Spaces:
Sleeping
Sleeping
File size: 7,435 Bytes
de7129f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
"use server";
import type { DataPoint } from "@/lib/schemas";
export interface CalculationStep {
termIndex: number;
yValue: number;
basisNumeratorSymbolic: string;
basisDenominatorSymbolic: string;
basisDenominatorValue: number;
basisPolynomialSymbolic: string;
basisNumeratorAtXValues: string;
basisNumeratorAtXProduct: number;
basisPolynomialValueAtX: number;
termSymbolic: string;
termValueAtX: number;
}
interface LagrangeResult {
interpolatedValue: number | null;
polynomialTermsDisplay: string[];
calculationSteps: CalculationStep[];
plotData?: Array<{ x: number; original?: number; interpolated?: number; target?: number }>;
error?: string;
interpolationPoint?: number;
}
function evaluateLagrangePolynomialAtPoint(xEval: number, dataPoints: DataPoint[]): number {
let sum = 0;
const n = dataPoints.length;
if (n === 0) return NaN; // Should not happen with validation
for (let j = 0; j < n; j++) {
let basisProduct = 1;
if (n === 1) { // If only one point, L_0(x) = 1, P(x) = y_0
basisProduct = 1;
} else {
for (let k = 0; k < n; k++) {
if (j === k) continue;
if (dataPoints[j].x - dataPoints[k].x === 0) return NaN; // Avoid division by zero, though schema should prevent duplicate x
basisProduct *= (xEval - dataPoints[k].x) / (dataPoints[j].x - dataPoints[k].x);
}
}
sum += dataPoints[j].y * basisProduct;
}
return sum;
}
export async function calculateLagrangeInterpolation(
dataPoints: DataPoint[],
interpolationX: number
): Promise<LagrangeResult> {
if (dataPoints.length < 1) { // Allow 1 point for P(x)=y0
return { interpolatedValue: null, polynomialTermsDisplay: [], calculationSteps:[], error: "At least one data point is required." };
}
const xValues = dataPoints.map(p => p.x);
if (new Set(xValues).size !== xValues.length) {
return { interpolatedValue: null, polynomialTermsDisplay: [], calculationSteps: [], error: "All X values in data points must be unique." };
}
let lagrangeSum = 0;
const polynomialTermsDisplay: string[] = [];
const calculationSteps: CalculationStep[] = [];
const n = dataPoints.length;
for (let j = 0; j < n; j++) {
const currentStep: Partial<CalculationStep> = { termIndex: j, yValue: dataPoints[j].y };
let basisNumeratorSym = "";
let basisDenominatorSym = "";
let basisDenominatorNum = 1;
let basisNumeratorAtXEvalStrings: string[] = [];
let basisNumeratorAtXProd = 1;
if (n === 1) { // P(x) = y_0, so L_0(x) = 1
basisNumeratorSym = "1";
basisDenominatorSym = "1";
basisDenominatorNum = 1;
basisNumeratorAtXProd = 1;
basisNumeratorAtXEvalStrings.push("1");
} else {
for (let k = 0; k < n; k++) {
if (j === k) continue;
basisNumeratorSym += `(x - ${dataPoints[k].x.toString()})`;
basisDenominatorSym += `(${dataPoints[j].x.toString()} - ${dataPoints[k].x.toString()})`;
basisDenominatorNum *= (dataPoints[j].x - dataPoints[k].x);
basisNumeratorAtXEvalStrings.push(`(${interpolationX.toString()} - ${dataPoints[k].x.toString()})`);
basisNumeratorAtXProd *= (interpolationX - dataPoints[k].x);
}
}
currentStep.basisNumeratorSymbolic = basisNumeratorSym || "1";
currentStep.basisDenominatorSymbolic = basisDenominatorSym || "1"; // Denominator isn't really symbolic in L_j(x) display typically
if (basisDenominatorNum === 0) {
return { interpolatedValue: null, polynomialTermsDisplay: [], calculationSteps: [], error: "Division by zero in basis polynomial. X values might be too close or identical." };
}
currentStep.basisDenominatorValue = basisDenominatorNum;
currentStep.basisPolynomialSymbolic = `(${currentStep.basisNumeratorSymbolic}) / ${currentStep.basisDenominatorValue.toFixed(6)}`;
currentStep.basisNumeratorAtXValues = basisNumeratorAtXEvalStrings.join('*') || "1";
currentStep.basisNumeratorAtXProduct = basisNumeratorAtXProd;
currentStep.basisPolynomialValueAtX = basisNumeratorAtXProd / basisDenominatorNum;
const termCoefficientForDisplay = dataPoints[j].y / (n === 1 ? 1 : basisDenominatorNum);
let singleTermDisplay = `${dataPoints[j].y.toFixed(4)}`;
if (n > 1) { // Only add multiplier if more than one point
if (basisDenominatorNum !== 1 || basisNumeratorSym !== "1") { // avoid " * 1 / 1"
singleTermDisplay = `${termCoefficientForDisplay.toFixed(4)}`;
if (basisNumeratorSym && basisNumeratorSym !== "1") {
singleTermDisplay += ` * ${basisNumeratorSym}`;
}
}
}
polynomialTermsDisplay.push(singleTermDisplay);
currentStep.termSymbolic = `${dataPoints[j].y.toFixed(4)} * ${currentStep.basisPolynomialSymbolic}`;
if (n === 1) currentStep.termSymbolic = `${dataPoints[j].y.toFixed(4)}`; // For y_0
currentStep.termValueAtX = dataPoints[j].y * currentStep.basisPolynomialValueAtX;
calculationSteps.push(currentStep as CalculationStep);
lagrangeSum += currentStep.termValueAtX;
}
if (isNaN(lagrangeSum)) {
return { interpolatedValue: null, polynomialTermsDisplay: [], calculationSteps, error: "Calculation resulted in NaN. Check input values." };
}
const plotData: Array<{ x: number; original?: number; interpolated?: number; target?: number }> = [];
if (dataPoints.length > 0) {
const xS = dataPoints.map(p => p.x);
const minX = Math.min(...xS);
const maxX = Math.max(...xS);
const range = maxX - minX;
const plotPadding = range === 0 ? 1 : range * 0.2; // Ensure some padding for single point or narrow range
const plotStart = minX - plotPadding;
const plotEnd = maxX + plotPadding;
const numPlotPoints = 100;
for (let i = 0; i <= numPlotPoints; i++) {
const currentX = plotStart + (i * (plotEnd - plotStart)) / numPlotPoints;
const interpolatedVal = evaluateLagrangePolynomialAtPoint(currentX, dataPoints);
if (!isNaN(interpolatedVal)) {
plotData.push({ x: currentX, interpolated: interpolatedVal });
}
}
dataPoints.forEach(dp => {
const existingPoint = plotData.find(p => Math.abs(p.x - dp.x) < 1e-9); // Check for float equality
if (existingPoint) {
existingPoint.original = dp.y;
} else {
plotData.push({ x: dp.x, original: dp.y, interpolated: evaluateLagrangePolynomialAtPoint(dp.x, dataPoints) });
}
});
// Ensure the specific interpolationX point is included for the curve and target highlighting
const specificInterpolatedValue = evaluateLagrangePolynomialAtPoint(interpolationX, dataPoints);
if(!isNaN(specificInterpolatedValue)) {
const targetPointEntry = plotData.find(p => Math.abs(p.x - interpolationX) < 1e-9);
if (targetPointEntry) {
targetPointEntry.interpolated = specificInterpolatedValue; // Ensure curve passes through it
targetPointEntry.target = lagrangeSum; // lagrangeSum is P(interpolationX)
} else {
plotData.push({ x: interpolationX, interpolated: specificInterpolatedValue, target: lagrangeSum });
}
}
plotData.sort((a, b) => a.x - b.x);
}
return { interpolatedValue: lagrangeSum, polynomialTermsDisplay, calculationSteps, plotData, interpolationPoint: interpolationX };
}
|