# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt def mpjpe(predicted, target): """ Mean per-joint position error (i.e. mean Euclidean distance), often referred to as "Protocol #1" in many papers. """ assert predicted.shape == target.shape return torch.mean(torch.norm(predicted - target, dim=len(target.shape)-1)) def mse(predicted, target, weights=None, gamma=0): loss = nn.MSELoss() return loss(predicted, target) def cross_entropy(predicted, target, weights=None, gamma=0, return_weights=False): loss = nn.CrossEntropyLoss() return loss(predicted.permute(0, 4, 1, 2, 3), target) def weighted_mpjpe(predicted, target, w): """ Weighted mean per-joint position error (i.e. mean Euclidean distance) """ assert predicted.shape == target.shape assert w.shape[0] == predicted.shape[0] return torch.mean(w * torch.norm(predicted - target, dim=len(target.shape)-1)) def p_mpjpe(predicted, target): """ Pose error: MPJPE after rigid alignment (scale, rotation, and translation), often referred to as "Protocol #2" in many papers. """ assert predicted.shape == target.shape muX = np.mean(target, axis=1, keepdims=True) muY = np.mean(predicted, axis=1, keepdims=True) X0 = target - muX Y0 = predicted - muY normX = np.sqrt(np.sum(X0**2, axis=(1, 2), keepdims=True)) normY = np.sqrt(np.sum(Y0**2, axis=(1, 2), keepdims=True)) X0 /= normX Y0 /= normY H = np.matmul(X0.transpose(0, 2, 1), Y0) U, s, Vt = np.linalg.svd(H) V = Vt.transpose(0, 2, 1) R = np.matmul(V, U.transpose(0, 2, 1)) # Avoid improper rotations (reflections), i.e. rotations with det(R) = -1 sign_detR = np.sign(np.expand_dims(np.linalg.det(R), axis=1)) V[:, :, -1] *= sign_detR s[:, -1] *= sign_detR.flatten() R = np.matmul(V, U.transpose(0, 2, 1)) # Rotation tr = np.expand_dims(np.sum(s, axis=1, keepdims=True), axis=2) a = tr * normX / normY # Scale t = muX - a*np.matmul(muY, R) # Translation # Perform rigid transformation on the input predicted_aligned = a*np.matmul(predicted, R) + t # Return MPJPE return np.mean(np.linalg.norm(predicted_aligned - target, axis=len(target.shape)-1)) def n_mpjpe(predicted, target): """ Normalized MPJPE (scale only), adapted from: https://github.com/hrhodin/UnsupervisedGeometryAwareRepresentationLearning/blob/master/losses/poses.py """ assert predicted.shape == target.shape norm_predicted = torch.mean(torch.sum(predicted**2, dim=3, keepdim=True), dim=2, keepdim=True) norm_target = torch.mean(torch.sum(target*predicted, dim=3, keepdim=True), dim=2, keepdim=True) scale = norm_target / norm_predicted return mpjpe(scale * predicted, target)#[0] def weighted_bonelen_loss(predict_3d_length, gt_3d_length): loss_length = 0.001 * torch.pow(predict_3d_length - gt_3d_length, 2).mean() return loss_length def weighted_boneratio_loss(predict_3d_length, gt_3d_length): loss_length = 0.1 * torch.pow((predict_3d_length - gt_3d_length)/gt_3d_length, 2).mean() return loss_length def mean_velocity_error(predicted, target): """ Mean per-joint velocity error (i.e. mean Euclidean distance of the 1st derivative) """ assert predicted.shape == target.shape velocity_predicted = np.diff(predicted, axis=0) velocity_target = np.diff(target, axis=0) return np.mean(np.linalg.norm(velocity_predicted - velocity_target, axis=len(target.shape)-1))