [], "source": [ "##Trainig using Linear Regression\n", "\n", "from sklearn.linear_model import LinearRegression\n", "\n", "model_lin_reg = LinearRegression()" ] }, { "cell_type": "markdown", "metadata": { "id": "x0Qu7qXz_bP7" }, "source": [ "## 7. Model Training\n", "\n", ">Cell pada bagian ini hanya berisi code untuk melatih model dan output yang dihasilkan. Lakukan beberapa kali proses training dengan hyperparameter yang berbeda untuk melihat hasil yang didapatkan. Analisis dan narasikan hasil ini pada bagian Model Evaluation.\n", "\n" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 74 }, "id": "giPWpTpI_X5Z", "outputId": "9236aef2-8343-4e79-9fde-d83a50f67862" }, "outputs": [ { "data": { "text/html": [ "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "LinearRegression()" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Train the model\n", "\n", "model_lin_reg.fit(X_train_final, y_train)" ] }, { "cell_type": "markdown", "metadata": { "id": "6x60pyPA_2G5" }, "source": [ "## 8. Model Evaluation\n", "\n", ">Pada bagian ini, dilakukan evaluasi model yang harus menunjukkan bagaimana performa model berdasarkan metrics yang dipilih. Hal ini harus dibuktikan dengan visualisasi tren performa dan/atau tingkat kesalahan model. Lakukan analisis terkait dengan hasil pada model dan tuliskan hasil analisisnya.\n", "\n" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "vsYJpMyK_wjB", "outputId": "f88467e5-846e-4c38-f19a-43774b6b6213" }, "outputs": [ { "data": { "text/plain": [ "array([78.48517659, 70.19837718, 66.49324846, ..., 64.6377822 ,\n", " 69.25657897, 61.10791967])" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Predict Train-set and Test-set\n", "\n", "y_pred_train = model_lin_reg.predict(X_train_final)\n", "y_pred_test = model_lin_reg.predict(X_test_final)\n", "y_pred_train" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 458 }, "id": "FqodXbO1ATmC", "outputId": "e03ebc74-8aa3-49ea-a62e-aa7205fceba7" }, "outputs": [ { "data": { "text/plain": [ "946 77\n", "5988 69\n", "13232 63\n", "1042 77\n", "10193 65\n", " ..\n", "9529 66\n", "406 80\n", "13702 62\n", "2191 74\n", "10863 65\n", "Name: Rating, Length: 15408, dtype: int64" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Display y_train\n", "\n", "y_train" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "uSxtAn5ZAWSv", "outputId": "46ff2283-eefe-4516-cc92-72c2dd0df9e5" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Error - Train set : 2.3498944451545714\n", "Error - Test set : 2.347734298549614\n" ] } ], "source": [ "#Model evaluation using MAE\n", "\n", "from sklearn.metrics import mean_absolute_error\n", "\n", "print('Error - Train set : ', mean_absolute_error(y_train, y_pred_train))\n", "print('Error - Test set : ', mean_absolute_error(y_test, y_pred_test))" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "UGp_J6ozE8up", "outputId": "9e1050e2-e1aa-4cd4-f2af-7264c81f8e3e" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "intercept: 36.460542369540086\n", "Slope: [ 7.62700168 1.76181701 1.07307663 39.30567451 2.84944366 2.80426066\n", " 2.27636604 20.52853652 8.00514593 12.62413257 -0.31671274 -0.46585899]\n" ] } ], "source": [ "###melihat rule\n", "\n", "#linear regression : y = ax + b\n", "# a: slope, b : intercept\n", "\n", "print('intercept: ', model_lin_reg.intercept_)\n", "print('Slope: ', model_lin_reg.coef_)" ] }, { "cell_type": "markdown", "metadata": { "id": "PrXfXt3RFdDl" }, "source": [ "Dilihat intercept dan juga slope kita bisa melihat rule yang ada yaitu\n", "\n", "```\n", "rating = 36.4 + 7.64 * age + 1.7*height +....\n", "```\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "oDSzdX2vBy8o" }, "source": [ "Statement??\n", "\n", "1. nyatakan apakah model tergolong goodfit, overfit, underfit\n", "2. narasikan hasl bisnis\n", "- jika messi mempunyai ratning 93 maka model akan memprediksi kisaran 91.5 - 95.5, menurut bisnis kira2\n", "3. eksplorasi data aktual dengan data prediksi" ] }, { "cell_type": "markdown", "metadata": { "id": "7cg7FCoUCZ2P" }, "source": [ "## 9. Model Saving\n", "\n", ">Pada bagian ini, dilakukan proses penyimpanan model dan file-file lain yang terkait dengan hasil proses pembuatan model.\n", "\n" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "id": "lgUEOWJkCpXt" }, "outputs": [], "source": [ "#Save the files\n", "\n", "import pickle\n", "import json\n", "\n", "with open('list_num_cols.txt', 'w') as file_1:\n", " json.dump(num_columns, file_1)\n", "\n", "with open('list_cat_cols.txt', 'w') as file_2:\n", " json.dump(cat_columns, file_2)\n", "\n", "with open('model_scaler.pkl', 'wb') as file_3:\n", " pickle.dump(scaler, file_3)\n", "\n", "with open('model_encoder.pkl', 'wb') as file_4:\n", " pickle.dump(encoder, file_4)\n", "\n", "with open('model_lin_reg.pkl', 'wb') as file_5:\n", " pickle.dump(model_lin_reg, file_5)" ] }, { "cell_type": "markdown", "metadata": { "id": "S2AAynH5EUMC" }, "source": [ "## 10. kesimpulan\n", ">Pada bagian terakhir ini, harus berisi kesimpulan yang mencerminkan hasil yang didapat dengan objective yang sudah ditulis di bagian pengenalan.\n", "\n", "EDA, model evaluation, model analysis, further improvement\n", "\n", "buat kesimpulan dalam paragraf yang concise dan compact" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "id": "EZETLv2UGw8q" }, "outputs": [], "source": [ "from sklearn.metrics import mean_absolute_error" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "RNnmniFlG4-c" }, "outputs": [], "source": [] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.4" } }, "nbformat": 4, "nbformat_minor": 0 }