Spaces:
Running
Running
File size: 7,041 Bytes
9a00fa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
<!DOCTYPE html>
<html lang="hi-IN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Gauss Elimination Method Se Equations Solve Karna</title>
<style>
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
line-height: 1.8;
margin: 0;
padding: 20px;
background-color: #e6e6fa; /* Lavender background */
color: #333;
}
.container {
max-width: 800px;
margin: auto;
background: #fff;
padding: 25px;
border-radius: 8px;
box-shadow: 0 0 15px rgba(0,0,0,0.1);
}
h1, h2, h3 {
color: #483d8b; /* Dark Slate Blue */
border-bottom: 2px solid #9370db; /* Medium Purple border */
padding-bottom: 5px;
}
h1 {
text-align: center;
font-size: 2em;
}
h2 {
font-size: 1.5em;
margin-top: 30px;
}
h3 {
font-size: 1.2em;
margin-top: 20px;
color: #9370db; /* Medium Purple */
}
p {
margin-bottom: 15px;
}
.equations, .matrix-display {
background-color: #f8f8ff; /* Ghost White */
border: 1px solid #d8bfd8; /* Thistle border */
padding: 15px;
border-radius: 5px;
margin-bottom: 20px;
font-family: 'Courier New', Courier, monospace;
font-size: 1.1em;
overflow-x: auto;
white-space: pre;
}
.matrix-display code {
display: block;
}
.solution {
background-color: #f0fff0; /* Honeydew */
border: 1px solid #98fb98; /* Pale Green border */
padding: 15px;
border-radius: 5px;
font-size: 1.1em;
font-weight: bold;
color: #3cb371; /* Medium Sea Green */
}
.operation {
font-style: italic;
color: #6a5acd; /* Slate Blue */
}
.highlight {
color: #db7093; /* Pale Violet Red for pivot */
font-weight: bold;
}
.comment {
color: #2e8b57; /* Sea Green for comments */
font-style: italic;
}
.back-substitution {
background-color: #fffacd; /* Lemon Chiffon */
padding: 10px;
border-left: 4px solid #ffd700; /* Gold */
margin-top: 15px;
}
</style>
</head>
<body>
<div class="container">
<h1>Gauss Elimination Method</h1>
<h2>(a) Sawaal (Problem Statement)</h2>
<p>Gauss Elimination method ka istemal karke yeh system of equations solve karo:</p>
<div class="equations">
6xβ + 3xβ + 2xβ = 6
6xβ + 4xβ + 3xβ = 0
20xβ + 15xβ + 12xβ = 0
</div>
<h2>Gauss Elimination Ke Steps</h2>
<p>Pehle, augmented matrix banate hain:</p>
<div class="matrix-display"><code>[ 6 3 2 | 6 ]
[ 6 4 3 | 0 ]
[ 20 15 12 | 0 ]</code></div>
<h3>Step 1: Pehla pivot (R1,C1) ko 1 banana</h3>
<p>Pehla element (R1,C1) 6 hai, isko 1 banana hai.</p>
<p class="operation">R1 β R1 / 6</p>
<div class="matrix-display"><code>[ <span class="highlight">1</span> 1/2 1/3 | 1 ] <span class="comment"><-- (6/6=1, 3/6=1/2, 2/6=1/3, 6/6=1)</span>
[ 6 4 3 | 0 ]
[ 20 15 12 | 0 ]</code></div>
<h3>Step 2: Pehle pivot ke neeche zeros banana</h3>
<p>Ab R1,C1 wale pivot (1) ke neeche ke elements ko zero karenge.</p>
<p class="operation">R2 β R2 - 6*R1</p>
<p class="operation">R3 β R3 - 20*R1</p>
<div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ]
[ 0 1 1 | -6 ] <span class="comment"><-- R2: [6-6*1, 4-6*(1/2), 3-6*(1/3) | 0-6*1] = [0, 1, 1 | -6]</span>
[ 0 5 16/3 | -20] <span class="comment"><-- R3: [20-20*1, 15-20*(1/2), 12-20*(1/3) | 0-20*1] = [0, 5, (36-20)/3 | -20] = [0, 5, 16/3 | -20]</span></code></div>
<p>Yahaan R2,C2 mein already 1 aa gaya, toh accha hai!</p>
<h3>Step 3: Dusre pivot ke neeche zero banana</h3>
<p>Ab R2,C2 wala pivot 1 hai. Iske neeche (R3,C2) zero banana hai.</p>
<p class="operation">R3 β R3 - 5*R2</p>
<div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ]
[ 0 <span class="highlight">1</span> 1 | -6 ]
[ 0 0 1/3 | 10] <span class="comment"><-- R3: [0-5*0, 5-5*1, 16/3-5*1 | -20-5*(-6)] = [0, 0, (16-15)/3 | -20+30] = [0, 0, 1/3 | 10]</span></code></div>
<p>Matrix ab Row Echelon Form (REF) mein hai. Ab pivot elements ko 1 banana hai (teesre ko).</p>
<h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3>
<p class="operation">R3 β R3 * 3</p>
<div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ]
[ 0 1 1 | -6 ]
[ 0 0 <span class="highlight">1</span> | 30 ]</code></div>
<p>Matrix ab Row Echelon Form (REF) mein hai aur pivots 1 hain. Gauss Elimination yahan tak hota hai. Ab hum back-substitution karenge.</p>
<h2>Back-Substitution (Peeche se values nikalna)</h2>
<p>Matrix se equations wapas likhte hain:</p>
<div class="back-substitution">
Equation 1: xβ + (1/2)xβ + (1/3)xβ = 1 <br>
Equation 2: xβ + xβ = -6 <br>
Equation 3: xβ = 30
</div>
<p><strong>Equation 3 se:</strong></p>
<p>xβ = <strong>30</strong></p>
<p><strong>xβ ki value Equation 2 mein daalo:</strong></p>
<p>xβ + (30) = -6</p>
<p>xβ = -6 - 30</p>
<p>xβ = <strong>-36</strong></p>
<p><strong>xβ aur xβ ki values Equation 1 mein daalo:</strong></p>
<p>xβ + (1/2)(-36) + (1/3)(30) = 1</p>
<p>xβ - 18 + 10 = 1</p>
<p>xβ - 8 = 1</p>
<p>xβ = 1 + 8</p>
<p>xβ = <strong>9</strong></p>
<h2>Hal (Solution)</h2>
<div class="solution">
xβ = 9 <br>
xβ = -36 <br>
xβ = 30
</div>
<h2>Jaanch (Verification)</h2>
<p>Values ko original equations mein daal kar check karte hain:</p>
<h3>Original Equation 1: 6xβ + 3xβ + 2xβ = 6</h3>
<p>6(9) + 3(-36) + 2(30) = 54 - 108 + 60 = 114 - 108 = <strong>6</strong> (Sahi hai!)</p>
<h3>Original Equation 2: 6xβ + 4xβ + 3xβ = 0</h3>
<p>6(9) + 4(-36) + 3(30) = 54 - 144 + 90 = 144 - 144 = <strong>0</strong> (Sahi hai!)</p>
<h3>Original Equation 3: 20xβ + 15xβ + 12xβ = 0</h3>
<p>20(9) + 15(-36) + 12(30) = 180 - 540 + 360 = 540 - 540 = <strong>0</strong> (Sahi hai!)</p>
<p>Solution bilkul sahi hai!</p>
</div>
</body>
</html> |