File size: 9,458 Bytes
eb34cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import logging
import math

import numpy as np


# from no_one.NoOnePlayes import HumanPlayer

EPS = 1e-8

log = logging.getLogger(__name__)


class MCTS():
    """
    This class handles the MCTS tree.
    """

    def __init__(self, game, nnet, args):
        self.game = game
        self.nnet = nnet
        self.args = args
        self.Qsa = {}  # stores Q values for s,a (as defined in the paper)
        self.Nsa = {}  # stores #times edge s,a was visited
        self.Ns = {}  # stores #times board s was visited
        self.Ps = {}  # stores initial policy (returned by neural net)

        self.Es = {}  # stores game.getGameEnded ended for board s
        self.Vs = {}  # stores game.getValidMoves for board s

    def getActionProb(self, canonicalBoard, temp=1):
        """
        This function performs numMCTSSims simulations of MCTS starting from
        canonicalBoard.

        Returns:
            probs: a policy vector where the probability of the ith action is
                   proportional to Nsa[(s,a)]**(1./temp)
        """
        for i in range(self.args.numMCTSSims):
            # self.search(canonicalBoard)
            self.game.reset_steps()
            self.search(canonicalBoard)

        s = self.game.stringRepresentation(canonicalBoard)
        counts = [self.Nsa[(s, a)] if (s, a) in self.Nsa else 0 for a in range(self.game.getActionSize())]

        if temp == 0:
            bestAs = np.array(np.argwhere(counts == np.max(counts))).flatten()
            bestA = np.random.choice(bestAs)
            probs = [0] * len(counts)
            probs[bestA] = 1
            return probs

        counts = [x ** (1. / temp) for x in counts]
        counts_sum = float(sum(counts))
        if counts_sum == 0:
            print(len(counts))
        probs = [x / counts_sum for x in counts]
        return probs
    
    def search_iterate(self, canonicalBoard):
        stack = [(0, (canonicalBoard,))]  # Stack of (state, depth, parent_index)
        results = []  # To store the results of leaf or terminal nodes

        while stack:
            st, sv = stack.pop()
            if st == 0:
                result, ns = self.search_iterate_st0(sv[0])
                if result is not None:
                    results.append(result)
                if ns is not None:
                    stack.append((1, (ns[1], ns[2])))
                    stack.append((0, (ns[0],)))
            elif st == 1:
                v = results.pop()
                v = self.search_iterate_update(v, sv[0], sv[1])
                results.append(v)
            else:
                raise ValueError("Invalid state")
        return results.pop()
            
    def search_iterate_st0(self, canonicalBoard):
        s = self.game.stringRepresentation(canonicalBoard)

        if s not in self.Es:
            self.Es[s] = self.game.getGameEnded(canonicalBoard, 1)
        if self.Es[s] != 0:
            result = -self.Es[s]
            return result, None
        if s not in self.Ps:
            # leaf node
            self.Ps[s], v = self.nnet.predict(canonicalBoard)
            valids = self.game.getValidMoves(canonicalBoard, 1)
            self.Ps[s] = self.Ps[s] * valids
            sum_Ps_s = np.sum(self.Ps[s])
            if sum_Ps_s > 0:
                self.Ps[s] /= sum_Ps_s
            else:
                self.Ps[s] = self.Ps[s] + valids
                self.Ps[s] /= np.sum(self.Ps[s])

            self.Vs[s] = valids
            self.Ns[s] = 0

            return -v, None

        valids = self.Vs[s]
        cur_best = -float('inf')
        best_act = -1

        for a in range(self.game.getActionSize()):
            if valids[a]:
                if (s, a) in self.Qsa:
                    u = self.Qsa[(s, a)] + self.args.cpuct * self.Ps[s][a] * math.sqrt(self.Ns[s]) / (1 + self.Nsa[(s, a)])
                else:
                    u = self.args.cpuct * self.Ps[s][a] * math.sqrt(self.Ns[s] + EPS)

                if u > cur_best:
                    cur_best = u
                    best_act = a

        next_s, next_player = self.game.getNextState(canonicalBoard, 1, best_act)
        next_s = self.game.getCanonicalForm(next_s, next_player)

        return None, (next_s, s, best_act)

        # index = len(results)  # Current index in results
        # stack.append((next_s, depth + 1, index))

        # # Backpropagate results
        # for v, parent_index in reversed(results):
        #     if parent_index is not None:
        #         parent_v, _ = results[parent_index]
        #         results[parent_index] = ((parent_v * self.Ns[s] + v) / (self.Ns[s] + 1), _)
        #         self.Ns[s] += 1

        # # Update Qsa and Nsa based on backpropagation
        # for i, (v, parent_index) in enumerate(results):
        #     if parent_index is not None:  # Ignore root
        #         _, action = stack[i]  # Assuming we also pushed actions to stack
        #         if (s, action) in self.Qsa:
        #             self.Qsa[(s, action)] = (self.Nsa[(s, action)] * self.Qsa[(s, action)] + v) / (self.Nsa[(s, action)] + 1)
        #             self.Nsa[(s, action)] += 1
        #         else:
        #             self.Qsa[(s, action)] = v
        #             self.Nsa[(s, action)] = 1

        # return -results[0][0]  # Return the negated value of the root node
    
    def search_iterate_update(self, v, s, a):
        if (s, a) in self.Qsa:
            self.Qsa[(s, a)] = (self.Nsa[(s, a)] * self.Qsa[(s, a)] + v) / (self.Nsa[(s, a)] + 1)
            self.Nsa[(s, a)] += 1

        else:
            self.Qsa[(s, a)] = v
            self.Nsa[(s, a)] = 1

        self.Ns[s] += 1
        return -v

    def search(self, canonicalBoard, depth=0):
        """
        This function performs one iteration of MCTS. It is recursively called
        till a leaf node is found. The action chosen at each node is one that
        has the maximum upper confidence bound as in the paper.

        Once a leaf node is found, the neural network is called to return an
        initial policy P and a value v for the state. This value is propagated
        up the search path. In case the leaf node is a terminal state, the
        outcome is propagated up the search path. The values of Ns, Nsa, Qsa are
        updated.

        NOTE: the return values are the negative of the value of the current
        state. This is done since v is in [-1,1] and if v is the value of a
        state for the current player, then its value is -v for the other player.

        Returns:
            v: the negative of the value of the current canonicalBoard
        """

        s = self.game.stringRepresentation(canonicalBoard)

        if s not in self.Es:
            self.Es[s] = self.game.getGameEnded(canonicalBoard, 1)
        if self.Es[s] != 0:
            # terminal node
            return -self.Es[s]

        if s not in self.Ps:
            # leaf node
            self.Ps[s], v = self.nnet.predict(canonicalBoard)
            valids = self.game.getValidMoves(canonicalBoard, 1)
            self.Ps[s] = self.Ps[s] * valids  # masking invalid moves
            sum_Ps_s = np.sum(self.Ps[s])
            if sum_Ps_s > 0:
                self.Ps[s] /= sum_Ps_s  # renormalize
            else:
                # if all valid moves were masked make all valid moves equally probable

                # NB! All valid moves may be masked if either your NNet architecture is insufficient or you've get overfitting or something else.
                # If you have got dozens or hundreds of these messages you should pay attention to your NNet and/or training process.   
                log.error("All valid moves were masked, doing a workaround.")
                self.Ps[s] = self.Ps[s] + valids
                self.Ps[s] /= np.sum(self.Ps[s])

            self.Vs[s] = valids
            self.Ns[s] = 0
            return -v

        valids = self.Vs[s]
        cur_best = -float('inf')
        best_act = -1

        # pick the action with the highest upper confidence bound
        for a in range(self.game.getActionSize()):
            if valids[a]:
                if (s, a) in self.Qsa:
                    u = self.Qsa[(s, a)] + self.args.cpuct * self.Ps[s][a] * math.sqrt(self.Ns[s]) / (
                            1 + self.Nsa[(s, a)])
                else:
                    u = self.args.cpuct * self.Ps[s][a] * math.sqrt(self.Ns[s] + EPS)  # Q = 0 ?

                if u > cur_best:
                    cur_best = u
                    best_act = a

        a = best_act

        if depth > 100:
            candidates = self.game.getValidMoves(canonicalBoard, 1)
            a = np.random.choice([i for i in range(len(candidates)) if candidates[i] == 1])
            # self.game.display(canonicalBoard)
            # human_player = HumanPlayer(self.game)
            # a = human_player.play(canonicalBoard)
            depth = 80


        next_s, next_player = self.game.getNextState(canonicalBoard, 1, a)
        next_s = self.game.getCanonicalForm(next_s, next_player)
        # print("*", end="")
        # self.game.display(next_s)

        v = self.search(next_s, depth=depth + 1)

        if (s, a) in self.Qsa:
            self.Qsa[(s, a)] = (self.Nsa[(s, a)] * self.Qsa[(s, a)] + v) / (self.Nsa[(s, a)] + 1)
            self.Nsa[(s, a)] += 1

        else:
            self.Qsa[(s, a)] = v
            self.Nsa[(s, a)] = 1

        self.Ns[s] += 1
        return -v