File size: 53,177 Bytes
ca97aa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
/**
 * @file Helper module for `Tensor` processing.
 *
 * These functions and classes are only used internally,
 * meaning an end-user shouldn't need to access anything here.
 *
 * @module utils/tensor
 */

import {
    interpolate_data,
    max,
    min,
    permute_data
} from './maths.js';

import {
    Tensor as ONNXTensor, isONNXTensor,
} from '../backends/onnx.js';

import { TensorOpRegistry } from '../ops/registry.js';

export const DataTypeMap = Object.freeze({
    float32: Float32Array,
    // @ts-ignore ts(2552) Limited availability of Float16Array across browsers:
    // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Float16Array
    float16: typeof Float16Array !== "undefined" ? Float16Array: Uint16Array,
    float64: Float64Array,
    string: Array, // string[]
    int8: Int8Array,
    uint8: Uint8Array,
    int16: Int16Array,
    uint16: Uint16Array,
    int32: Int32Array,
    uint32: Uint32Array,
    int64: BigInt64Array,
    uint64: BigUint64Array,
    bool: Uint8Array,
    uint4: Uint8Array,
    int4: Int8Array,
});

/**
 * @typedef {keyof typeof DataTypeMap} DataType
 * @typedef {import('./maths.js').AnyTypedArray | any[]} DataArray
 */


export class Tensor {
    /** @type {number[]} Dimensions of the tensor. */
    get dims() {
        // @ts-ignore
        return this.ort_tensor.dims;
    }
    set dims(value) {
        // FIXME: ONNXTensor declares dims as readonly so one needs to use the constructor() if dims change.
        // @ts-ignore
        this.ort_tensor.dims = value;
    }

    /** @type {DataType} Type of the tensor. */
    get type() {
        return this.ort_tensor.type;
    };

    /** @type {DataArray} The data stored in the tensor. */
    get data() {
        return this.ort_tensor.data;
    }

    /** @type {number} The number of elements in the tensor. */
    get size() {
        return this.ort_tensor.size;
    };

    /** @type {string} The location of the tensor data. */
    get location() {
        return this.ort_tensor.location;
    };

    ort_tensor;

    /**
     * Create a new Tensor or copy an existing Tensor.
     * @param {[DataType, DataArray, number[]]|[ONNXTensor]} args
     */
    constructor(...args) {
        if (isONNXTensor(args[0])) {
            this.ort_tensor = /** @type {ONNXTensor} */ (args[0]);
        } else {
            // Create new tensor
            this.ort_tensor = new ONNXTensor(
                /** @type {DataType} */(args[0]),
                // @ts-expect-error ts(2769) Type 'number' is not assignable to type 'bigint'.
                /** @type {Exclude<import('./maths.js').AnyTypedArray, Uint8ClampedArray>} */(args[1]),
                args[2],
            );
        }

        return new Proxy(this, {
            get: (obj, key) => {
                if (typeof key === 'string') {
                    let index = Number(key);
                    if (Number.isInteger(index)) {
                        // key is an integer (i.e., index)
                        return obj._getitem(index);
                    }
                }
                // @ts-ignore
                return obj[key];
            },
            set: (obj, key, value) => {
                // TODO allow setting of data

                // @ts-ignore
                return obj[key] = value;
            }
        });
    }

    dispose() {
        this.ort_tensor.dispose();
        // this.ort_tensor = undefined;
    }

    /**
     * Returns an iterator object for iterating over the tensor data in row-major order.
     * If the tensor has more than one dimension, the iterator will yield subarrays.
     * @returns {Iterator} An iterator object for iterating over the tensor data in row-major order.
     */
    *[Symbol.iterator]() {
        const [iterLength, ...iterDims] = this.dims;

        if (iterDims.length > 0) {
            const iterSize = iterDims.reduce((a, b) => a * b);
            for (let i = 0; i < iterLength; ++i) {
                yield this._subarray(i, iterSize, iterDims);
            }
        } else {
            yield* this.data
        }

    }

    /**
     * Index into a Tensor object.
     * @param {number} index The index to access.
     * @returns {Tensor} The data at the specified index.
     */
    _getitem(index) {
        const [iterLength, ...iterDims] = this.dims;

        index = safeIndex(index, iterLength);

        if (iterDims.length > 0) {
            const iterSize = iterDims.reduce((a, b) => a * b);
            return this._subarray(index, iterSize, iterDims);
        } else {
            return new Tensor(this.type, [this.data[index]], iterDims);
        }
    }

    /**
     * @param {number|bigint} item The item to search for in the tensor
     * @returns {number} The index of the first occurrence of item in the tensor data.
     */
    indexOf(item) {
        const this_data = this.data;
        for (let index = 0; index < this_data.length; ++index) {
            // Note: == instead of === so we can match Ints with BigInts
            if (this_data[index] == item) {
                return index;
            }
        }
        return -1;
    }

    /**
     * @param {number} index
     * @param {number} iterSize
     * @param {any} iterDims
     * @returns {Tensor}
     */
    _subarray(index, iterSize, iterDims) {
        const o1 = index * iterSize;
        const o2 = (index + 1) * iterSize;

        // We use subarray if available (typed array), otherwise we use slice (normal array)
        const data =
            ('subarray' in this.data)
                ? this.data.subarray(o1, o2)
                : this.data.slice(o1, o2);
        return new Tensor(this.type, data, iterDims);
    }

    /**
     * Returns the value of this tensor as a standard JavaScript Number. This only works
     * for tensors with one element. For other cases, see `Tensor.tolist()`.
     * @returns {number|bigint} The value of this tensor as a standard JavaScript Number.
     * @throws {Error} If the tensor has more than one element.
     */
    item() {
        const this_data = this.data;
        if (this_data.length !== 1) {
            throw new Error(`a Tensor with ${this_data.length} elements cannot be converted to Scalar`);
        }
        return this_data[0];
    }

    /**
     * Convert tensor data to a n-dimensional JS list
     * @returns {Array}
     */
    tolist() {
        return reshape(this.data, this.dims)
    }

    /**
     * Return a new Tensor with the sigmoid function applied to each element.
     * @returns {Tensor} The tensor with the sigmoid function applied.
     */
    sigmoid() {
        return this.clone().sigmoid_();
    }

    /**
     * Applies the sigmoid function to the tensor in place.
     * @returns {Tensor} Returns `this`.
     */
    sigmoid_() {
        const this_data = this.data;
        for (let i = 0; i < this_data.length; ++i) {
            this_data[i] = 1 / (1 + Math.exp(-this_data[i]));
        }
        return this;
    }

    /**
     * Return a new Tensor with a callback function applied to each element.
     * @param {Function} callback - The function to apply to each element. It should take three arguments:
     *                              the current element, its index, and the tensor's data array.
     * @returns {Tensor} A new Tensor with the callback function applied to each element.
     */
    map(callback) {
        return this.clone().map_(callback);
    }

    /**
     * Apply a callback function to each element of the tensor in place.
     * @param {Function} callback - The function to apply to each element. It should take three arguments:
     *                              the current element, its index, and the tensor's data array.
     * @returns {Tensor} Returns `this`.
     */
    map_(callback) {
        const this_data = this.data;
        for (let i = 0; i < this_data.length; ++i) {
            this_data[i] = callback(this_data[i], i, this_data);
        }
        return this;
    }

    /**
     * Return a new Tensor with every element multiplied by a constant.
     * @param {number} val The value to multiply by.
     * @returns {Tensor} The new tensor.
     */
    mul(val) {
        return this.clone().mul_(val);
    }

    /**
     * Multiply the tensor by a constant in place.
     * @param {number} val The value to multiply by.
     * @returns {Tensor} Returns `this`.
     */
    mul_(val) {
        const this_data = this.data;
        for (let i = 0; i < this_data.length; ++i) {
            this_data[i] *= val;
        }
        return this;
    }

    /**
     * Return a new Tensor with every element divided by a constant.
     * @param {number} val The value to divide by.
     * @returns {Tensor} The new tensor.
     */
    div(val) {
        return this.clone().div_(val);
    }

    /**
     * Divide the tensor by a constant in place.
     * @param {number} val The value to divide by.
     * @returns {Tensor} Returns `this`.
     */
    div_(val) {
        const this_data = this.data;
        for (let i = 0; i < this_data.length; ++i) {
            this_data[i] /= val;
        }
        return this;
    }

    /**
     * Return a new Tensor with every element added by a constant.
     * @param {number} val The value to add by.
     * @returns {Tensor} The new tensor.
     */
    add(val) {
        return this.clone().add_(val);
    }

    /**
     * Add the tensor by a constant in place.
     * @param {number} val The value to add by.
     * @returns {Tensor} Returns `this`.
     */
    add_(val) {
        const this_data = this.data;
        for (let i = 0; i < this_data.length; ++i) {
            this_data[i] += val;
        }
        return this;
    }

    /**
     * Return a new Tensor with every element subtracted by a constant.
     * @param {number} val The value to subtract by.
     * @returns {Tensor} The new tensor.
     */
    sub(val) {
        return this.clone().sub_(val);
    }

    /**
     * Subtract the tensor by a constant in place.
     * @param {number} val The value to subtract by.
     * @returns {Tensor} Returns `this`.
     */
    sub_(val) {
        const this_data = this.data;
        for (let i = 0; i < this_data.length; ++i) {
            this_data[i] -= val;
        }
        return this;
    }

    /**
     * Creates a deep copy of the current Tensor.
     * @returns {Tensor} A new Tensor with the same type, data, and dimensions as the original.
     */
    clone() {
        return new Tensor(this.type, this.data.slice(), this.dims.slice());
    }

    /**
     * Performs a slice operation on the Tensor along specified dimensions.
     *
     * Consider a Tensor that has a dimension of [4, 7]:
     * ```
     * [ 1,  2,  3,  4,  5,  6,  7]
     * [ 8,  9, 10, 11, 12, 13, 14]
     * [15, 16, 17, 18, 19, 20, 21]
     * [22, 23, 24, 25, 26, 27, 28]
     * ```
     * We can slice against the two dims of row and column, for instance in this
     * case we can start at the second element, and return to the second last,
     * like this:
     * ```
     * tensor.slice([1, -1], [1, -1]);
     * ```
     * which would return:
     * ```
     * [  9, 10, 11, 12, 13 ]
     * [ 16, 17, 18, 19, 20 ]
     * ```
     *
     * @param {...(number|number[]|null)} slices The slice specifications for each dimension.
     * - If a number is given, then a single element is selected.
     * - If an array of two numbers is given, then a range of elements [start, end (exclusive)] is selected.
     * - If null is given, then the entire dimension is selected.
     * @returns {Tensor} A new Tensor containing the selected elements.
     * @throws {Error} If the slice input is invalid.
     */
    slice(...slices) {
        // This allows for slicing with ranges and numbers
        const newTensorDims = [];
        const newOffsets = [];

        // slices is an array of numbers or arrays of numbers
        // e.g., slices = [0, [1, 3], null, [0, 3]]
        for (let sliceIndex = 0; sliceIndex < this.dims.length; ++sliceIndex) {
            let slice = slices[sliceIndex];

            if (slice === null || slice === undefined) {
                // null or undefined means take the whole dimension
                newOffsets.push([0, this.dims[sliceIndex]]);
                newTensorDims.push(this.dims[sliceIndex]);

            } else if (typeof slice === 'number') {
                slice = safeIndex(slice, this.dims[sliceIndex], sliceIndex);

                // A number means take a single element
                newOffsets.push([slice, slice + 1]);

            } else if (Array.isArray(slice) && slice.length === 2) {
                // An array of length 2 means take a range of elements
                let [start, end] = slice;
                start = start === null
                    ? 0
                    : safeIndex(start, this.dims[sliceIndex], sliceIndex, false);
                end = end === null
                    ? this.dims[sliceIndex]
                    : safeIndex(end, this.dims[sliceIndex], sliceIndex, false);

                if (start > end) {
                    throw new Error(`Invalid slice: ${slice}`);
                }

                const offsets = [
                    Math.max(start, 0),
                    Math.min(end, this.dims[sliceIndex])
                ];

                newOffsets.push(offsets);
                newTensorDims.push(offsets[1] - offsets[0]);

            } else {
                throw new Error(`Invalid slice: ${slice}`);
            }
        }

        const newDims = newOffsets.map(([start, end]) => end - start);
        const newBufferSize = newDims.reduce((a, b) => a * b);

        const this_data = this.data;
        // Allocate memory
        // @ts-ignore
        const data = new this_data.constructor(newBufferSize);

        // Precompute strides
        const stride = this.stride();

        // Detect if the slice is contiguous
        let isContiguous = true;
        for (let i = 1; i < newDims.length; ++i) {
            if (newOffsets[i][0] !== 0 || newOffsets[i][1] !== this.dims[i]) {
                isContiguous = false;
                break;
            }
        }

        if (isContiguous) {
            // Perform bulk copy for contiguous slices to improve performance
            const start = newOffsets[0][0] * stride[0];
            const end = newOffsets[0][1] * stride[0];

            if (ArrayBuffer.isView(this_data)) {
                // If this.data is a TypedArray, use subarray
                // @ts-ignore
                data.set(this_data.subarray(start, end));
            } else if (Array.isArray(this_data)) {
                // If this.data is a plain array, use slice
                const slicedData = this_data.slice(start, end);
                for (let i = 0; i < slicedData.length; ++i) {
                    data[i] = slicedData[i];
                }
            } else {
                throw new Error("Unsupported data type for slicing");
            }
        } else {
            // Fallback to manual copying for non-contiguous slices
            for (let i = 0; i < newBufferSize; ++i) {
                let originalIndex = 0;
                for (let j = newDims.length - 1, num = i; j >= 0; --j) {
                    const size = newDims[j];
                    originalIndex += ((num % size) + newOffsets[j][0]) * stride[j];
                    num = Math.floor(num / size);
                }
                data[i] = this_data[originalIndex];
            }
        }

        return new Tensor(this.type, data, newTensorDims);
    }

    /**
     * Return a permuted version of this Tensor, according to the provided dimensions.
     * @param  {...number} dims Dimensions to permute.
     * @returns {Tensor} The permuted tensor.
     */
    permute(...dims) {
        return permute(this, dims);
    }

    // TODO: implement transpose. For now (backwards compatibility), it's just an alias for permute()
    transpose(...dims) {
        return this.permute(...dims);
    }

    /**
     * Returns the sum of each row of the input tensor in the given dimension dim.
     *
     * @param {number} [dim=null] The dimension or dimensions to reduce. If `null`, all dimensions are reduced.
     * @param {boolean} keepdim Whether the output tensor has `dim` retained or not.
     * @returns The summed tensor
     */
    sum(dim = null, keepdim = false) {
        return this.norm(1, dim, keepdim);
    }

    /**
     * Returns the matrix norm or vector norm of a given tensor.
     * @param {number|string} [p='fro'] The order of norm
     * @param {number} [dim=null] Specifies which dimension of the tensor to calculate the norm across.
     * If dim is None, the norm will be calculated across all dimensions of input.
     * @param {boolean} [keepdim=false] Whether the output tensors have dim retained or not.
     * @returns {Tensor} The norm of the tensor.
     */
    norm(p = 'fro', dim = null, keepdim = false) {
        if (p === 'fro') {
            // NOTE: Since we only support integer dims, Frobenius norm produces the same result as p=2.
            p = 2;
        } else if (typeof p === 'string') {
            throw Error(`Unsupported norm: ${p}`);
        }

        const this_data = this.data;
        const fn = (a, b) => a + (b ** p);

        if (dim === null) {
            // @ts-ignore
            const val = this_data.reduce(fn, 0) ** (1 / p);
            return new Tensor(this.type, [val], []);
        }

        const [type, result, resultDims] = reduce_helper(fn, this, dim, keepdim);

        if (p !== 1) {
            for (let i = 0; i < result.length; ++i) {
                result[i] = result[i] ** (1 / p);
            }
        }
        return new Tensor(type, result, resultDims);
    }

    /**
     * Performs `L_p` normalization of inputs over specified dimension. Operates in place.
     * @param {number} [p=2] The exponent value in the norm formulation
     * @param {number} [dim=1] The dimension to reduce
     * @returns {Tensor} `this` for operation chaining.
     */
    normalize_(p = 2.0, dim = 1) {
        dim = safeIndex(dim, this.dims.length);

        const norm = this.norm(p, dim, true);

        const this_data = this.data;
        const norm_data = norm.data;
        for (let i = 0; i < this_data.length; ++i) {

            // Calculate the index in the resulting array
            let resultIndex = 0;

            for (let j = this.dims.length - 1, num = i, resultMultiplier = 1; j >= 0; --j) {
                const size = this.dims[j];
                if (j !== dim) {
                    const index = num % size;
                    resultIndex += index * resultMultiplier;
                    resultMultiplier *= this.dims[j];
                }
                num = Math.floor(num / size);
            }

            // Divide by normalized value
            this_data[i] /= norm_data[resultIndex];
        }

        return this;
    }

    /**
     * Performs `L_p` normalization of inputs over specified dimension.
     * @param {number} [p=2] The exponent value in the norm formulation
     * @param {number} [dim=1] The dimension to reduce
     * @returns {Tensor} The normalized tensor.
     */
    normalize(p = 2.0, dim = 1) {
        return this.clone().normalize_(p, dim);
    }

    /**
     * Compute and return the stride of this tensor.
     * Stride is the jump necessary to go from one element to the next one in the specified dimension dim.
     * @returns {number[]} The stride of this tensor.
     */
    stride() {
        return dimsToStride(this.dims);
    }

    /**
     * Returns a tensor with all specified dimensions of input of size 1 removed.
     *
     * NOTE: The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other.
     * If you would like a copy, use `tensor.clone()` before squeezing.
     *
     * @param {number|number[]} [dim=null] If given, the input will be squeezed only in the specified dimensions.
     * @returns {Tensor} The squeezed tensor
     */
    squeeze(dim = null) {
        return new Tensor(
            this.type,
            this.data,
            calc_squeeze_dims(this.dims, dim)
        )
    }

    /**
     * In-place version of @see {@link Tensor.squeeze}
     */
    squeeze_(dim = null) {
        this.dims = calc_squeeze_dims(this.dims, dim);
        return this;
    }

    /**
     * Returns a new tensor with a dimension of size one inserted at the specified position.
     *
     * NOTE: The returned tensor shares the same underlying data with this tensor.
     *
     * @param {number} dim The index at which to insert the singleton dimension
     * @returns {Tensor} The unsqueezed tensor
     */
    unsqueeze(dim = null) {
        return new Tensor(
            this.type,
            this.data,
            calc_unsqueeze_dims(this.dims, dim)
        );
    }

    /**
     * In-place version of @see {@link Tensor.unsqueeze}
     */
    unsqueeze_(dim = null) {
        this.dims = calc_unsqueeze_dims(this.dims, dim);
        return this;
    }

    /**
     * In-place version of @see {@link Tensor.flatten}
     */
    flatten_(start_dim = 0, end_dim = -1) {
        // TODO validate inputs
        end_dim = (end_dim + this.dims.length) % this.dims.length;

        let dimsToKeepBefore = this.dims.slice(0, start_dim);
        let dimsToFlatten = this.dims.slice(start_dim, end_dim + 1);
        let dimsToKeepAfter = this.dims.slice(end_dim + 1);

        this.dims = [...dimsToKeepBefore, dimsToFlatten.reduce((a, b) => a * b, 1), ...dimsToKeepAfter]
        return this;
    }

    /**
     * Flattens input by reshaping it into a one-dimensional tensor.
     * If `start_dim` or `end_dim` are passed, only dimensions starting with `start_dim`
     * and ending with `end_dim` are flattened. The order of elements in input is unchanged.
     * @param {number} start_dim the first dim to flatten
     * @param {number} end_dim the last dim to flatten
     * @returns {Tensor} The flattened tensor.
     */
    flatten(start_dim = 0, end_dim = -1) {
        return this.clone().flatten_(start_dim, end_dim);
    }

    /**
     * Returns a new tensor with the same data as the `self` tensor but of a different `shape`.
     * @param  {...number} dims the desired size
     * @returns {Tensor} The tensor with the same data but different shape
     */
    view(...dims) {
        // TODO: validate dims
        let inferredIndex = -1;
        for (let i = 0; i < dims.length; ++i) {
            if (dims[i] === -1) {
                if (inferredIndex !== -1) {
                    throw new Error("Only one dimension can be inferred");
                }
                inferredIndex = i;
            }
        }

        const this_data = this.data;
        if (inferredIndex !== -1) {
            // Some dimension must be inferred
            const productOther = dims.reduce((product, curr, index) => {
                return index !== inferredIndex ? product * curr : product
            }, 1);

            dims[inferredIndex] = this_data.length / productOther;
        }
        return new Tensor(this.type, this_data, dims); // NOTE: uses same underlying storage
    }

    neg_() {
        const this_data = this.data;
        for (let i = 0; i < this_data.length; ++i) {
            this_data[i] = -this_data[i];
        }
        return this;
    }
    neg() {
        return this.clone().neg_();
    }

    /**
     * Computes input > val element-wise.
     * @param {number} val The value to compare with.
     * @returns {Tensor} A boolean tensor that is `true` where input is greater than other and `false` elsewhere.
     */
    gt(val) {
        const mask = new Uint8Array(this.data.length);
        const this_data = this.data;
        for (let i = 0; i < this_data.length; ++i) {
            mask[i] = this_data[i] > val ? 1 : 0;
        }
        return new Tensor('bool', mask, this.dims);
    }

    /**
     * Computes input < val element-wise.
     * @param {number} val The value to compare with.
     * @returns {Tensor} A boolean tensor that is `true` where input is less than other and `false` elsewhere.
     */
    lt(val) {
        const mask = new Uint8Array(this.data.length);
        const this_data = this.data;
        for (let i = 0; i < this_data.length; ++i) {
            mask[i] = this_data[i] < val ? 1 : 0;
        }
        return new Tensor('bool', mask, this.dims);
    }

    /**
     * In-place version of @see {@link Tensor.clamp}
     */
    clamp_(min, max) {
        const this_data = this.data;
        for (let i = 0; i < this_data.length; ++i) {
            this_data[i] = Math.min(Math.max(this_data[i], min), max);
        }
        return this;
    }

    /**
     * Clamps all elements in input into the range [ min, max ]
     * @param {number} min lower-bound of the range to be clamped to
     * @param {number} max upper-bound of the range to be clamped to
     * @returns {Tensor} the output tensor.
     */
    clamp(min, max) {
        return this.clone().clamp_(min, max);
    }

    /**
     * In-place version of @see {@link Tensor.round}
     */
    round_() {
        const this_data = this.data;
        for (let i = 0; i < this_data.length; ++i) {
            this_data[i] = Math.round(this_data[i]);
        }
        return this;
    }

    /**
     * Rounds elements of input to the nearest integer.
     * @returns {Tensor} the output tensor.
     */
    round() {
        return this.clone().round_();
    }

    mean(dim = null, keepdim = false) {
        return mean(this, dim, keepdim);
    }

    min(dim = null, keepdim = false) {
        if (dim === null) {
            // None to reduce over all dimensions.
            const val = min(this.data)[0];
            return new Tensor(this.type, [val], [/* scalar */]);
        }
        const [type, result, resultDims] = reduce_helper((a, b) => Math.min(a, b), this, dim, keepdim, Infinity);
        return new Tensor(type, result, resultDims);
    }

    max(dim = null, keepdim = false) {
        if (dim === null) {
            // None to reduce over all dimensions.
            const val = max(this.data)[0];
            return new Tensor(this.type, [val], [/* scalar */]);
        }
        const [type, result, resultDims] = reduce_helper((a, b) => Math.max(a, b), this, dim, keepdim, -Infinity);
        return new Tensor(type, result, resultDims);
    }

    argmin(dim = null, keepdim = false) {
        if (dim !== null) {
            throw new Error("`dim !== null` not yet implemented.");
        }
        const index = min(this.data)[1];
        return new Tensor('int64', [BigInt(index)], []);
    }
    argmax(dim = null, keepdim = false) {
        if (dim !== null) {
            throw new Error("`dim !== null` not yet implemented.");
        }
        const index = max(this.data)[1];
        return new Tensor('int64', [BigInt(index)], []);
    }

    /**
     * Performs Tensor dtype conversion.
     * @param {DataType} type The desired data type.
     * @returns {Tensor} The converted tensor.
     */
    to(type) {
        // If the self Tensor already has the correct dtype, then self is returned.
        if (this.type === type) return this;

        // Otherwise, the returned tensor is a copy of self with the desired dtype.
        if (!DataTypeMap.hasOwnProperty(type)) {
            throw new Error(`Unsupported type: ${type}`);
        }

        // Handle special cases where a mapping function is needed (e.g., where one type is a bigint and the other is a number)
        let map_fn;
        const is_source_bigint = ['int64', 'uint64'].includes(this.type);
        const is_dest_bigint = ['int64', 'uint64'].includes(type);
        if (is_source_bigint && !is_dest_bigint) {
            // TypeError: Cannot convert a BigInt value to a number
            map_fn = Number;
        } else if (!is_source_bigint && is_dest_bigint) {
            // TypeError: Cannot convert [x] to a BigInt
            map_fn = BigInt;
        }

        // @ts-ignore
        return new Tensor(type, DataTypeMap[type].from(this.data, map_fn), this.dims);
    }
}

/**
 * This creates a nested array of a given type and depth (see examples).
 *
 * @example
 *   NestArray<string, 1>; // string[]
 * @example
 *   NestArray<number, 2>; // number[][]
 * @example
 *   NestArray<string, 3>; // string[][][] etc.
 * @template T
 * @template {number} Depth
 * @template {never[]} [Acc=[]]
 * @typedef {Acc['length'] extends Depth ? T : NestArray<T[], Depth, [...Acc, never]>} NestArray
 */

/**
 * Reshapes a 1-dimensional array into an n-dimensional array, according to the provided dimensions.
 *
 * @example
 *   reshape([10                    ], [1      ]); // Type: number[]      Value: [10]
 *   reshape([1, 2, 3, 4            ], [2, 2   ]); // Type: number[][]    Value: [[1, 2], [3, 4]]
 *   reshape([1, 2, 3, 4, 5, 6, 7, 8], [2, 2, 2]); // Type: number[][][]  Value: [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
 *   reshape([1, 2, 3, 4, 5, 6, 7, 8], [4, 2   ]); // Type: number[][]    Value: [[1, 2], [3, 4], [5, 6], [7, 8]]
 * @param {T[]|DataArray} data The input array to reshape.
 * @param {DIM} dimensions The target shape/dimensions.
 * @template T
 * @template {[number]|number[]} DIM
 * @returns {NestArray<T, DIM["length"]>} The reshaped array.
 */
function reshape(data, dimensions) {

    const totalElements = data.length;
    const dimensionSize = dimensions.reduce((a, b) => a * b);

    if (totalElements !== dimensionSize) {
        throw Error(`cannot reshape array of size ${totalElements} into shape (${dimensions})`);
    }

    /** @type {any} */
    let reshapedArray = data;

    for (let i = dimensions.length - 1; i >= 0; i--) {
        reshapedArray = reshapedArray.reduce((acc, val) => {
            let lastArray = acc[acc.length - 1];

            if (lastArray.length < dimensions[i]) {
                lastArray.push(val);
            } else {
                acc.push([val]);
            }

            return acc;
        }, [[]]);
    }

    return reshapedArray[0];
}

/**
 * Permutes a tensor according to the provided axes.
 * @param {any} tensor The input tensor to permute.
 * @param {Array} axes The axes to permute the tensor along.
 * @returns {Tensor} The permuted tensor.
 */
export function permute(tensor, axes) {
    const [permutedData, shape] = permute_data(tensor.data, tensor.dims, axes);
    return new Tensor(tensor.type, permutedData, shape);
}


/**
 * Interpolates an Tensor to the given size.
 * @param {Tensor} input The input tensor to interpolate. Data must be channel-first (i.e., [c, h, w])
 * @param {number[]} size The output size of the image
 * @param {string} mode The interpolation mode
 * @param {boolean} align_corners Whether to align corners.
 * @returns {Tensor} The interpolated tensor.
 */
export function interpolate(input, [out_height, out_width], mode = 'bilinear', align_corners = false) {

    // Input image dimensions
    const in_channels = input.dims.at(-3) ?? 1;
    const in_height = input.dims.at(-2);
    const in_width = input.dims.at(-1);

    let output = interpolate_data(
        /** @type {import('./maths.js').TypedArray}*/(input.data),
        [in_channels, in_height, in_width],
        [out_height, out_width],
        mode,
        align_corners
    );
    return new Tensor(input.type, output, [in_channels, out_height, out_width]);
}


/**
 * Down/up samples the input.
 * Inspired by https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html.
 * @param {Tensor} input the input tensor
 * @param {Object} options the options for the interpolation
 * @param {[number, number]|[number, number, number]|[number, number, number, number]} [options.size=null] output spatial size.
 * @param {"nearest"|"bilinear"|"bicubic"} [options.mode='bilinear'] algorithm used for upsampling
 * @returns {Promise<Tensor>} The interpolated tensor.
 */
export async function interpolate_4d(input, {
    size = null,
    mode = 'bilinear',
} = {}) {

    // Error checking
    if (input.dims.length !== 4) {
        throw new Error('`interpolate_4d` currently only supports 4D input.');
    }
    if (!size) {
        // TODO: support scale_factor
        throw new Error('`interpolate_4d` requires a `size` argument.');
    }

    // Fill in missing dimensions
    let targetDims;
    if (size.length === 2) {
        targetDims = [...input.dims.slice(0, 2), ...size];
    } else if (size.length === 3) {
        targetDims = [input.dims[0], ...size];
    } else if (size.length === 4) {
        targetDims = size;
    } else {
        throw new Error('`size` must be of length 2, 3, or 4.');
    }

    let op;
    if (mode === 'nearest') {
        op = await TensorOpRegistry.nearest_interpolate_4d;
    } else if (mode === 'bilinear') {
        op = await TensorOpRegistry.bilinear_interpolate_4d;
    } else if (mode === 'bicubic') {
        op = await TensorOpRegistry.bicubic_interpolate_4d;
    } else {
        throw new Error(`Unsupported mode: ${mode}`);
    }

    const sizeTensor = new Tensor('int64', new BigInt64Array(targetDims.map(BigInt)), [targetDims.length]);
    return await op({ x: input, s: sizeTensor });
}

/**
 * Matrix product of two tensors.
 * Inspired by https://pytorch.org/docs/stable/generated/torch.matmul.html
 * @param {Tensor} a the first tensor to be multiplied
 * @param {Tensor} b the second tensor to be multiplied
 * @returns {Promise<Tensor>} The matrix product of the two tensors.
 */
export async function matmul(a, b) {
    const op = await TensorOpRegistry.matmul;
    return await op({ a, b });
}

/**
 * Computes the one dimensional Fourier transform of real-valued input.
 * Inspired by https://pytorch.org/docs/stable/generated/torch.fft.rfft.html
 * @param {Tensor} x the real input tensor
 * @param {Tensor} a The dimension along which to take the one dimensional real FFT.
 * @returns {Promise<Tensor>} the output tensor.
 */
export async function rfft(x, a) {
    const op = await TensorOpRegistry.rfft;
    return await op({ x, a });
}


/**
 * Returns the k largest elements of the given input tensor.
 * Inspired by https://pytorch.org/docs/stable/generated/torch.topk.html
 * @param {Tensor} x the input tensor
 * @param {number} [k] the k in "top-k"
 * @returns {Promise<[Tensor, Tensor]>} the output tuple of (Tensor, LongTensor) of top-k elements and their indices.
 */
export async function topk(x, k) {
    const op = await TensorOpRegistry.top_k;

    if (k == null) {
        k = x.dims.at(-1);
    } else {
        k = Math.min(k, x.dims.at(-1));
    }
    return await op({
        x,
        k: new Tensor(
            'int64',
            [BigInt(k)],
            [1]
        )
    });
}


const arrayToIndexTensor = (array) => new Tensor('int64', array, [array.length]);
/**
 * Slice a multidimensional float32 tensor.
 * @param {Tensor} data: Tensor of data to extract slices from
 * @param {number[]} starts: 1-D array of starting indices of corresponding axis in axes
 * @param {number[]} ends: 1-D array of ending indices (exclusive) of corresponding axis in axes
 * @param {number[]} axes: 1-D array of axes that starts and ends apply to
 * @param {number[]} [steps]: 1-D array of slice step of corresponding axis in axes.
 * @returns {Promise<Tensor>} Sliced data tensor.
 */
export async function slice(data, starts, ends, axes, steps) {
    const op = await TensorOpRegistry.slice;
    return await op({
        x: data,
        s: arrayToIndexTensor(starts),
        e: arrayToIndexTensor(ends),
        a: arrayToIndexTensor(axes),
        t: arrayToIndexTensor(steps ?? new Array(axes.length).fill(1)),
    });
}


/**
 * Perform mean pooling of the last hidden state followed by a normalization step.
 * @param {Tensor} last_hidden_state Tensor of shape [batchSize, seqLength, embedDim]
 * @param {Tensor} attention_mask Tensor of shape [batchSize, seqLength]
 * @returns {Tensor} Returns a new Tensor of shape [batchSize, embedDim].
 */
export function mean_pooling(last_hidden_state, attention_mask) {
    // last_hidden_state: [batchSize, seqLength, embedDim]
    // attention_mask:    [batchSize, seqLength]
    const lastHiddenStateData = last_hidden_state.data;
    const attentionMaskData = attention_mask.data;

    const shape = [last_hidden_state.dims[0], last_hidden_state.dims[2]];

    // @ts-ignore
    const returnedData = new lastHiddenStateData.constructor(shape[0] * shape[1]);
    const [batchSize, seqLength, embedDim] = last_hidden_state.dims;

    let outIndex = 0;
    for (let i = 0; i < batchSize; ++i) {
        const offset = i * embedDim * seqLength;

        for (let k = 0; k < embedDim; ++k) {
            let sum = 0;
            let count = 0;

            const attnMaskOffset = i * seqLength;
            const offset2 = offset + k;
            // Pool over all words in sequence
            for (let j = 0; j < seqLength; ++j) {
                // index into attention mask
                const attn = Number(attentionMaskData[attnMaskOffset + j]);

                count += attn;
                sum += lastHiddenStateData[offset2 + j * embedDim] * attn;
            }

            const avg = sum / count;
            returnedData[outIndex++] = avg;
        }
    }

    return new Tensor(
        last_hidden_state.type,
        returnedData,
        shape
    )
}

/**
 * Apply Layer Normalization for last certain number of dimensions.
 * @param {Tensor} input The input tensor
 * @param {number[]} normalized_shape input shape from an expected input of size
 * @param {Object} options The options for the layer normalization
 * @param {number} [options.eps=1e-5] A value added to the denominator for numerical stability.
 * @returns {Tensor} The normalized tensor.
 */
export function layer_norm(input, normalized_shape, {
    eps = 1e-5,
} = {}) {
    if (input.dims.length !== 2) {
        throw new Error('`layer_norm` currently only supports 2D input.');
    }

    const [batchSize, featureDim] = input.dims;

    if (normalized_shape.length !== 1 && normalized_shape[0] !== featureDim) {
        throw new Error('`normalized_shape` must be a 1D array with shape `[input.dims[1]]`.');
    }

    const [std, mean] = std_mean(input, 1, 0, true);
    const stdData = /** @type {Float32Array} */(std.data);
    const meanData = /** @type {Float32Array} */(mean.data);

    const inputData = /** @type {Float32Array} */(input.data);

    // @ts-ignore
    const returnedData = new inputData.constructor(inputData.length);

    for (let i = 0; i < batchSize; ++i) {
        const offset = i * featureDim;
        for (let j = 0; j < featureDim; ++j) {
            const offset2 = offset + j;
            returnedData[offset2] = (inputData[offset2] - meanData[i]) / (stdData[i] + eps);
        }
    }
    return new Tensor(input.type, returnedData, input.dims);
}

/**
 * Helper function to calculate new dimensions when performing a squeeze operation.
 * @param {number[]} dims The dimensions of the tensor.
 * @param {number|number[]|null} dim The dimension(s) to squeeze.
 * @returns {number[]} The new dimensions.
 * @private
 */
function calc_squeeze_dims(dims, dim) {
    dims = dims.slice();
    if (dim === null) {
        dims = dims.filter((d) => d !== 1);
    } else if (typeof dim === 'number') {
        if (dims[dim] === 1) {
            dims.splice(dim, 1);
        }
    } else if (Array.isArray(dim)) {
        dims = dims.filter((x, i) => {
            return x !== 1 || !dim.includes(i);
        });
    }
    return dims;
}

/**
 * Helper function to calculate new dimensions when performing an unsqueeze operation.
 * @param {number[]} dims The dimensions of the tensor.
 * @param {number} dim The dimension to unsqueeze.
 * @returns {number[]} The new dimensions.
 * @private
 */
function calc_unsqueeze_dims(dims, dim) {
    // Dimension out of range (e.g., "expected to be in range of [-4, 3], but got 4")
    // + 1 since we allow inserting at the end (i.e. dim = -1)
    dim = safeIndex(dim, dims.length + 1);
    dims = dims.slice();
    // Insert 1 into specified dimension
    dims.splice(dim, 0, 1);
    return dims;
}

/**
 * Safely calculate the index for an array of a given size, allowing negative indexing.
 * @param {number} index The index that will be used.
 * @param {number} size The size of the array.
 * @param {number} [dimension=null] The dimension that the index is for (optional).
 * @returns {number} The index, guaranteed to be non-negative and less than `arrayLength`.
 *
 * @throws {Error} If the index is out of range.
 * @private
 */
function safeIndex(index, size, dimension = null, boundsCheck = true) {
    if (index < -size || index >= size) {
        if (boundsCheck) {
            throw new Error(`IndexError: index ${index} is out of bounds for dimension${dimension === null ? '' : ' ' + dimension} with size ${size}`);
        } else {
            return index < -size ? 0 : size;
        }
    }

    if (index < 0) {
        // Negative indexing, ensuring positive index
        index = ((index % size) + size) % size;
    }
    return index;
}

/**
 * Concatenates an array of tensors along a specified dimension.
 * @param {Tensor[]} tensors The array of tensors to concatenate.
 * @param {number} dim The dimension to concatenate along.
 * @returns {Tensor} The concatenated tensor.
 */
export function cat(tensors, dim = 0) {
    dim = safeIndex(dim, tensors[0].dims.length);

    // TODO do validation of shapes

    const resultDims = tensors[0].dims.slice();
    resultDims[dim] = tensors.reduce((a, b) => a + b.dims[dim], 0);

    // Create a new array to store the accumulated values
    const resultSize = resultDims.reduce((a, b) => a * b, 1);
    // @ts-ignore
    const result = new tensors[0].data.constructor(resultSize);

    // Create output tensor of same type as first
    const resultType = tensors[0].type;

    if (dim === 0) {
        // Handle special case for performance reasons

        let offset = 0;
        for (const tensor of tensors) {
            const tensorData = tensor.data;
            result.set(tensorData, offset);
            offset += tensorData.length;
        }

    } else {

        let currentDim = 0;

        for (let t = 0; t < tensors.length; ++t) {
            const { data, dims } = tensors[t];

            // Iterate over the data array
            for (let i = 0; i < data.length; ++i) {
                // Calculate the index in the resulting array
                let resultIndex = 0;

                for (let j = dims.length - 1, num = i, resultMultiplier = 1; j >= 0; --j) {
                    const size = dims[j];
                    let index = num % size;
                    if (j === dim) {
                        index += currentDim;
                    }
                    resultIndex += index * resultMultiplier;
                    resultMultiplier *= resultDims[j];
                    num = Math.floor(num / size);
                }
                // Accumulate the value at the current index
                result[resultIndex] = data[i];
            }

            currentDim += dims[dim];
        }
    }
    return new Tensor(resultType, result, resultDims);
}

/**
 * Stack an array of tensors along a specified dimension.
 * @param {Tensor[]} tensors The array of tensors to stack.
 * @param {number} dim The dimension to stack along.
 * @returns {Tensor} The stacked tensor.
 */
export function stack(tensors, dim = 0) {
    // TODO do validation of shapes
    // NOTE: stack expects each tensor to be equal size
    return cat(tensors.map(t => t.unsqueeze(dim)), dim);
}


/**
 * @param {(previousValue: any, currentValue: any, currentIndex?: number, resultIndex?: number) => any} callbackfn
 * @param {Tensor} input the input tensor.
 * @param {number|null} dim the dimension to reduce.
 * @param {boolean} keepdim whether the output tensor has dim retained or not.
 * @returns {[DataType, any, number[]]} The reduced tensor data.
 */
function reduce_helper(callbackfn, input, dim = null, keepdim = false, initialValue = null) {
    const inputData = input.data;
    const inputDims = input.dims;

    // Negative indexing
    dim = safeIndex(dim, inputDims.length);

    // Calculate the shape of the resulting array after summation
    const resultDims = inputDims.slice(); // Copy the original dimensions
    resultDims[dim] = 1; // Remove the specified axis

    // Create a new array to store the accumulated values
    // @ts-ignore
    const result = new inputData.constructor(inputData.length / inputDims[dim]);
    if (initialValue !== null) {
        result.fill(initialValue);
    }

    // Iterate over the data array
    for (let i = 0; i < inputData.length; ++i) {

        // Calculate the index in the resulting array
        let resultIndex = 0;

        for (let j = inputDims.length - 1, num = i, resultMultiplier = 1; j >= 0; --j) {
            const size = inputDims[j];
            if (j !== dim) {
                const index = num % size;
                resultIndex += index * resultMultiplier;
                resultMultiplier *= resultDims[j];
            }
            num = Math.floor(num / size);
        }

        // Accumulate the value at the current index
        result[resultIndex] = callbackfn(result[resultIndex], inputData[i], i, resultIndex);
    }

    if (!keepdim) resultDims.splice(dim, 1);

    return [input.type, result, resultDims];
}


/**
 * Calculates the standard deviation and mean over the dimensions specified by dim. dim can be a single dimension or `null` to reduce over all dimensions.
 * @param {Tensor} input the input tenso
 * @param {number|null} dim the dimension to reduce. If None, all dimensions are reduced.
 * @param {number} correction difference between the sample size and sample degrees of freedom. Defaults to Bessel's correction, correction=1.
 * @param {boolean} keepdim whether the output tensor has dim retained or not.
 * @returns {Tensor[]} A tuple of (std, mean) tensors.
 */
export function std_mean(input, dim = null, correction = 1, keepdim = false) {
    const inputData = /** @type {Float32Array} */(input.data);
    const inputDims = input.dims;

    if (dim === null) {
        // None to reduce over all dimensions.
        const sum = inputData.reduce((a, b) => a + b, 0);
        const mean = sum / inputData.length;
        const std = Math.sqrt(inputData.reduce((a, b) => a + (b - mean) ** 2, 0) / (inputData.length - correction));

        const meanTensor = new Tensor(input.type, [mean], [/* scalar */]);
        const stdTensor = new Tensor(input.type, [std], [/* scalar */]);

        return [stdTensor, meanTensor];
    }
    dim = safeIndex(dim, inputDims.length);
    const meanTensor = mean(input, dim, keepdim);
    const meanTensorData = meanTensor.data;

    // Compute squared sum
    const [type, result, resultDims] = reduce_helper((a, b, i, j) => a + (b - meanTensorData[j]) ** 2, input, dim, keepdim);

    // Square root of the squared sum
    for (let i = 0; i < result.length; ++i) {
        result[i] = Math.sqrt(result[i] / (inputDims[dim] - correction));
    }

    const stdTensor = new Tensor(type, result, resultDims);

    return [stdTensor, meanTensor];
}

/**
 * Returns the mean value of each row of the input tensor in the given dimension dim.
 * @param {Tensor} input the input tensor.
 * @param {number|null} dim the dimension to reduce.
 * @param {boolean} keepdim whether the output tensor has dim retained or not.
 * @returns {Tensor} A new tensor with means taken along the specified dimension.
 */
export function mean(input, dim = null, keepdim = false) {
    const inputDims = input.dims;
    const inputData = /** @type {Float32Array} */(input.data);

    if (dim === null) {
        // None to reduce over all dimensions.
        const val = inputData.reduce((a, b) => a + b, 0);
        return new Tensor(input.type, [val / inputData.length], [/* scalar */]);
    }
    dim = safeIndex(dim, inputDims.length);

    // Compute sum
    const [type, result, resultDims] = reduce_helper((a, b) => a + b, input, dim, keepdim);

    // Divide by number of elements in the dimension
    if (inputDims[dim] !== 1) {
        for (let i = 0; i < result.length; ++i) {
            result[i] /= inputDims[dim];
        }
    }

    return new Tensor(type, result, resultDims);
}


function dimsToStride(dims) {
    const stride = new Array(dims.length);
    for (let i = dims.length - 1, s2 = 1; i >= 0; --i) {
        stride[i] = s2;
        s2 *= dims[i];
    }
    return stride;
}

function fullHelper(size, fill_value, dtype, cls) {
    const numElements = size.reduce((a, b) => a * b, 1);
    return new Tensor(
        dtype,
        new cls(numElements).fill(fill_value),
        size
    )
}

/**
 * Creates a tensor of size size filled with fill_value. The tensor's dtype is inferred from fill_value.
 * @param {number[]} size A sequence of integers defining the shape of the output tensor.
 * @param {number|bigint|boolean} fill_value The value to fill the output tensor with.
 * @returns {Tensor} The filled tensor.
 */
export function full(size, fill_value) {
    let dtype;
    let typedArrayCls;
    if (typeof fill_value === 'number') {
        dtype = 'float32';
        typedArrayCls = Float32Array;
    } else if (typeof fill_value === 'bigint') {
        dtype = 'int64';
        typedArrayCls = BigInt64Array;
    } else if (typeof fill_value === 'boolean') {
        dtype = 'bool';
        typedArrayCls = Uint8Array;
    } else {
        // TODO: support other dtypes
        throw new Error(`Unsupported data type: ${typeof fill_value}`);
    }
    return fullHelper(size, fill_value, dtype, typedArrayCls);
}

export function full_like(tensor, fill_value) {
    return full(tensor.dims, fill_value);
}

/**
 * Returns a tensor filled with the scalar value 1, with the shape defined by the variable argument size.
 * @param {number[]} size A sequence of integers defining the shape of the output tensor.
 * @returns {Tensor} The ones tensor.
 */
export function ones(size) {
    return fullHelper(size, 1n, 'int64', BigInt64Array);
}

/**
 * Returns a tensor filled with the scalar value 1, with the same size as input.
 * @param {Tensor} tensor The size of input will determine size of the output tensor.
 * @returns {Tensor} The ones tensor.
 */
export function ones_like(tensor) {
    return ones(tensor.dims);
}

/**
 * Returns a tensor filled with the scalar value 0, with the shape defined by the variable argument size.
 * @param {number[]} size A sequence of integers defining the shape of the output tensor.
 * @returns {Tensor} The zeros tensor.
 */
export function zeros(size) {
    return fullHelper(size, 0n, 'int64', BigInt64Array);
}

/**
 * Returns a tensor filled with the scalar value 0, with the same size as input.
 * @param {Tensor} tensor The size of input will determine size of the output tensor.
 * @returns {Tensor} The zeros tensor.
 */
export function zeros_like(tensor) {
    return zeros(tensor.dims);
}

/**
 * Returns a tensor filled with random numbers from a uniform distribution on the interval [0, 1)
 * @param {number[]} size A sequence of integers defining the shape of the output tensor.
 * @returns {Tensor} The random tensor.
 */
export function rand(size) {
    const length = size.reduce((a, b) => a * b, 1);
    return new Tensor(
        "float32",
        Float32Array.from({ length }, () => Math.random()),
        size,
    )
}

/**
 * Quantizes the embeddings tensor to binary or unsigned binary precision.
 * @param {Tensor} tensor The tensor to quantize.
 * @param {'binary'|'ubinary'} precision The precision to use for quantization.
 * @returns {Tensor} The quantized tensor.
 */
export function quantize_embeddings(tensor, precision) {
    if (tensor.dims.length !== 2) {
        throw new Error("The tensor must have 2 dimensions");
    }
    if (tensor.dims.at(-1) % 8 !== 0) {
        throw new Error("The last dimension of the tensor must be a multiple of 8");
    }
    if (!['binary', 'ubinary'].includes(precision)) {
        throw new Error("The precision must be either 'binary' or 'ubinary'");
    }

    const signed = precision === 'binary';
    const dtype = signed ? 'int8' : 'uint8';

    // Create a typed array to store the packed bits
    const cls = signed ? Int8Array : Uint8Array;
    const inputData = tensor.data;
    const outputData = new cls(inputData.length / 8);

    // Iterate over each number in the array
    for (let i = 0; i < inputData.length; ++i) {
        // Determine if the number is greater than 0
        const bit = inputData[i] > 0 ? 1 : 0;

        // Calculate the index in the typed array and the position within the byte
        const arrayIndex = Math.floor(i / 8);
        const bitPosition = i % 8;

        // Pack the bit into the typed array
        outputData[arrayIndex] |= bit << (7 - bitPosition);
        if (signed && bitPosition === 0) {
            outputData[arrayIndex] -= 128;
        }
    };

    return new Tensor(dtype, outputData, [tensor.dims[0], tensor.dims[1] / 8]);
}