Spaces:
Running
Running
Create 1.html
Browse files
1.html
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="hi-IN">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Equations Solve Karna Gauss-Jordan Method Se</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 10 |
+
line-height: 1.8; /* Thoda zyada line height Hinglish ke liye */
|
| 11 |
+
margin: 0;
|
| 12 |
+
padding: 20px;
|
| 13 |
+
background-color: #f4f4f9;
|
| 14 |
+
color: #333;
|
| 15 |
+
}
|
| 16 |
+
.container {
|
| 17 |
+
max-width: 800px;
|
| 18 |
+
margin: auto;
|
| 19 |
+
background: #fff;
|
| 20 |
+
padding: 25px;
|
| 21 |
+
border-radius: 8px;
|
| 22 |
+
box-shadow: 0 0 15px rgba(0,0,0,0.1);
|
| 23 |
+
}
|
| 24 |
+
h1, h2, h3 {
|
| 25 |
+
color: #2c3e50;
|
| 26 |
+
border-bottom: 2px solid #3498db;
|
| 27 |
+
padding-bottom: 5px;
|
| 28 |
+
}
|
| 29 |
+
h1 {
|
| 30 |
+
text-align: center;
|
| 31 |
+
font-size: 2em;
|
| 32 |
+
}
|
| 33 |
+
h2 {
|
| 34 |
+
font-size: 1.5em;
|
| 35 |
+
margin-top: 30px;
|
| 36 |
+
}
|
| 37 |
+
h3 {
|
| 38 |
+
font-size: 1.2em;
|
| 39 |
+
margin-top: 20px;
|
| 40 |
+
color: #3498db;
|
| 41 |
+
}
|
| 42 |
+
p {
|
| 43 |
+
margin-bottom: 15px;
|
| 44 |
+
}
|
| 45 |
+
.equations, .matrix-display {
|
| 46 |
+
background-color: #ecf0f1;
|
| 47 |
+
border: 1px solid #bdc3c7;
|
| 48 |
+
padding: 15px;
|
| 49 |
+
border-radius: 5px;
|
| 50 |
+
margin-bottom: 20px;
|
| 51 |
+
font-family: 'Courier New', Courier, monospace;
|
| 52 |
+
font-size: 1.1em;
|
| 53 |
+
overflow-x: auto; /* Responsive banane ke liye */
|
| 54 |
+
white-space: pre; /* Whitespace aur formatting ko preserve karne ke liye */
|
| 55 |
+
}
|
| 56 |
+
.matrix-display code {
|
| 57 |
+
display: block; /* code block ko full width lene ke liye */
|
| 58 |
+
}
|
| 59 |
+
.solution {
|
| 60 |
+
background-color: #e8f6f3;
|
| 61 |
+
border: 1px solid #1abc9c;
|
| 62 |
+
padding: 15px;
|
| 63 |
+
border-radius: 5px;
|
| 64 |
+
font-size: 1.1em;
|
| 65 |
+
font-weight: bold;
|
| 66 |
+
color: #16a085;
|
| 67 |
+
}
|
| 68 |
+
.operation {
|
| 69 |
+
font-style: italic;
|
| 70 |
+
color: #7f8c8d;
|
| 71 |
+
}
|
| 72 |
+
.highlight {
|
| 73 |
+
color: #c0392b;
|
| 74 |
+
font-weight: bold;
|
| 75 |
+
}
|
| 76 |
+
</style>
|
| 77 |
+
</head>
|
| 78 |
+
<body>
|
| 79 |
+
<div class="container">
|
| 80 |
+
<h1>Linear Equations Ko Solve Karna</h1>
|
| 81 |
+
<h2>(a) Sawaal (Problem)</h2>
|
| 82 |
+
<p>Yeh equations ko Gauss-Jordan method ka istemal karke solve karo:</p>
|
| 83 |
+
<div class="equations">
|
| 84 |
+
x + 4y - z = -5
|
| 85 |
+
x + y - 6z = -12
|
| 86 |
+
3x - y - z = 4
|
| 87 |
+
</div>
|
| 88 |
+
|
| 89 |
+
<h2>Gauss-Jordan Elimination Ke Steps</h2>
|
| 90 |
+
<p>Sabse pehle, hum in equations ka augmented matrix (sanjojit avyuh) banayenge:</p>
|
| 91 |
+
<div class="matrix-display"><code>[ 1 4 -1 | -5 ]
|
| 92 |
+
[ 1 1 -6 | -12 ]
|
| 93 |
+
[ 3 -1 -1 | 4 ]</code></div>
|
| 94 |
+
|
| 95 |
+
<h3>Step 1: Pehle pivot ke neeche zeros banana</h3>
|
| 96 |
+
<p>Pehla pivot R1,C1 mein 1 hai. Iske neeche ke elements (R2,C1 aur R3,C1) ko zero karenge.</p>
|
| 97 |
+
<p class="operation">R2 β R2 - R1 (Row 2 mein se Row 1 ko minus karo)</p>
|
| 98 |
+
<p class="operation">R3 β R3 - 3*R1 (Row 3 mein se Row 1 ka 3 guna minus karo)</p>
|
| 99 |
+
<div class="matrix-display"><code>[ <span class="highlight">1</span> 4 -1 | -5 ]
|
| 100 |
+
[ 0 -3 -5 | -7 ] <-- (1-1=0, 1-4=-3, -6-(-1)=-5, -12-(-5)=-7)
|
| 101 |
+
[ 0 -13 2 | 19 ] <-- (3-3*1=0, -1-3*4=-13, -1-3*(-1)=2, 4-3*(-5)=19)</code></div>
|
| 102 |
+
|
| 103 |
+
<h3>Step 2: Dusra pivot (R2,C2) ko 1 banana</h3>
|
| 104 |
+
<p>Ab R2,C2 wale element (-3) ko 1 banana hai.</p>
|
| 105 |
+
<p class="operation">R2 β R2 / (-3) (Row 2 ko -3 se divide karo)</p>
|
| 106 |
+
<div class="matrix-display"><code>[ 1 4 -1 | -5 ]
|
| 107 |
+
[ 0 <span class="highlight">1</span> 5/3 | 7/3 ]
|
| 108 |
+
[ 0 -13 2 | 19 ]</code></div>
|
| 109 |
+
|
| 110 |
+
<h3>Step 3: Dusre pivot ke upar aur neeche zeros banana</h3>
|
| 111 |
+
<p>Ab R2,C2 wale pivot (1) ke upar (R1,C2) aur neeche (R3,C2) zero banana hai.</p>
|
| 112 |
+
<p class="operation">R1 β R1 - 4*R2 (Row 1 mein se Row 2 ka 4 guna minus karo)</p>
|
| 113 |
+
<p class="operation">R3 β R3 + 13*R2 (Row 3 mein Row 2 ka 13 guna add karo)</p>
|
| 114 |
+
<div class="matrix-display"><code>[ 1 0 -23/3 | -43/3 ] <-- R1: [1, 4-4*1, -1-4*(5/3) | -5-4*(7/3)] = [1,0,-23/3|-43/3]
|
| 115 |
+
[ 0 1 5/3 | 7/3 ]
|
| 116 |
+
[ 0 0 71/3 | 148/3 ] <-- R3: [0, -13+13*1, 2+13*(5/3) | 19+13*(7/3)] = [0,0,71/3|148/3]</code></div>
|
| 117 |
+
|
| 118 |
+
<h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3>
|
| 119 |
+
<p>Ab R3,C3 wale element (71/3) ko 1 banana hai.</p>
|
| 120 |
+
<p class="operation">R3 β R3 * (3/71) (Row 3 ko 3/71 se multiply karo)</p>
|
| 121 |
+
<div class="matrix-display"><code>[ 1 0 -23/3 | -43/3 ]
|
| 122 |
+
[ 0 1 5/3 | 7/3 ]
|
| 123 |
+
[ 0 0 <span class="highlight">1</span> | 148/71 ]</code></div>
|
| 124 |
+
|
| 125 |
+
<h3>Step 5: Teesre pivot ke upar zeros banana</h3>
|
| 126 |
+
<p>Ab R3,C3 wale pivot (1) ke upar (R1,C3 aur R2,C3) zero banana hai.</p>
|
| 127 |
+
<p class="operation">R1 β R1 + (23/3)*R3 (Row 1 mein Row 3 ka 23/3 guna add karo)</p>
|
| 128 |
+
<p class="operation">R2 β R2 - (5/3)*R3 (Row 2 mein se Row 3 ka 5/3 guna minus karo)</p>
|
| 129 |
+
<div class="matrix-display"><code>[ 1 0 0 | 117/71 ] <-- R1: [-23/3 + (23/3)*1 = 0], [-43/3 + (23/3)*(148/71) = 117/71]
|
| 130 |
+
[ 0 1 0 | -81/71 ] <-- R2: [5/3 - (5/3)*1 = 0], [7/3 - (5/3)*(148/71) = -81/71]
|
| 131 |
+
[ 0 0 1 | 148/71 ]</code></div>
|
| 132 |
+
<p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p>
|
| 133 |
+
|
| 134 |
+
<h2>Hal (Solution)</h2>
|
| 135 |
+
<p>RREF matrix se humein solution milta hai:</p>
|
| 136 |
+
<div class="solution">
|
| 137 |
+
x = 117/71 <br>
|
| 138 |
+
y = -81/71 <br>
|
| 139 |
+
z = 148/71
|
| 140 |
+
</div>
|
| 141 |
+
|
| 142 |
+
<h2>Jaanch (Verification)</h2>
|
| 143 |
+
<p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p>
|
| 144 |
+
|
| 145 |
+
<h3>Equation 1: x + 4y - z = -5</h3>
|
| 146 |
+
<p>(117/71) + 4(-81/71) - (148/71) = (117 - 324 - 148) / 71 = (117 - 472) / 71 = -355 / 71 = <strong>-5</strong> (Sahi hai!)</p>
|
| 147 |
+
|
| 148 |
+
<h3>Equation 2: x + y - 6z = -12</h3>
|
| 149 |
+
<p>(117/71) + (-81/71) - 6(148/71) = (117 - 81 - 888) / 71 = (36 - 888) / 71 = -852 / 71 = <strong>-12</strong> (Sahi hai!)</p>
|
| 150 |
+
|
| 151 |
+
<h3>Equation 3: 3x - y - z = 4</h3>
|
| 152 |
+
<p>3(117/71) - (-81/71) - (148/71) = (351 + 81 - 148) / 71 = (432 - 148) / 71 = 284 / 71 = <strong>4</strong> (Sahi hai!)</p>
|
| 153 |
+
|
| 154 |
+
<p>Solution sahi hai.</p>
|
| 155 |
+
</div>
|
| 156 |
+
</body>
|
| 157 |
+
</html>
|