File size: 7,041 Bytes
9a00fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
<!DOCTYPE html>
<html lang="hi-IN">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Gauss Elimination Method Se Equations Solve Karna</title>
    <style>
        body {
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
            line-height: 1.8;
            margin: 0;
            padding: 20px;
            background-color: #e6e6fa; /* Lavender background */
            color: #333;
        }
        .container {
            max-width: 800px;
            margin: auto;
            background: #fff;
            padding: 25px;
            border-radius: 8px;
            box-shadow: 0 0 15px rgba(0,0,0,0.1);
        }
        h1, h2, h3 {
            color: #483d8b; /* Dark Slate Blue */
            border-bottom: 2px solid #9370db; /* Medium Purple border */
            padding-bottom: 5px;
        }
        h1 {
            text-align: center;
            font-size: 2em;
        }
        h2 {
            font-size: 1.5em;
            margin-top: 30px;
        }
        h3 {
            font-size: 1.2em;
            margin-top: 20px;
            color: #9370db; /* Medium Purple */
        }
        p {
            margin-bottom: 15px;
        }
        .equations, .matrix-display {
            background-color: #f8f8ff; /* Ghost White */
            border: 1px solid #d8bfd8; /* Thistle border */
            padding: 15px;
            border-radius: 5px;
            margin-bottom: 20px;
            font-family: 'Courier New', Courier, monospace;
            font-size: 1.1em;
            overflow-x: auto;
            white-space: pre;
        }
        .matrix-display code {
            display: block;
        }
        .solution {
            background-color: #f0fff0; /* Honeydew */
            border: 1px solid #98fb98; /* Pale Green border */
            padding: 15px;
            border-radius: 5px;
            font-size: 1.1em;
            font-weight: bold;
            color: #3cb371; /* Medium Sea Green */
        }
        .operation {
            font-style: italic;
            color: #6a5acd; /* Slate Blue */
        }
        .highlight {
            color: #db7093; /* Pale Violet Red for pivot */
            font-weight: bold;
        }
        .comment {
            color: #2e8b57; /* Sea Green for comments */
            font-style: italic;
        }
        .back-substitution {
            background-color: #fffacd; /* Lemon Chiffon */
            padding: 10px;
            border-left: 4px solid #ffd700; /* Gold */
            margin-top: 15px;
        }
    </style>
</head>
<body>
    <div class="container">
        <h1>Gauss Elimination Method</h1>
        <h2>(a) Sawaal (Problem Statement)</h2>
        <p>Gauss Elimination method ka istemal karke yeh system of equations solve karo:</p>
        <div class="equations">
            6x₁ +  3xβ‚‚ +  2x₃ =  6
            6x₁ +  4xβ‚‚ +  3x₃ =  0
           20x₁ + 15xβ‚‚ + 12x₃ =  0
        </div>

        <h2>Gauss Elimination Ke Steps</h2>
        <p>Pehle, augmented matrix banate hain:</p>
        <div class="matrix-display"><code>[  6   3   2 |  6 ]
[  6   4   3 |  0 ]
[ 20  15  12 |  0 ]</code></div>

        <h3>Step 1: Pehla pivot (R1,C1) ko 1 banana</h3>
        <p>Pehla element (R1,C1) 6 hai, isko 1 banana hai.</p>
        <p class="operation">R1 β†’ R1 / 6</p>
        <div class="matrix-display"><code>[ <span class="highlight">1</span>   1/2   1/3 |  1 ]  <span class="comment"><-- (6/6=1, 3/6=1/2, 2/6=1/3, 6/6=1)</span>
[ 6   4     3   |  0 ]
[ 20 15    12   |  0 ]</code></div>

        <h3>Step 2: Pehle pivot ke neeche zeros banana</h3>
        <p>Ab R1,C1 wale pivot (1) ke neeche ke elements ko zero karenge.</p>
        <p class="operation">R2 β†’ R2 - 6*R1</p>
        <p class="operation">R3 β†’ R3 - 20*R1</p>
        <div class="matrix-display"><code>[ 1   1/2       1/3       |  1 ]
[ 0   1         1         | -6 ]  <span class="comment"><-- R2: [6-6*1, 4-6*(1/2), 3-6*(1/3) | 0-6*1] = [0, 1, 1 | -6]</span>
[ 0   5         16/3      | -20]  <span class="comment"><-- R3: [20-20*1, 15-20*(1/2), 12-20*(1/3) | 0-20*1] = [0, 5, (36-20)/3 | -20] = [0, 5, 16/3 | -20]</span></code></div>
        <p>Yahaan R2,C2 mein already 1 aa gaya, toh accha hai!</p>

        <h3>Step 3: Dusre pivot ke neeche zero banana</h3>
        <p>Ab R2,C2 wala pivot 1 hai. Iske neeche (R3,C2) zero banana hai.</p>
        <p class="operation">R3 β†’ R3 - 5*R2</p>
        <div class="matrix-display"><code>[ 1   1/2       1/3       |  1 ]
[ 0   <span class="highlight">1</span>         1         | -6 ]
[ 0   0         1/3       |  10]  <span class="comment"><-- R3: [0-5*0, 5-5*1, 16/3-5*1 | -20-5*(-6)] = [0, 0, (16-15)/3 | -20+30] = [0, 0, 1/3 | 10]</span></code></div>
        <p>Matrix ab Row Echelon Form (REF) mein hai. Ab pivot elements ko 1 banana hai (teesre ko).</p>

        <h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3>
        <p class="operation">R3 β†’ R3 * 3</p>
        <div class="matrix-display"><code>[ 1   1/2   1/3 |  1 ]
[ 0   1     1   | -6 ]
[ 0   0     <span class="highlight">1</span>   | 30 ]</code></div>
        <p>Matrix ab Row Echelon Form (REF) mein hai aur pivots 1 hain. Gauss Elimination yahan tak hota hai. Ab hum back-substitution karenge.</p>

        <h2>Back-Substitution (Peeche se values nikalna)</h2>
        <p>Matrix se equations wapas likhte hain:</p>
        <div class="back-substitution">
            Equation 1:  x₁ + (1/2)xβ‚‚ + (1/3)x₃ = 1 <br>
            Equation 2:         xβ‚‚ +        x₃ = -6 <br>
            Equation 3:                x₃ = 30
        </div>

        <p><strong>Equation 3 se:</strong></p>
        <p>x₃ = <strong>30</strong></p>

        <p><strong>x₃ ki value Equation 2 mein daalo:</strong></p>
        <p>xβ‚‚ + (30) = -6</p>
        <p>xβ‚‚ = -6 - 30</p>
        <p>xβ‚‚ = <strong>-36</strong></p>

        <p><strong>xβ‚‚ aur x₃ ki values Equation 1 mein daalo:</strong></p>
        <p>x₁ + (1/2)(-36) + (1/3)(30) = 1</p>
        <p>x₁ - 18 + 10 = 1</p>
        <p>x₁ - 8 = 1</p>
        <p>x₁ = 1 + 8</p>
        <p>x₁ = <strong>9</strong></p>

        <h2>Hal (Solution)</h2>
        <div class="solution">
            x₁ = 9 <br>
            xβ‚‚ = -36 <br>
            x₃ = 30
        </div>

        <h2>Jaanch (Verification)</h2>
        <p>Values ko original equations mein daal kar check karte hain:</p>
        
        <h3>Original Equation 1: 6x₁ + 3xβ‚‚ + 2x₃ = 6</h3>
        <p>6(9) + 3(-36) + 2(30) = 54 - 108 + 60 = 114 - 108 = <strong>6</strong> (Sahi hai!)</p>

        <h3>Original Equation 2: 6x₁ + 4xβ‚‚ + 3x₃ = 0</h3>
        <p>6(9) + 4(-36) + 3(30) = 54 - 144 + 90 = 144 - 144 = <strong>0</strong> (Sahi hai!)</p>

        <h3>Original Equation 3: 20x₁ + 15xβ‚‚ + 12x₃ = 0</h3>
        <p>20(9) + 15(-36) + 12(30) = 180 - 540 + 360 = 540 - 540 = <strong>0</strong> (Sahi hai!)</p>
        
        <p>Solution bilkul sahi hai!</p>
    </div>
</body>
</html>