File size: 18,817 Bytes
741836f
 
b294b84
 
 
 
9666d22
b294b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46796ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b294b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6d6c4b
b294b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5555137
 
b294b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5555137
b294b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5555137
b294b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5555137
b294b84
 
 
 
 
 
 
 
 
 
5555137
b294b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741836f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b294b84
741836f
 
b294b84
 
 
 
 
741836f
 
 
 
 
 
b294b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974961
b294b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5555137
b294b84
 
 
5555137
b294b84
 
 
 
 
 
 
 
 
741836f
 
 
 
 
 
b294b84
 
 
 
741836f
f6d6c4b
b294b84
 
 
741836f
f6d6c4b
b294b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741836f
 
 
 
 
 
b294b84
f6d6c4b
b294b84
 
 
 
5555137
b294b84
 
 
 
 
 
 
 
 
 
 
 
 
741836f
b294b84
 
f37e0cb
425b0ce
 
 
741836f
5555137
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

import re
import traceback
from typing import List, Dict, Any, Tuple
import numpy as np
import pandas as pd
import gradio as gr
from fpdf import FPDF

EPS = 1e-9

def parse_coeffs(text: str) -> List[float]:
    if not text or not text.strip():
        return []
    s = text.replace(',', ' ')
    parts = [p for p in s.split() if p.strip()]
    coeffs = []
    for p in parts:
        try:
            coeffs.append(float(eval(p)))
        except Exception:
            raise ValueError(f"Coeficiente inválido: '{p}'")
    return coeffs

def parse_constraints(text: str, nvars: int) -> Tuple[List[Dict[str,Any]], List[int]]:
    lines = [ln.strip() for ln in text.strip().splitlines() if ln.strip()]
    skip_words = ["tal que", "sujeito a", "subject to", "s.t.", "st:"]
    lines = [ln for ln in lines if not any(word in ln.lower() for word in skip_words)]

    free_vars = []
    cons = []
    pattern_free = re.compile(r'x([0-9]+)\s*(livre|free)', flags=re.I)

    # CORREÇÃO: regex robusto para coeficientes negativos ou omitidos
    term_pattern = r'([+-]?\d*(?:\.\d+)?)(x\d+)'

    for ln in lines[:]:
        m = pattern_free.search(ln)
        if m:
            idx = int(m.group(1)) - 1
            if idx < 0 or idx >= nvars:
                raise ValueError(f"Variável livre fora do intervalo: x{idx+1}")
            free_vars.append(idx)
            lines.remove(ln)

    for ln in lines:
        s = ln.replace(" ", "")
        if "<=" in s or "=<" in s:
            s = s.replace("=<", "<=")
            left, right = s.split("<=")
            sense = "<="
        elif ">=" in s or "=>" in s:
            s = s.replace("=>", ">=")
            left, right = s.split(">=")
            sense = ">="
        elif "=" in s:
            left, right = s.split("=")
            sense = "="
        else:
            raise ValueError(f"Faltando <=, >= ou =: '{ln}'")

        try:
            rhs = float(eval(right))
        except Exception:
            raise ValueError(f"RHS inválido em: '{ln}'")

        coeffs = [0.0] * nvars

        # agora os termos negativos funcionam corretamente
        terms = re.findall(term_pattern, left)

        for coef_str, var_str in terms:
            idx = int(var_str[1:]) - 1

            # Trata coeficientes omitidos ou sinal puro
            if coef_str in ["", "+", None]:
                v = 1.0
            elif coef_str == "-":
                v = -1.0
            else:
                v = float(eval(coef_str))

            coeffs[idx] += v

        cons.append({'coeffs': coeffs, 'sense': sense, 'rhs': rhs})

    return cons, sorted(list(set(free_vars)))

def expand_free_variables(nvars: int, c: List[float], constraints: List[Dict[str,Any]], free_vars: List[int]):
    new_c = []
    mapping = {}
    for i in range(nvars):
        if i in free_vars:
            new_c.append(c[i]); mapping[len(new_c)-1] = (i, +1)
            new_c.append(-c[i]); mapping[len(new_c)-1] = (i, -1)
        else:
            new_c.append(c[i]); mapping[len(new_c)-1] = (i, +1)
    new_constraints = []
    for row in constraints:
        coeffs = row['coeffs']
        new_coeffs = []
        for i in range(nvars):
            if i in free_vars:
                new_coeffs.append(coeffs[i])
                new_coeffs.append(-coeffs[i])
            else:
                new_coeffs.append(coeffs[i])
        new_constraints.append({'coeffs': new_coeffs, 'sense': row['sense'], 'rhs': row['rhs']})
    return len(new_c), new_c, new_constraints, mapping

# ---------------- Tableau helpers ----------------
def snapshot_html(tableau: np.ndarray, basis: List[int]) -> str:
    cols = tableau.shape[1]
    html = '<table border="1" style="border-collapse:collapse;font-family:Arial; font-size:12px;">'
    for i in range(tableau.shape[0]):
        html += '<tr>'
        for j in range(cols):
            val = tableau[i, j]
            html += f'<td style="padding:4px;">{val:.6g}</td>'
        html += '</tr>'
    html += '</table>'
    return html

def primal_simplex_tableau(T: np.ndarray, basis: List[int], max_iters=1000) -> Tuple[np.ndarray, List[int], List[Dict[str,Any]]]:
    m = T.shape[0] - 1
    ncols = T.shape[1]
    path = []
    path.append({'tableau': T.copy(), 'basis': basis.copy(), 'html': snapshot_html(T, basis)})

    it = 0
    while it < max_iters:
        it += 1
        obj_row = T[-1, :-1]
        entering_candidates = np.where(obj_row < -EPS)[0]
        if entering_candidates.size == 0:
            break
        entering = int(entering_candidates[0])
        ratios = np.full(m, np.inf)
        for i in range(m):
            a = T[i, entering]
            if a > EPS:
                ratios[i] = T[i, -1] / a
        if np.all(np.isinf(ratios)):
            raise Exception('Unbounded LP')
        leaving = int(np.argmin(ratios))
        piv = T[leaving, entering]
        T[leaving, :] = T[leaving, :] / piv
        for i in range(m+1):
            if i == leaving: continue
            T[i, :] = T[i, :] - T[i, entering] * T[leaving, :]
        basis[leaving] = entering
        path.append({'tableau': T.copy(), 'basis': basis.copy(), 'html': snapshot_html(T, basis)})
    return T, basis, path

# ---------------- Two-Phase implementation----------------
def build_tableau_two_phase(c: List[float], constraints: List[Dict[str,Any]], sense: str = 'max'):
    obj_mult = 1.0
    if sense == 'min':
        obj_mult = -1.0
    c_adj = [ci * obj_mult for ci in c]

    n = len(c_adj)
    m = len(constraints)

    slacks = 0
    artificials = 0
    for row in constraints:
        if row['sense'] == '<=':
            slacks += 1
        elif row['sense'] == '>=':
            slacks += 1
            artificials += 1
        else:
            artificials += 1

    total_cols = n + slacks + artificials + 1
    T = np.zeros((m + 1, total_cols))

    slack_idx = n
    artificial_idx = n + slacks

    basis = []
    art_positions = []
    s_counter = 0
    a_counter = 0

    for i, row in enumerate(constraints):
        coeffs = row['coeffs']
        T[i, :n] = coeffs
        if row['sense'] == '<=':
            T[i, slack_idx + s_counter] = 1.0
            basis.append(slack_idx + s_counter)
            s_counter += 1
        elif row['sense'] == '>=':
            T[i, slack_idx + s_counter] = -1.0
            T[i, artificial_idx + a_counter] = 1.0
            basis.append(artificial_idx + a_counter)
            art_positions.append(artificial_idx + a_counter)
            s_counter += 1
            a_counter += 1
        else:  # equality
            T[i, artificial_idx + a_counter] = 1.0
            basis.append(artificial_idx + a_counter)
            art_positions.append(artificial_idx + a_counter)
            a_counter += 1
        T[i, -1] = row['rhs']

    # Phase I objective: minimize sum of artificials.
    # Convert to maximization for our tableau solver: maximize (-sum a_j)
    # So c_phase1 (for maximization) = -1 for each artificial column.
    c_phase1 = np.zeros(total_cols - 1)
    for a in art_positions:
        c_phase1[a] = -1.0

    # In tableau we store -c in last row, so set T[-1, :-1] = -c_phase1
    T[-1, :-1] = -c_phase1

    # But because artificials are in basis, we must adjust objective row:
    # T[-1, :] = -c + sum_{i in basis} c_Bi * row_i, where c_Bi = c_phase1[basis_i]
    for i in range(m):
        bi = basis[i]
        cBi = c_phase1[bi] if bi < len(c_phase1) else 0.0
        if abs(cBi) > EPS:
            T[-1, :] += cBi * T[i, :]

    return T, basis, (n, slacks, artificials), art_positions, c_adj


def run_two_phase(c, constraints, sense='max'):    
    #FASE I
    T0, basis0, (n_orig, n_slack, n_art), art_positions, c_adj = build_tableau_two_phase(
        c, constraints, sense
    )

    try:
        T1, basis1, path1 = primal_simplex_tableau(T0.copy(), basis0.copy())
    except Exception as e:
        return {
            'status': 'phase1_failed',
            'error': str(e),
            'trace': traceback.format_exc()
        }

    phase1_obj = float(T1[-1, -1])

    # se sum(a_j) != 0 → inviável
    if abs(phase1_obj) > 1e-6:
        return {
            'status': 'infeasible',
            'phase1_obj': phase1_obj,
            'phase1_path': path1,
            'tableau_phase1': T1
        }

    # ---------- REMOVER ARTIFICIAIS ----------
    art_cols = set(art_positions)
    old_ncols = T1.shape[1] - 1
    keep_cols = [j for j in range(old_ncols) if j not in art_cols]

    # construir tableau da fase II (T2)
    T2 = np.zeros((T1.shape[0], len(keep_cols) + 1))
    for i, col in enumerate(keep_cols):
        T2[:, i] = T1[:, col]
    T2[:, -1] = T1[:, -1]

    # nova base
    basis2 = []
    for bi in basis1:
        if bi in art_cols:
            basis2.append(None)
        else:
            basis2.append(keep_cols.index(bi))

    # corrigir linhas onde a base ficou None
    used = set([b for b in basis2 if b is not None])
    m = T2.shape[0] - 1

    for i in range(m):
        if basis2[i] is None:
            replaced = False
            for j in range(T2.shape[1] - 1):
                if j not in used and abs(T2[i, j]) > EPS:
                    piv = T2[i, j]
                    T2[i, :] = T2[i, :] / piv
                    for r in range(m+1):
                        if r != i:
                            T2[r, :] -= T2[r, j] * T2[i, :]
                    basis2[i] = j
                    used.add(j)
                    replaced = True
                    break
            if not replaced:
                basis2[i] = None

    #FASE II — definir objetivo original
    c_full = []
    for col in keep_cols:
        if col < len(c_adj):
            c_full.append(c_adj[col])
        else:
            c_full.append(0.0)

    c_full = np.array(c_full)

    T2[-1, :-1] = -c_full

    for i in range(m):
        bi = basis2[i]
        if bi is not None and bi < len(c_full):
            coef = c_full[bi]
            if abs(coef) > EPS:
                T2[-1, :] += coef * T2[i, :]

    # preencher bases ausentes
    for i in range(m):
        if basis2[i] is None:
            for j in range(T2.shape[1]-1):
                if j not in used:
                    basis2[i] = j
                    used.add(j)
                    break

    #SIMPLEX FASE II
    try:
        T_final, basis_final, path2 = primal_simplex_tableau(T2.copy(), basis2.copy())
    except Exception as e:
        return {
            'status': 'phase2_failed',
            'error': str(e),
            'phase1_path': path1,
            'trace': traceback.format_exc()
        }

    #EXTRAI X*, REDUCED COSTS E DUAL (GERAL)
    x = [0.0] * n_orig

    for i, bi in enumerate(basis_final):
        if bi is not None:
            oldcol = keep_cols[bi]
            if oldcol < n_orig:
                x[oldcol] = float(T_final[i, -1])

    z = float(T_final[-1, -1])

    # custos reduzidos apenas variáveis originais
    reduced = []
    for j in range(n_orig):
        if j in keep_cols:
            colpos = keep_cols.index(j)
            z_j = -T_final[-1, colpos]
            reduced.append(round(c_adj[j] - z_j, 8))
        else:
            reduced.append(0.0)

    # Reconstruir matriz A (somente colunas originais) e b, c (originais)
    A_orig = np.array([row['coeffs'] for row in constraints], dtype=float)  # m x n_orig
    b_vec = np.array([row['rhs'] for row in constraints], dtype=float)
    cvec = np.array(c[:n_orig], dtype=float)

    # Construir matriz M das colunas que permaneceram no tableau (T_final[:m, :-1])
    M = T_final[:m, :-1].copy()  # m x ncols_keep

    # Basis matrix B (colunas básicas da fase II) — usar basis_final (índices em 0..ncols_keep-1)
    # Garantir que não haja None; se houver, já tentamos preencher antes.
    if any(bi is None for bi in basis_final):
        # Em casos degenerados, preencher com pseudo-solução: y zeros
        y_star = np.zeros(m)
    else:
        B = M[:, basis_final]  # m x m
        # montar c_B (custos das colunas básicas)
        cB = np.zeros(m)
        for i, bi in enumerate(basis_final):
            if bi < len(c_full):
                cB[i] = c_full[bi]
            else:
                cB[i] = 0.0
        # y^T = cB^T * B^{-1}
        try:
            Binv = np.linalg.inv(B)
            y_star = (cB @ Binv)  # shape (m,)
        except np.linalg.LinAlgError:
            # fallback: tentar solução via least squares
            try:
                y_star, *_ = np.linalg.lstsq(B.T, cB, rcond=None)
            except Exception:
                y_star = np.zeros(m)

    # dual objective b^T y
    dual_obj = float(b_vec @ y_star)

    # Definir folgas/violação das desigualdades do dual dependendo do sentido primal
    # Se primal == 'max' -> dual é min b^T y s.t. A^T y >= c  => slack = A^T y - c  (>=0)
    # Se primal == 'min' -> dual is max b^T y s.t. A^T y <= c => slack = c - A^T y  (>=0)
    if sense == 'max':
        dual_slacks = (A_orig.T @ y_star) - cvec
    else:
        dual_slacks = cvec - (A_orig.T @ y_star)

    # Preços-sombra (y) - ajustar sinal/convenção para exibição: mantemos y_star como calculado.
    shadow = []
    for i, row in enumerate(constraints):
        shadow.append(round(float(y_star[i]), 8))

    return {
        'status': 'optimal',
        'x': [round(v, 8) for v in x],
        'obj': round(z, 8),
        'y_dual': [round(float(v), 8) for v in y_star],
        'dual_obj': round(dual_obj, 8),
        'dual_slacks': [round(float(v), 8) for v in dual_slacks],
        'A': A_orig.tolist(),
        'b': b_vec.tolist(),
        'c': cvec.tolist(),
        'path_phase1': path1,
        'path_phase2': path2,
        'tableau_final': T_final,
        'basis_final': basis_final,
        'reduced_costs': reduced,
        'shadow_prices': shadow
    }


# ---------------- Helpers & PDF ----------------
def clean_vector(vec):
    try:
        return [float(v) for v in vec]
    except:
        return vec


# ---------------- Gradio handler ----------------
def run_algorithms(nvars_str, objective_str, cons_str, sense, mode):
    try:
        nvars = int(nvars_str)
        if nvars <= 0:
            return 'Erro: nvars deve ser inteiro positivo', '', '', '', ''
        c = parse_coeffs(objective_str)
        if len(c) != nvars:
            return 'Erro: coeficientes do objetivo não correspondem a nvars', '', '', '', ''
        constraints, free_vars = parse_constraints(cons_str, nvars)
        if free_vars:
            nvars, c, constraints, mapping = expand_free_variables(nvars, c, constraints, free_vars)
    except Exception as e:
        return f'Erro ao ler entrada: {e}', '', '', '', ''
        
    res = run_two_phase(c, constraints, sense)
    status = res.get('status')
    # infeasible detected in Phase I
    if status == 'infeasible':
        return f"Problema inviável (Fase I obj = {res.get('phase1_obj')})", '', '', '', ''

    # Phase I failed
    if status == 'phase1_failed':
        return f"Erro na Fase I: {res.get('error','(sem detalhe)')}", '', '', '', ''

    if status == 'optimal':
        x_primal = res['x']
        z_primal = res['obj']
        reduced = res.get('reduced_costs', [])
        shadow = res.get('shadow_prices', [])
        T_final = res.get('tableau_final', None)
        path_primal = res.get('path_phase2', [])
        path_phase1 = res.get('path_phase1', [])
        y_dual = res.get('y_dual', [])
        dual_obj = res.get('dual_obj', None)
        dual_slacks = res.get('dual_slacks', [])
        A = res.get('A', [])
        b = res.get('b', [])
        cvec = res.get('c', [])
    else:
        return f"Erro na resolução: status inesperado '{status}' - {res.get('error','')}", '', '', '', ''

    steps_html_phase2 = ""
    for idx, step in enumerate(path_primal):
        steps_html_phase2 += f"<h4>Fase II — Passo {idx+1} — Base: {step.get('basis','?')}</h4>"
        steps_html_phase2 += snapshot_html(np.array(step['tableau']), step.get('basis', [])) + "<br/>"

    steps_html_phase1 = ""
    for idx, step in enumerate(path_phase1):
        steps_html_phase1 += f"<h4>Fase I — Passo {idx+1} — Base: {step.get('basis','?')}</h4>"
        steps_html_phase1 += snapshot_html(np.array(step['tableau']), step.get('basis', [])) + "<br/>"

    df = pd.DataFrame({'Variável': [f'x{i+1}' for i in range(len(x_primal))], 'Valor': x_primal})
    solution_html = df.to_html(index=False)
    solution_html += f"<p><b>Valor ótimo (estimado) = {z_primal:.6g}</b></p>"

    x_primal = clean_vector(x_primal); reduced = clean_vector(reduced); shadow = clean_vector(shadow)
    z_primal = float(z_primal)

    model_txt = f"Objective ({'min' if sense=='min' else 'max'}): {c}\nConstraints:\n"
    for r in constraints:
        model_txt += f"  {r['coeffs']} {r['sense']} {r['rhs']}\n"

    summary = ""
    summary += f"Solução primal x* = {x_primal}\n"
    summary += f"Z_primal (estimado) = {z_primal:.6g}\n\n"
    summary += f"Solução dual y* = {y_dual}\n"
    summary += f"Valor dual b^T y = {dual_obj}\n"
    summary += f"Folgas/violação dual (A^T y - c) = {dual_slacks}\n\n"
    summary += f"Preços-sombra (dual interpretado) = {shadow}\n"
    summary += f"Custos reduzidos (vars originais) = {reduced}\n"

    return model_txt, solution_html, steps_html_phase1, steps_html_phase2, summary

# ---------------- Gradio UI ----------------

with gr.Blocks() as demo:
    gr.Markdown("# Simplex — Duas Fases (Fase I / Fase II) (Dual Geral)")
    with gr.Row():
        with gr.Column(scale=1):
            nvars = gr.Textbox(label='Número de variáveis (n)', value='2')
            objective = gr.Textbox(label='Coeficientes da função objetivo (ex: \"60 30\")', value='60 30')
            cons = gr.Textbox(label='Restrições (uma por linha). Ex.: 2x1 + 3x2 <= 300', lines=6,
                              value='2x1 + 4x2 >= 40\n3x1 + 2x2 >= 50')
            sense = gr.Radio(['max','min'], value='max', label='Tipo de objetivo')
            run = gr.Button('Executar Simplex (Duas Fases)')
        with gr.Column(scale=2):
            model_out = gr.Textbox(label='Função objetivo e restrições (modelo)', lines=6)
            solution_out = gr.HTML(label='Solução ótima (tabela)')
            steps_phase2_out = gr.HTML(label='Passos do Simplex (Phase II tableaus)')
            steps_phase1_out = gr.HTML(label='Passos do Simplex (Phase I tableaus)')
            summary_out = gr.Textbox(label='Resumo', lines=12)

    run.click(run_algorithms, inputs=[nvars, objective, cons, sense, gr.State(value='primal_and_dual')], outputs=[model_out, solution_out, steps_phase2_out, steps_phase1_out, summary_out])
   
    gr.Examples(examples=[["2","60 30","2x1 + 4x2 >= 40\n3x1 + 2x2 >= 50","max"]], inputs=[nvars, objective, cons, sense])

if __name__ == '__main__':   
    demo.launch(ssr_mode=False)