File size: 25,404 Bytes
e507f15
 
 
 
 
8932df5
e507f15
8932df5
e507f15
 
 
 
8932df5
 
e507f15
 
8932df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e507f15
 
8932df5
 
e507f15
 
 
 
 
 
 
 
8932df5
e507f15
 
8932df5
e507f15
8932df5
e507f15
 
 
8932df5
e507f15
 
 
 
 
 
8932df5
e507f15
 
 
 
 
 
 
 
8932df5
e507f15
 
 
 
 
 
 
 
 
8932df5
e507f15
 
 
 
 
 
 
 
8932df5
 
 
e507f15
 
 
 
 
 
 
8932df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e507f15
 
8932df5
 
 
e507f15
 
 
8932df5
e507f15
 
 
 
 
 
 
 
8932df5
 
 
e507f15
 
8932df5
 
 
 
 
e507f15
 
8932df5
 
 
 
 
 
e507f15
 
 
 
 
 
 
 
 
 
 
 
8932df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e507f15
8932df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e507f15
 
8932df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e507f15
 
 
8932df5
 
e507f15
8932df5
 
e507f15
 
8932df5
e507f15
 
8932df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e507f15
8932df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e507f15
 
 
8932df5
 
e507f15
8932df5
 
 
 
 
 
 
e507f15
 
 
8932df5
 
e507f15
8932df5
 
e507f15
 
8932df5
e507f15
 
8932df5
 
 
 
 
 
 
e507f15
 
8932df5
 
 
 
 
e507f15
8932df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e507f15
8932df5
 
 
 
 
 
e507f15
 
8932df5
 
 
 
 
 
 
 
 
e507f15
 
 
 
 
 
 
 
 
 
8932df5
 
 
 
 
e507f15
 
 
 
 
 
 
8932df5
e507f15
 
8932df5
e507f15
 
 
 
 
 
 
8932df5
 
e507f15
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8">
  <meta name="description"
        content="Certified Self-Consistency: Statistical Guarantees and Test-Time Training for Reliable Reasoning in LLMs.">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title>Certified Self-Consistency: Statistical Guarantees and Test-Time Training for Reliable Reasoning in LLMs</title>

  <link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
        rel="stylesheet">

  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.9.4/css/bulma.min.css">
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
  <link rel="stylesheet"
        href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
  
  <style>
    .publication-title {
      font-family: 'Google Sans', sans-serif;
    }
    .publication-authors {
      font-family: 'Google Sans', sans-serif;
    }
    .dnerf {
      font-weight: bold;
      color: #3273dc;
    }
    
    h1.title,
    h2.title,
    h3.title,
    h2.subtitle,
    h3.subtitle {
      text-align: center;
    }
        .objective-list {
      list-style-type: lower-roman;
      padding-left: 1.5em;
    }
    .objective-title {
      font-weight: bold;
    }
  </style>

  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
  <script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>

</head>
<body>

<section class="hero">
  <div class="hero-body">
    <div class="container is-max-desktop">
      <div class="columns is-centered">
        <div class="column has-text-centered">
          <h1 class="title is-1 publication-title">Certified Self-Consistency: Statistical Guarantees and Test-Time Training for Reliable Reasoning in LLMs</h1>
          <div class="is-size-5 publication-authors">
            <span class="author-block">
              <a href="https://paulaoak.github.io/">Paula Cordero-Encinar</a><sup>1</sup>,</span>
            <span class="author-block">
              <a href="https://www.ma.imperial.ac.uk/~aduncan/">Andrew B. Duncan</a><sup>1</sup></span>
          </div>

          <div class="is-size-5 publication-authors">
            <span class="author-block"><sup>1</sup>Imperial College London</span>
          </div>

          <div class="column has-text-centered">
            <div class="publication-links">
              <!-- PDF Link. -->
              <span class="link-block">
                <a href="https://arxiv.org/pdf/2510.17472"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fas fa-file-pdf"></i>
                  </span>
                  <span>Paper</span>
                </a>
              </span>
              <span class="link-block">
                <a href="https://arxiv.org/abs/2510.17472"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="ai ai-arxiv"></i>
                  </span>
                  <span>arXiv</span>
                </a>
              </span>
              <!-- Code Link. -->
              <span class="link-block">
                <a href="https://github.com/paulaoak/certified_self_consistency"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fab fa-github"></i>
                  </span>
                  <span>Code</span>
                  </a>
              </span>
            </div>
<div class="is-size-5 mt-3">
                <span class="has-text-weight-bold">TLDR:</span> We provide a unified statistical framework of when and why self-consistency yields certifiable reliability in reasoning models, and how test-time adaptation can further reduce the computational cost of this certification.
              </div>
          </div>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="section" style="padding: 10px 0;">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-full-width">
  <div class="content has-text-justified">
    <img src="condorcet_framework.png" alt="Certified self-consistency workflow" style="width: 100%;">
    <figcaption style="color:#6b7280; font-size: 0.9rem; margin-top: 8px;">
    Given a prompt, the model generates multiple reasoning rollouts from the
    reference distribution \(\pi_{\mathrm{ref}}(\cdot|{pr})\).
    The resulting terminal answers are aggregated via majority voting, viewed
    as mode estimation under sampling uncertainty.
    The Martingale Majority Certificate (MMC) monitors the empirical margin and
    provides an <em>anytime-valid</em> stopping rule for certification.
    Test-time training with SNR or entropy-based adaptation sharpens the
    terminal distribution, thereby increasing the
    signal-to-noise ratio (SNR) and reducing the number of samples required for
    certification.
  </div>
  <div style="text-align:center; margin: 24px 0;">
    <img src="mmc_point_shared.gif" alt="MMC stopping rule in action" style="width: 80%;">
    <figcaption style="color:#6b7280; font-size: 0.9rem; margin-top: 8px;">
    MMC stopping rule in action.
  </div>
  </div>
  </div>
  </div>
</section>
<section class="hero">
  <div class="container is-max-desktop">
    <div class="hero-body">
      </div>
  </div>
</section>
  
<section class="section">
  <div class="container is-max-desktop">
    <!-- Abstract. -->
    <div class="columns is-centered has-text-centered">
      <div class="column is-four-fifths">
        <h2 class="title is-3">Abstract</h2>
        <div class="content has-text-justified">
          <p>
          Recent advances such as self-consistency and test-time reinforcement learning (TTRL) improve the 
          reliability of large language models (LLMs) without additional supervision, yet their underlying 
          mechanisms and statistical guarantees remain poorly understood.
          </p>
          <p>
          We present a unified framework for certifiable inference in LLMs, showing that majority voting provides a 
          statistical certificate of self-consistency: under mild assumptions, the aggregated answer coincides with 
          the mode of the model’s terminal distribution with high probability. We derive finite-sample and anytime-valid
          concentration bounds that quantify this confidence, and introduce the Martingale Majority Certificate (MMC), a 
          sequential stopping rule that adaptively determines when sufficient samples have been drawn.
          </p>
          <p>
          We further prove that label-free post-training methods such as TTRL implicitly sharpen the answer distribution 
          by exponentially tilting it toward its mode, thereby reducing the number of samples required for certification. 
          Building on this insight, we propose new post-training objectives that explicitly optimise this trade-off between 
          sharpness and bias.  Together, these results explain and connect two central test-time scaling strategies, 
          self-consistency and TTRL,  within a single statistical framework for label-free, certifiable reliability in 
          reasoning LLMs.
          </p>
        </div>
      </div>
    </div>
    <!--/ Abstract. -->
  </div>
</section>


<section class="section">
  <div class="container is-max-desktop">
    <div class="columns is-centered">
      <div class="column is-full-width">
        <h3 class="title is-4">Setting</h3>
        <div class="content has-text-justified">
        <p>
    LLM rollouts can be formalised as a stochastic decoding process
    \[
      (Y_t)_{t \ge 0}, \quad Y_t \in \mathcal{V},
    \]
    where \( \mathcal{V} \) is the vocabulary and the process is initialised by a prompt \( pr \). 
    At each step the model samples
    \[
      Y_{t+1} \sim \pi_\phi(\cdot \mid Y_{\le t}, pr),
    \]
    from a conditional policy parametrised by weights \( \phi \). 
    The <em>thinking phase</em> consists of the random evolution of this sequence until a termination token is produced, 
    at which point the model emits the response, starting from a random stopping time \( \tau \). 
    We denote by
    \[
      X := g(Y_{\tau:}) \in \mathcal{A}
    \]
    the canonicalised terminal answer, obtained by applying a deterministic extraction map \( g \). 
    The induced terminal distribution \( \mathbf{p} = \mathrm{Law}(X) \) over the answer set \( \mathcal{A} \) captures the model’s epistemic uncertainty about its own final output. 
    In an ideal reasoning model, we would like rollouts to exhibit rich variability in \( Y_{1:\tau-1} \) (the reasoning trajectories), yet concentrate mass in the final answer \( X \) (the outcome). 
    That is, we seek <em>diversity over reasoning paths, but consistency over terminal responses</em>.
  </p>

  <p>
    In supervised or verifier-equipped settings, correctness can be externally validated. 
    In open-ended reasoning tasks, such supervision is unavailable. 
    In the absence of external rewards, a model must act relative to its own uncertainty. 
    Letting \( a \in \mathcal{A} \) denote the chosen output and \( X \sim \mathbf{p} \) the stochastic model response, the expected 0–1 loss is \( \mathbb{E}[1\{a \neq X\}] \). 
    The Bayes-optimal decision minimising this loss is the mode
  </p>

  <p>
    \[
      c^\star = \arg\max_j p_j,
    \]
  </p>

  <p>
    which corresponds to the model’s most probable self-consistent answer. 
    Hence, under symmetric loss, recovering the mode is the optimal <em>model-relative</em> prediction. 
    When a verifier is absent, certifying that a model’s reported answer coincides with this mode provides a natural measure of reliability.
  </p>
  </div>

        <h3 class="title is-4">Statistical Certificates of Self-Consistency</h3>
        <div class="content has-text-justified">
        <p>
          In practice, the terminal probabilities \( \mathbf{p} \) are unknown and can be estimated only through multiple 
          independent rollouts \( X_1,\ldots,X_n \). 
          The simplest estimator of the mode is the <em>majority vote</em>
        </p>

        <p>
          \[
            \widehat{c}_n := \arg\max_j \hat{p}_{n,j}, 
            \qquad
            \hat{p}_{n,j} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\{X_i=j\}.
          \]
        </p>

        <p>
          This estimator forms the basis of <em>self-consistency</em> test-time scaling.
          From a statistical standpoint, majority voting is the Bayes-optimal estimator of \( c^\star \) under 0--1 loss, 
          and an associated upper bound on \( \mathbb{P}[\widehat{c}_n \neq c^\star] \) provides a 
          <em>statistical certificate of self-consistency</em>: a quantitative guarantee that the aggregated answer 
          coincides with the mode of the terminal law \( \mathbf{p} \) with high probability. 
        </p>

        <p>
          Under standard regularity conditions the majority-vote estimator is consistent, \( \Pr[\widehat{c}_n = c^\star] \to 1 \) as \( n \to \infty \).  
          <strong>A more practical question concerns the finite-sample regime: how large must \( n \) be to guarantee, with 
          confidence \( 1-\varepsilon \), that \( \widehat{c}_n \) already equals \( c^\star \)?</strong>
        </p>

        <p>
          To address this, we derive finite-sample and asymptotic certificates, leveraging Hoeffding, Bernstein, 
          Chernoff–Markov, and Sanov concentration bounds for the error probability \( \mathbb{P}[\widehat{c}_n \neq c^\star] \). 
          These bounds clarify how reliability scales with the ensemble size and with the <em>mode margin</em> 
          \( \delta = p_{c^\star} - p_{j^\star} \), i.e., the gap between the top two answer probabilities.
        </p>

        <p>
          If the probabilities \( p_j \) were known, one could invert these bounds to determine the number of samples required 
          to achieve a desired confidence \( 1-\varepsilon \). 
          In reality, both \( p_j \) and \( \delta \) must be estimated on the fly. 
          This motivates a <em>sequential</em> formulation: <strong>as rollouts arrive, can we determine adaptively when the current majority 
          is statistically reliable?</strong>
          
          We introduce the <em>Martingale Majority Certificate (MMC)</em>, a sequential procedure that adaptively tests whether the empirical leader remains significantly ahead of its nearest rival and 
          of all others combined. This guarantees that at the (random) stopping time \( \tau \), majority vote coincides with the true mode with high probability:
        </p>

        <p>
          \[
            \Pr[\widehat{c}_{n_\tau} \neq c^\star] \le \varepsilon,
          \]
        </p>

        <p>
          thus providing an <em>anytime-valid certificate</em> of model self-consistency.
        </p>
        </div>

        <h3 class="title is-4">Martingale Majority Certificate Stopping Rule</h3>
        <div class="content has-text-justified">
          <p>
            Our proposed stopping rule adaptively decides when to stop sampling rollouts while controlling the error of returning the empirical majority. 
        </p>
        <p>
    The central challenge in the LLM setting is the potentially large number of possible outcomes. 
    A naive stopping rule would require pairwise comparisons of the empirical probabilities across all classes 
    \( i \neq j \), \( i,j \in \{1, \dots, k\} \), which becomes computationally prohibitive as \( k \) grows.
  </p>

  <p>
    To address this, we exploit the observation that the mass of the terminal law is typically concentrated on a few classes \( m \ll k \).  
    Thus, instead of considering all classes individually, we aggregate votes into three categories: 
    <ul>
      <li>the current leader \( \widehat{c}_n \),</li>
      <li>the runner-up</li>
      <li>all the <em>others</em>.</li>
    </ul>
  </p>
  <p>
    Accordingly, we perform two tests: leader vs runner-up and leader vs <em>others</em>.  
  </p>
        <div style="text-align:center; margin: 24px 0;">
            <img src="mmc_algorithm.png" alt="MMC algorithm" width="70%">
          </div>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">    
    <div class="columns is-centered">
      <div class="column is-full-width">
        <h3 class="title is-4">Optimising Sample Efficiency with Test-Time Training</h3>
        <div class="content has-text-justified">
          <p>
            Our ultimate goal is to minimise the number of samples required from the LLM for the majority vote 
            to return the correct answer with high confidence \(1-\varepsilon\). The expected stopping time of the MMC scales approximately as
<span id="eq-expected_number_samples">
\[
N \;\approx\; 
\frac{2(p_{\hat c}+p_{j^\star})}{(p_{\hat c}-p_{j^\star})^{2}} \,\log \frac{1}{\varepsilon},
\]
</span>
so that small mode margins 
<span>\( \delta = p_{\hat c}-p_{j^\star} \)</span> 
lead to rapidly increasing sample requirements. 
</p>
          <p>
      <strong>The key question is whether test-time adaptation can reshape the terminal distribution to enlarge this margin, thereby improving sample efficiency.</strong>
      </p>
           <p>
           We show that the optimal policy corresponding to the KL-regularised objective proposed in <a href="https://arxiv.org/pdf/2504.16084">TTRL</a> is an exponentially tilted version of the base model. 
           Decreasing the regularisation parameter consistently increases the margin and reduces the number of samples required for certification.
          </p>
        <p><strong style="font-size: 1.3em;">Two new test-time RL objectives</strong></p>
  
  <p>
    We introduce two label-free group-level rewards designed to optimise the trade-off between sharpness
    and bias. Let \( \mathbf{X} = (X_1, \dots, X_n) \) be a set of answers arising from rollouts 
    \( \mathbf{Y} =(Y_1, \ldots, Y_n) \) for a given prompt, with \( \widehat{c}_n \) denoting the majority vote 
    and \( j_n^\star \) the runner-up. Define \( N_j = \sum_i \mathbf{1}\{X_i=j\} \).
  </p>

  <ol class="objective-list">
    <li>
      <span class="objective-title">SNR-based reward.</span>
      <p>
        Directly leveraging the SNR as a driving factor in the efficiency of the MMC scheme we introduce the first reward
      </p>
      <p>
        \[
          r^{(1)}_n(\mathbf{Y})
          = \widehat{\mathrm{SNR}}(\Delta_{j^\star_n})(\mathbf{X})
          = \frac{(N_{\widehat c_n}-N_{j^\star_n})^{2}}
                 {n \left(N_{\widehat c_n}+N_{j^\star_n}\right)
                  -(N_{\widehat c_n}-N_{j^\star_n})^{2}}
          \;\xrightarrow[n\to\infty]{}\;
          \mathrm{SNR}(\Delta_{j^\star_n}).
        \]
      </p>
      <p>
        This objective aims to directly maximise \( \text{SNR}(\Delta_{j_n^\star}) \), which is equivalent to minimising the expected
        number of samples required to obtain statistical certificates for the majority vote.
      </p>
    </li>

    <li>
      <span class="objective-title">Entropy-based reward.</span>
      <p>
        As we want to encourage a more peaked terminal distribution, another natural option is negative entropy, i.e.
      </p>
      <p>
        \[
          r^{(2)}_n(\mathbf{Y})
          = \widehat H_n(\mathbf{X})
          = \sum_{j:N_j>0}\frac{N_j}{n} \log \frac{N_j}{n}
          \;\xrightarrow[n\to\infty]{}\;
          \sum_j p_j \log p_j = -H(p).
        \]
      </p>
      <p>
        Maximising \( \widehat H_n \) <em>minimises</em> the Shannon entropy of the answer
        distribution, encouraging a sharper, lower-entropy terminal distribution.
        🚨<strong>Important:</strong> The tempering sharpens only the distribution of final answers, not the full sequence distribution. 
        This gives us the best of both worlds:  promoting certainty when providing a final answer, but permitting exploration of diverse 
        pathways during the chain-of-thought reasoning process.
      </p>
    </li>
  </ol>
          <div style="text-align:center; margin: 24px 0;">
            <img src="ttt_performance_math500.png" alt="Performance TTT" width="100%">
            <figcaption style="color:#6b7280; font-size: 0.9rem; margin-top: 8px;">
              Pass@1 performance after test-time training with SNR and entropy-based rewards relative to the base models.
            </figcaption>
          </div>

          <p>
            We observe in the table below that the number of samples required under the MMC stopping rule decreases after applying test-time training, relative to the pre-trained model. 
            That is, test-time training sharpens the terminal answer distribution, increasing the mode margin and thus reducing the number of samples required for certification.
          </p>
          <div style="text-align:center; margin: 24px 0;">
            <img src="table_mmc.png" alt="Performance TTT" width="75%">
            <figcaption style="color:#6b7280; font-size: 0.9rem; margin-top: 8px;">
              Majority vote accuracy and required number of samples under the MMC stopping rule (✅) at confidence levels 0.1 and 0.4 for the pre-trained model and after test-time training with SNR-based rewards. Performance is compared to that obtained using the full sample budget (❌).
            </figcaption>
          </div>
          </ul>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">
    <div class="columns is-centered">
      <div class="column is-full-width">
        <h3 class="title is-4">SNR as a label-free estimator of task difficulty</h3>
        <div class="content has-text-justified">
          <p>
          Our experiments reveal a notable empirical regularity: the
          <em>signal-to-noise ratio</em> (SNR) of the margin variable 
          \(\Delta_{j^\star} = \mathbf 1\{X = c^\star\} - \mathbf 1\{X = j^\star\}\),
          which quantifies the sharpness of the model’s terminal answer distribution,
          correlates strongly with external measures of problem difficulty.
          Across the MATH-500 benchmark, harder problems exhibit systematically lower and more variable SNR values,
          while easier problems yield sharply peaked distributions concentrated around a single answer.
          </p>
          <p>
          This behaviour is non-trivial: the model has no access to ground-truth difficulty labels, yet its own epistemic
          uncertainty, reflected in the variability of its rollouts, aligns closely with these labels.
          <strong>This suggests an emergent form of calibration in reasoning LLMs</strong>:
          without explicit supervision or external verification, models appear to ''know when they do not know.''
          In statistical terms, the SNR acts as a label-free proxy for epistemic uncertainty and, consequently, for task difficulty.
          </p>
          <div style="text-align:center; margin: 24px 0;">
            <img src="QWEN-MATH-1.5B_violin_maj100_SNR.png" alt="SNR distribution qwen-math-1.5B." style="width: 48%;margin-right: 1%;">
            <img src="QWEN-MATH-7B_violin_maj100_SNR.png" alt="SNR distribution qwen-math-7B." style="width: 48%;margin-left: 1%;">
            <figcaption style="color:#6b7280; font-size: 0.9rem; margin-top: 8px;">
              Distribution of the estimated SNR when using MMC stopping rule with \(\varepsilon = 0.1\) and \(N_{\text{budget}}=100\). Results are obtained after applying test-time training with SNR-based rewards.</figcaption>
          </div>
        </div>
      </div>
</div>
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">
    <div class="columns is-centered">
      <div class="column is-full-width">
        <h3 class="title is-4">Conclusion</h3>

        <div class="content has-text-justified">
          <p>
            <strong>Our results unify several strands of recent work on reliable inference in LLMs, self-consistency,
            adaptive compute allocation, and test-time reinforcement learning (TTRL), under a common
            statistical perspective.</strong>  Through this lens, majority voting emerges naturally as a means of estimating the mode of the terminal distribution.  
            The validity of the majority vote as an estimate of the mode can be certified by finite-sample and asymptotic bounds. The Martingale Majority Certificate (MMC)
            extends this view by providing an operational test-time algorithm that determines, from model
            rollouts alone, when a response is statistically self-consistent.  
          </p>
          <p>
          Furthermore, <strong>we shed light on the underlying mechanism by which TTRL and related post-training
          approaches improve reasoning reliability: KL-regularised optimisation corresponds to an
          exponential tilting of the terminal law, sharpening it around its mode and increasing the
          signal-to-noise ratio (SNR) of the margin variable.</strong>  This insight explains empirical observations of
          enhanced consistency after test-time adaptation, and motivates new label-free objectives such as
          our SNR- and entropy-based rewards, which explicitly target this trade-off between sharpness and
          bias.  Unlike prior work that tunes temperature or per-token distributions, our formulation operates
          on the terminal marginal, preserving exploration during reasoning while promoting confidence in the
          final answer.
          </p>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="section" id="BibTeX">
  <div class="container is-max-desktop content">
    <h2 class="title">BibTeX</h2>
    <pre><code>@article{corderoencinar2025certified,
  author    = {Paula Cordero-Encinar and Andrew B. Duncan},
  title     = {Certified Self-Consistency: Statistical Guarantees and Test-Time Training for Reliable Reasoning in LLMs},
  journal   = {arXiv:2510.17472},
  year      = {2025},
}</code></pre>
  </div>
</section>

<footer class="footer">
  <div class="container">
    <div class="content has-text-centered">
      <a class="icon-link" href="https://arxiv.org/pdf/2510.17472" class="external-link">
        <i class="fas fa-file-pdf"></i>
      </a>
      <a class="icon-link" href="https://github.com/paulaoak/certified_self_consistency" class="external-link">
        <i class="fab fa-github"></i>
      </a>
    </div>
    <div class="columns is-centered">
      <div class="column is-8">
        <div class="content">
          <p>
            This website template is borrowed from <a href="https://nerfies.github.io/">Nerfies</a>, 
            licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
            Commons Attribution-ShareAlike 4.0 International License</a>.
          </p>
        </div>
      </div>
    </div>
  </div>
</footer>

</body>
</html>