Spaces:
Running
Running
File size: 35,375 Bytes
ca97aa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 |
/**
* @file Helper module for mathematical processing.
*
* These functions and classes are only used internally,
* meaning an end-user shouldn't need to access anything here.
*
* @module utils/maths
*/
/**
* @typedef {Int8Array | Uint8Array | Uint8ClampedArray | Int16Array | Uint16Array | Int32Array | Uint32Array | Float16Array | Float32Array | Float64Array} TypedArray
* @typedef {BigInt64Array | BigUint64Array} BigTypedArray
* @typedef {TypedArray | BigTypedArray} AnyTypedArray
*/
/**
* @param {TypedArray} input
*/
export function interpolate_data(input, [in_channels, in_height, in_width], [out_height, out_width], mode = 'bilinear', align_corners = false) {
// TODO use mode and align_corners
// Output image dimensions
const x_scale = out_width / in_width;
const y_scale = out_height / in_height;
// Output image
// @ts-ignore
const out_img = new input.constructor(out_height * out_width * in_channels);
// Pre-calculate strides
const inStride = in_height * in_width;
const outStride = out_height * out_width;
for (let i = 0; i < out_height; ++i) {
for (let j = 0; j < out_width; ++j) {
// Calculate output offset
const outOffset = i * out_width + j;
// Calculate input pixel coordinates
const x = (j + 0.5) / x_scale - 0.5;
const y = (i + 0.5) / y_scale - 0.5;
// Calculate the four nearest input pixels
// We also check if the input pixel coordinates are within the image bounds
let x1 = Math.floor(x);
let y1 = Math.floor(y);
const x2 = Math.min(x1 + 1, in_width - 1);
const y2 = Math.min(y1 + 1, in_height - 1);
x1 = Math.max(x1, 0);
y1 = Math.max(y1, 0);
// Calculate the fractional distances between the input pixel and the four nearest pixels
const s = x - x1;
const t = y - y1;
// Perform bilinear interpolation
const w1 = (1 - s) * (1 - t);
const w2 = s * (1 - t);
const w3 = (1 - s) * t;
const w4 = s * t;
// Calculate the four nearest input pixel indices
const yStride = y1 * in_width;
const xStride = y2 * in_width;
const idx1 = yStride + x1;
const idx2 = yStride + x2;
const idx3 = xStride + x1;
const idx4 = xStride + x2;
for (let k = 0; k < in_channels; ++k) {
// Calculate channel offset
const cOffset = k * inStride;
out_img[k * outStride + outOffset] =
w1 * input[cOffset + idx1] +
w2 * input[cOffset + idx2] +
w3 * input[cOffset + idx3] +
w4 * input[cOffset + idx4];
}
}
}
return out_img;
}
/**
* Helper method to permute a `AnyTypedArray` directly
* @template {AnyTypedArray} T
* @param {T} array
* @param {number[]} dims
* @param {number[]} axes
* @returns {[T, number[]]} The permuted array and the new shape.
*/
export function permute_data(array, dims, axes) {
// Calculate the new shape of the permuted array
// and the stride of the original array
const shape = new Array(axes.length);
const stride = new Array(axes.length);
for (let i = axes.length - 1, s = 1; i >= 0; --i) {
stride[i] = s;
shape[i] = dims[axes[i]];
s *= shape[i];
}
// Precompute inverse mapping of stride
const invStride = axes.map((_, i) => stride[axes.indexOf(i)]);
// Create the permuted array with the new shape
// @ts-ignore
const permutedData = new array.constructor(array.length);
// Permute the original array to the new array
for (let i = 0; i < array.length; ++i) {
let newIndex = 0;
for (let j = dims.length - 1, k = i; j >= 0; --j) {
newIndex += (k % dims[j]) * invStride[j];
k = Math.floor(k / dims[j]);
}
permutedData[newIndex] = array[i];
}
return [permutedData, shape];
}
/**
* Compute the softmax of an array of numbers.
* @template {TypedArray|number[]} T
* @param {T} arr The array of numbers to compute the softmax of.
* @returns {T} The softmax array.
*/
export function softmax(arr) {
// Compute the maximum value in the array
const maxVal = max(arr)[0];
// Compute the exponentials of the array values
const exps = arr.map(x => Math.exp(x - maxVal));
// Compute the sum of the exponentials
// @ts-ignore
const sumExps = exps.reduce((acc, val) => acc + val, 0);
// Compute the softmax values
const softmaxArr = exps.map(x => x / sumExps);
return /** @type {T} */(softmaxArr);
}
/**
* Calculates the logarithm of the softmax function for the input array.
* @template {TypedArray|number[]} T
* @param {T} arr The input array to calculate the log_softmax function for.
* @returns {T} The resulting log_softmax array.
*/
export function log_softmax(arr) {
// Compute the maximum value in the array
const maxVal = max(arr)[0];
// Compute the sum of the exponentials
let sumExps = 0;
for(let i = 0; i < arr.length; ++i) {
sumExps += Math.exp(arr[i] - maxVal);
}
// Compute the log of the sum
const logSum = Math.log(sumExps);
// Compute the softmax values
const logSoftmaxArr = arr.map(x => x - maxVal - logSum);
return /** @type {T} */(logSoftmaxArr);
}
/**
* Calculates the dot product of two arrays.
* @param {number[]} arr1 The first array.
* @param {number[]} arr2 The second array.
* @returns {number} The dot product of arr1 and arr2.
*/
export function dot(arr1, arr2) {
let result = 0;
for (let i = 0; i < arr1.length; ++i) {
result += arr1[i] * arr2[i];
}
return result;
}
/**
* Computes the cosine similarity between two arrays.
*
* @param {number[]} arr1 The first array.
* @param {number[]} arr2 The second array.
* @returns {number} The cosine similarity between the two arrays.
*/
export function cos_sim(arr1, arr2) {
// Calculate dot product of the two arrays
const dotProduct = dot(arr1, arr2);
// Calculate the magnitude of the first array
const magnitudeA = magnitude(arr1);
// Calculate the magnitude of the second array
const magnitudeB = magnitude(arr2);
// Calculate the cosine similarity
const cosineSimilarity = dotProduct / (magnitudeA * magnitudeB);
return cosineSimilarity;
}
/**
* Calculates the magnitude of a given array.
* @param {number[]} arr The array to calculate the magnitude of.
* @returns {number} The magnitude of the array.
*/
export function magnitude(arr) {
return Math.sqrt(arr.reduce((acc, val) => acc + val * val, 0));
}
/**
* Returns the value and index of the minimum element in an array.
* @template {number[]|bigint[]|AnyTypedArray} T
* @param {T} arr array of numbers.
* @returns {T extends bigint[]|BigTypedArray ? [bigint, number] : [number, number]} the value and index of the minimum element, of the form: [valueOfMin, indexOfMin]
* @throws {Error} If array is empty.
*/
export function min(arr) {
if (arr.length === 0) throw Error('Array must not be empty');
let min = arr[0];
let indexOfMin = 0;
for (let i = 1; i < arr.length; ++i) {
if (arr[i] < min) {
min = arr[i];
indexOfMin = i;
}
}
return /** @type {T extends bigint[]|BigTypedArray ? [bigint, number] : [number, number]} */([min, indexOfMin]);
}
/**
* Returns the value and index of the maximum element in an array.
* @template {number[]|bigint[]|AnyTypedArray} T
* @param {T} arr array of numbers.
* @returns {T extends bigint[]|BigTypedArray ? [bigint, number] : [number, number]} the value and index of the maximum element, of the form: [valueOfMax, indexOfMax]
* @throws {Error} If array is empty.
*/
export function max(arr) {
if (arr.length === 0) throw Error('Array must not be empty');
let max = arr[0];
let indexOfMax = 0;
for (let i = 1; i < arr.length; ++i) {
if (arr[i] > max) {
max = arr[i];
indexOfMax = i;
}
}
return /** @type {T extends bigint[]|BigTypedArray ? [bigint, number] : [number, number]} */([max, indexOfMax]);
}
function isPowerOfTwo(number) {
// Check if the number is greater than 0 and has only one bit set to 1
return (number > 0) && ((number & (number - 1)) === 0);
}
/**
* Implementation of Radix-4 FFT.
*
* P2FFT class provides functionality for performing Fast Fourier Transform on arrays
* which are a power of two in length.
* Code adapted from https://www.npmjs.com/package/fft.js
*/
class P2FFT {
/**
* @param {number} size The size of the input array. Must be a power of two larger than 1.
* @throws {Error} FFT size must be a power of two larger than 1.
*/
constructor(size) {
this.size = size | 0; // convert to a 32-bit signed integer
if (this.size <= 1 || !isPowerOfTwo(this.size))
throw new Error('FFT size must be a power of two larger than 1');
this._csize = size << 1;
this.table = new Float64Array(this.size * 2);
for (let i = 0; i < this.table.length; i += 2) {
const angle = Math.PI * i / this.size;
this.table[i] = Math.cos(angle);
this.table[i + 1] = -Math.sin(angle);
}
// Find size's power of two
let power = 0;
for (let t = 1; this.size > t; t <<= 1)
++power;
// Calculate initial step's width:
// * If we are full radix-4, it is 2x smaller to give inital len=8
// * Otherwise it is the same as `power` to give len=4
this._width = power % 2 === 0 ? power - 1 : power;
// Pre-compute bit-reversal patterns
this._bitrev = new Int32Array(1 << this._width);
for (let j = 0; j < this._bitrev.length; ++j) {
this._bitrev[j] = 0;
for (let shift = 0; shift < this._width; shift += 2) {
const revShift = this._width - shift - 2;
this._bitrev[j] |= ((j >>> shift) & 3) << revShift;
}
}
}
/**
* Create a complex number array with size `2 * size`
*
* @returns {Float64Array} A complex number array with size `2 * size`
*/
createComplexArray() {
return new Float64Array(this._csize);
}
/**
* Converts a complex number representation stored in a Float64Array to an array of real numbers.
*
* @param {Float64Array} complex The complex number representation to be converted.
* @param {number[]} [storage] An optional array to store the result in.
* @returns {number[]} An array of real numbers representing the input complex number representation.
*/
fromComplexArray(complex, storage) {
const res = storage || new Array(complex.length >>> 1);
for (let i = 0; i < complex.length; i += 2)
res[i >>> 1] = complex[i];
return res;
}
/**
* Convert a real-valued input array to a complex-valued output array.
* @param {Float64Array} input The real-valued input array.
* @param {Float64Array} [storage] Optional buffer to store the output array.
* @returns {Float64Array} The complex-valued output array.
*/
toComplexArray(input, storage) {
const res = storage || this.createComplexArray();
for (let i = 0; i < res.length; i += 2) {
res[i] = input[i >>> 1];
res[i + 1] = 0;
}
return res;
}
/**
* Performs a Fast Fourier Transform (FFT) on the given input data and stores the result in the output buffer.
*
* @param {Float64Array} out The output buffer to store the result.
* @param {Float64Array} data The input data to transform.
*
* @throws {Error} Input and output buffers must be different.
*
* @returns {void}
*/
transform(out, data) {
if (out === data)
throw new Error('Input and output buffers must be different');
this._transform4(out, data, 1 /* DONE */);
}
/**
* Performs a real-valued forward FFT on the given input buffer and stores the result in the given output buffer.
* The input buffer must contain real values only, while the output buffer will contain complex values. The input and
* output buffers must be different.
*
* @param {Float64Array} out The output buffer.
* @param {Float64Array} data The input buffer containing real values.
*
* @throws {Error} If the input and output buffers are the same.
*/
realTransform(out, data) {
if (out === data)
throw new Error('Input and output buffers must be different');
this._realTransform4(out, data, 1 /* DONE */);
}
/**
* Performs an inverse FFT transformation on the given `data` array, and stores the result in `out`.
* The `out` array must be a different buffer than the `data` array. The `out` array will contain the
* result of the transformation. The `data` array will not be modified.
*
* @param {Float64Array} out The output buffer for the transformed data.
* @param {Float64Array} data The input data to transform.
* @throws {Error} If `out` and `data` refer to the same buffer.
* @returns {void}
*/
inverseTransform(out, data) {
if (out === data)
throw new Error('Input and output buffers must be different');
this._transform4(out, data, -1 /* DONE */);
for (let i = 0; i < out.length; ++i)
out[i] /= this.size;
}
/**
* Performs a radix-4 implementation of a discrete Fourier transform on a given set of data.
*
* @param {Float64Array} out The output buffer for the transformed data.
* @param {Float64Array} data The input buffer of data to be transformed.
* @param {number} inv A scaling factor to apply to the transform.
* @returns {void}
*/
_transform4(out, data, inv) {
// radix-4 implementation
const size = this._csize;
// Initial step (permute and transform)
const width = this._width;
let step = 1 << width;
let len = (size / step) << 1;
let outOff;
let t;
const bitrev = this._bitrev;
if (len === 4) {
for (outOff = 0, t = 0; outOff < size; outOff += len, ++t) {
const off = bitrev[t];
this._singleTransform2(data, out, outOff, off, step);
}
} else {
// len === 8
for (outOff = 0, t = 0; outOff < size; outOff += len, ++t) {
const off = bitrev[t];
this._singleTransform4(data, out, outOff, off, step, inv);
}
}
// Loop through steps in decreasing order
const table = this.table;
for (step >>= 2; step >= 2; step >>= 2) {
len = (size / step) << 1;
const quarterLen = len >>> 2;
// Loop through offsets in the data
for (outOff = 0; outOff < size; outOff += len) {
// Full case
const limit = outOff + quarterLen - 1;
for (let i = outOff, k = 0; i < limit; i += 2, k += step) {
const A = i;
const B = A + quarterLen;
const C = B + quarterLen;
const D = C + quarterLen;
// Original values
const Ar = out[A];
const Ai = out[A + 1];
const Br = out[B];
const Bi = out[B + 1];
const Cr = out[C];
const Ci = out[C + 1];
const Dr = out[D];
const Di = out[D + 1];
const tableBr = table[k];
const tableBi = inv * table[k + 1];
const MBr = Br * tableBr - Bi * tableBi;
const MBi = Br * tableBi + Bi * tableBr;
const tableCr = table[2 * k];
const tableCi = inv * table[2 * k + 1];
const MCr = Cr * tableCr - Ci * tableCi;
const MCi = Cr * tableCi + Ci * tableCr;
const tableDr = table[3 * k];
const tableDi = inv * table[3 * k + 1];
const MDr = Dr * tableDr - Di * tableDi;
const MDi = Dr * tableDi + Di * tableDr;
// Pre-Final values
const T0r = Ar + MCr;
const T0i = Ai + MCi;
const T1r = Ar - MCr;
const T1i = Ai - MCi;
const T2r = MBr + MDr;
const T2i = MBi + MDi;
const T3r = inv * (MBr - MDr);
const T3i = inv * (MBi - MDi);
// Final values
out[A] = T0r + T2r;
out[A + 1] = T0i + T2i;
out[B] = T1r + T3i;
out[B + 1] = T1i - T3r;
out[C] = T0r - T2r;
out[C + 1] = T0i - T2i;
out[D] = T1r - T3i;
out[D + 1] = T1i + T3r;
}
}
}
}
/**
* Performs a radix-2 implementation of a discrete Fourier transform on a given set of data.
*
* @param {Float64Array} data The input buffer of data to be transformed.
* @param {Float64Array} out The output buffer for the transformed data.
* @param {number} outOff The offset at which to write the output data.
* @param {number} off The offset at which to begin reading the input data.
* @param {number} step The step size for indexing the input data.
* @returns {void}
*/
_singleTransform2(data, out, outOff, off, step) {
// radix-2 implementation
// NOTE: Only called for len=4
const evenR = data[off];
const evenI = data[off + 1];
const oddR = data[off + step];
const oddI = data[off + step + 1];
out[outOff] = evenR + oddR;
out[outOff + 1] = evenI + oddI;
out[outOff + 2] = evenR - oddR;
out[outOff + 3] = evenI - oddI;
}
/**
* Performs radix-4 transformation on input data of length 8
*
* @param {Float64Array} data Input data array of length 8
* @param {Float64Array} out Output data array of length 8
* @param {number} outOff Index of output array to start writing from
* @param {number} off Index of input array to start reading from
* @param {number} step Step size between elements in input array
* @param {number} inv Scaling factor for inverse transform
*
* @returns {void}
*/
_singleTransform4(data, out, outOff, off, step, inv) {
// radix-4
// NOTE: Only called for len=8
const step2 = step * 2;
const step3 = step * 3;
// Original values
const Ar = data[off];
const Ai = data[off + 1];
const Br = data[off + step];
const Bi = data[off + step + 1];
const Cr = data[off + step2];
const Ci = data[off + step2 + 1];
const Dr = data[off + step3];
const Di = data[off + step3 + 1];
// Pre-Final values
const T0r = Ar + Cr;
const T0i = Ai + Ci;
const T1r = Ar - Cr;
const T1i = Ai - Ci;
const T2r = Br + Dr;
const T2i = Bi + Di;
const T3r = inv * (Br - Dr);
const T3i = inv * (Bi - Di);
// Final values
out[outOff] = T0r + T2r;
out[outOff + 1] = T0i + T2i;
out[outOff + 2] = T1r + T3i;
out[outOff + 3] = T1i - T3r;
out[outOff + 4] = T0r - T2r;
out[outOff + 5] = T0i - T2i;
out[outOff + 6] = T1r - T3i;
out[outOff + 7] = T1i + T3r;
}
/**
* Real input radix-4 implementation
* @param {Float64Array} out Output array for the transformed data
* @param {Float64Array} data Input array of real data to be transformed
* @param {number} inv The scale factor used to normalize the inverse transform
*/
_realTransform4(out, data, inv) {
// Real input radix-4 implementation
const size = this._csize;
// Initial step (permute and transform)
const width = this._width;
let step = 1 << width;
let len = (size / step) << 1;
let outOff;
let t;
const bitrev = this._bitrev;
if (len === 4) {
for (outOff = 0, t = 0; outOff < size; outOff += len, ++t) {
const off = bitrev[t];
this._singleRealTransform2(data, out, outOff, off >>> 1, step >>> 1);
}
} else {
// len === 8
for (outOff = 0, t = 0; outOff < size; outOff += len, ++t) {
const off = bitrev[t];
this._singleRealTransform4(data, out, outOff, off >>> 1, step >>> 1, inv);
}
}
// Loop through steps in decreasing order
const table = this.table;
for (step >>= 2; step >= 2; step >>= 2) {
len = (size / step) << 1;
const halfLen = len >>> 1;
const quarterLen = halfLen >>> 1;
const hquarterLen = quarterLen >>> 1;
// Loop through offsets in the data
for (outOff = 0; outOff < size; outOff += len) {
for (let i = 0, k = 0; i <= hquarterLen; i += 2, k += step) {
const A = outOff + i;
const B = A + quarterLen;
const C = B + quarterLen;
const D = C + quarterLen;
// Original values
const Ar = out[A];
const Ai = out[A + 1];
const Br = out[B];
const Bi = out[B + 1];
const Cr = out[C];
const Ci = out[C + 1];
const Dr = out[D];
const Di = out[D + 1];
// Middle values
const MAr = Ar;
const MAi = Ai;
const tableBr = table[k];
const tableBi = inv * table[k + 1];
const MBr = Br * tableBr - Bi * tableBi;
const MBi = Br * tableBi + Bi * tableBr;
const tableCr = table[2 * k];
const tableCi = inv * table[2 * k + 1];
const MCr = Cr * tableCr - Ci * tableCi;
const MCi = Cr * tableCi + Ci * tableCr;
const tableDr = table[3 * k];
const tableDi = inv * table[3 * k + 1];
const MDr = Dr * tableDr - Di * tableDi;
const MDi = Dr * tableDi + Di * tableDr;
// Pre-Final values
const T0r = MAr + MCr;
const T0i = MAi + MCi;
const T1r = MAr - MCr;
const T1i = MAi - MCi;
const T2r = MBr + MDr;
const T2i = MBi + MDi;
const T3r = inv * (MBr - MDr);
const T3i = inv * (MBi - MDi);
// Final values
out[A] = T0r + T2r;
out[A + 1] = T0i + T2i;
out[B] = T1r + T3i;
out[B + 1] = T1i - T3r;
// Output final middle point
if (i === 0) {
out[C] = T0r - T2r;
out[C + 1] = T0i - T2i;
continue;
}
// Do not overwrite ourselves
if (i === hquarterLen)
continue;
const SA = outOff + quarterLen - i;
const SB = outOff + halfLen - i;
out[SA] = T1r - inv * T3i;
out[SA + 1] = -T1i - inv * T3r;
out[SB] = T0r - inv * T2r;
out[SB + 1] = -T0i + inv * T2i;
}
}
}
// Complete the spectrum by adding its mirrored negative frequency components.
const half = size >>> 1;
for (let i = 2; i < half; i += 2) {
out[size - i] = out[i];
out[size - i + 1] = -out[i + 1];
}
}
/**
* Performs a single real input radix-2 transformation on the provided data
*
* @param {Float64Array} data The input data array
* @param {Float64Array} out The output data array
* @param {number} outOff The output offset
* @param {number} off The input offset
* @param {number} step The step
*
* @returns {void}
*/
_singleRealTransform2(data, out, outOff, off, step) {
// radix-2 implementation
// NOTE: Only called for len=4
const evenR = data[off];
const oddR = data[off + step];
out[outOff] = evenR + oddR;
out[outOff + 1] = 0;
out[outOff + 2] = evenR - oddR;
out[outOff + 3] = 0;
}
/**
* Computes a single real-valued transform using radix-4 algorithm.
* This method is only called for len=8.
*
* @param {Float64Array} data The input data array.
* @param {Float64Array} out The output data array.
* @param {number} outOff The offset into the output array.
* @param {number} off The offset into the input array.
* @param {number} step The step size for the input array.
* @param {number} inv The value of inverse.
*/
_singleRealTransform4(data, out, outOff, off, step, inv) {
// radix-4
// NOTE: Only called for len=8
const step2 = step * 2;
const step3 = step * 3;
// Original values
const Ar = data[off];
const Br = data[off + step];
const Cr = data[off + step2];
const Dr = data[off + step3];
// Pre-Final values
const T0r = Ar + Cr;
const T1r = Ar - Cr;
const T2r = Br + Dr;
const T3r = inv * (Br - Dr);
// Final values
out[outOff] = T0r + T2r;
out[outOff + 1] = 0;
out[outOff + 2] = T1r;
out[outOff + 3] = -T3r;
out[outOff + 4] = T0r - T2r;
out[outOff + 5] = 0;
out[outOff + 6] = T1r;
out[outOff + 7] = T3r;
}
}
/**
* NP2FFT class provides functionality for performing Fast Fourier Transform on arrays
* which are not a power of two in length. In such cases, the chirp-z transform is used.
*
* For more information, see: https://math.stackexchange.com/questions/77118/non-power-of-2-ffts/77156#77156
*/
class NP2FFT {
/**
* Constructs a new NP2FFT object.
* @param {number} fft_length The length of the FFT
*/
constructor(fft_length) {
// Helper variables
const a = 2 * (fft_length - 1);
const b = 2 * (2 * fft_length - 1);
const nextP2 = 2 ** (Math.ceil(Math.log2(b)))
this.bufferSize = nextP2;
this._a = a;
// Define buffers
// Compute chirp for transform
const chirp = new Float64Array(b);
const ichirp = new Float64Array(nextP2);
this._chirpBuffer = new Float64Array(nextP2);
this._buffer1 = new Float64Array(nextP2);
this._buffer2 = new Float64Array(nextP2);
this._outBuffer1 = new Float64Array(nextP2);
this._outBuffer2 = new Float64Array(nextP2);
// Compute complex exponentiation
const theta = -2 * Math.PI / fft_length;
const baseR = Math.cos(theta);
const baseI = Math.sin(theta);
// Precompute helper for chirp-z transform
for (let i = 0; i < b >> 1; ++i) {
// Compute complex power:
const e = (i + 1 - fft_length) ** 2 / 2.0;
// Compute the modulus and argument of the result
const result_mod = Math.sqrt(baseR ** 2 + baseI ** 2) ** e;
const result_arg = e * Math.atan2(baseI, baseR);
// Convert the result back to rectangular form
// and assign to chirp and ichirp
const i2 = 2 * i;
chirp[i2] = result_mod * Math.cos(result_arg);
chirp[i2 + 1] = result_mod * Math.sin(result_arg);
// conjugate
ichirp[i2] = chirp[i2];
ichirp[i2 + 1] = - chirp[i2 + 1];
}
this._slicedChirpBuffer = chirp.subarray(a, b);
// create object to perform Fast Fourier Transforms
// with `nextP2` complex numbers
this._f = new P2FFT(nextP2 >> 1);
this._f.transform(this._chirpBuffer, ichirp);
}
_transform(output, input, real) {
const ib1 = this._buffer1;
const ib2 = this._buffer2;
const ob2 = this._outBuffer1;
const ob3 = this._outBuffer2;
const cb = this._chirpBuffer;
const sb = this._slicedChirpBuffer;
const a = this._a;
if (real) {
// Real multiplication
for (let j = 0; j < sb.length; j += 2) {
const j2 = j + 1
const j3 = j >> 1;
const a_real = input[j3];
ib1[j] = a_real * sb[j];
ib1[j2] = a_real * sb[j2];
}
} else {
// Complex multiplication
for (let j = 0; j < sb.length; j += 2) {
const j2 = j + 1
ib1[j] = input[j] * sb[j] - input[j2] * sb[j2];
ib1[j2] = input[j] * sb[j2] + input[j2] * sb[j];
}
}
this._f.transform(ob2, ib1);
for (let j = 0; j < cb.length; j += 2) {
const j2 = j + 1;
ib2[j] = ob2[j] * cb[j] - ob2[j2] * cb[j2];
ib2[j2] = ob2[j] * cb[j2] + ob2[j2] * cb[j];
}
this._f.inverseTransform(ob3, ib2);
for (let j = 0; j < ob3.length; j += 2) {
const a_real = ob3[j + a];
const a_imag = ob3[j + a + 1];
const b_real = sb[j];
const b_imag = sb[j + 1];
output[j] = a_real * b_real - a_imag * b_imag;
output[j + 1] = a_real * b_imag + a_imag * b_real;
}
}
transform(output, input) {
this._transform(output, input, false);
}
realTransform(output, input) {
this._transform(output, input, true);
}
}
export class FFT {
constructor(fft_length) {
this.fft_length = fft_length;
this.isPowerOfTwo = isPowerOfTwo(fft_length);
if (this.isPowerOfTwo) {
this.fft = new P2FFT(fft_length);
this.outputBufferSize = 2 * fft_length;
} else {
this.fft = new NP2FFT(fft_length);
this.outputBufferSize = this.fft.bufferSize;
}
}
realTransform(out, input) {
this.fft.realTransform(out, input);
}
transform(out, input) {
this.fft.transform(out, input);
}
}
/**
* Performs median filter on the provided data. Padding is done by mirroring the data.
* @param {AnyTypedArray} data The input array
* @param {number} windowSize The window size
*/
export function medianFilter(data, windowSize) {
if (windowSize % 2 === 0 || windowSize <= 0) {
throw new Error('Window size must be a positive odd number');
}
// @ts-ignore
const outputArray = new data.constructor(data.length);
// @ts-ignore
const buffer = new data.constructor(windowSize); // Reusable array for storing values
const halfWindowSize = Math.floor(windowSize / 2);
for (let i = 0; i < data.length; ++i) {
let valuesIndex = 0;
for (let j = -halfWindowSize; j <= halfWindowSize; ++j) {
let index = i + j;
if (index < 0) {
index = Math.abs(index);
} else if (index >= data.length) {
index = 2 * (data.length - 1) - index;
}
buffer[valuesIndex++] = data[index];
}
buffer.sort();
outputArray[i] = buffer[halfWindowSize];
}
return outputArray;
}
/**
* Helper function to round a number to a given number of decimals
* @param {number} num The number to round
* @param {number} decimals The number of decimals
* @returns {number} The rounded number
*/
export function round(num, decimals) {
const pow = Math.pow(10, decimals);
return Math.round(num * pow) / pow;
}
/**
* Helper function to round a number to the nearest integer, with ties rounded to the nearest even number.
* Also known as "bankers' rounding". This is the default rounding mode in python. For example:
* 1.5 rounds to 2 and 2.5 rounds to 2.
*
* @param {number} x The number to round
* @returns {number} The rounded number
*/
export function bankers_round(x) {
const r = Math.round(x);
const br = Math.abs(x) % 1 === 0.5 ? (r % 2 === 0 ? r : r - 1) : r;
return br;
}
/**
* Measures similarity between two temporal sequences (e.g., input audio and output tokens
* to generate token-level timestamps).
* @param {number[][]} matrix
* @returns {number[][]}
*/
export function dynamic_time_warping(matrix) {
const output_length = matrix.length;
const input_length = matrix[0].length;
const outputShape = [output_length + 1, input_length + 1];
const cost = Array.from(
{ length: outputShape[0] },
() => Array(outputShape[1]).fill(Infinity)
);
cost[0][0] = 0;
const trace = Array.from(
{ length: outputShape[0] },
() => Array(outputShape[1]).fill(-1)
);
for (let j = 1; j < outputShape[1]; ++j) {
for (let i = 1; i < outputShape[0]; ++i) {
const c0 = cost[i - 1][j - 1];
const c1 = cost[i - 1][j];
const c2 = cost[i][j - 1];
let c, t;
if (c0 < c1 && c0 < c2) {
c = c0;
t = 0;
} else if (c1 < c0 && c1 < c2) {
c = c1;
t = 1;
} else {
c = c2;
t = 2;
}
cost[i][j] = matrix[i - 1][j - 1] + c;
trace[i][j] = t;
}
}
for (let i = 0; i < outputShape[1]; ++i) { // trace[0, :] = 2
trace[0][i] = 2;
}
for (let i = 0; i < outputShape[0]; ++i) { // trace[:, 0] = 1
trace[i][0] = 1;
}
// backtrace
let i = output_length;
let j = input_length;
let text_indices = [];
let time_indices = [];
while (i > 0 || j > 0) {
text_indices.push(i - 1);
time_indices.push(j - 1);
switch (trace[i][j]) {
case 0:
--i; --j;
break;
case 1:
--i;
break;
case 2:
--j;
break;
default:
throw new Error(
`Internal error in dynamic time warping. Unexpected trace[${i}, ${j}]. Please file a bug report.`
)
}
}
text_indices.reverse();
time_indices.reverse();
return [text_indices, time_indices];
}
|