sameernotes commited on
Commit
4cf1f6f
Β·
verified Β·
1 Parent(s): 59521de

Create 1.html

Browse files
Files changed (1) hide show
  1. 1.html +157 -0
1.html ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="hi-IN">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>Equations Solve Karna Gauss-Jordan Method Se</title>
7
+ <style>
8
+ body {
9
+ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
10
+ line-height: 1.8; /* Thoda zyada line height Hinglish ke liye */
11
+ margin: 0;
12
+ padding: 20px;
13
+ background-color: #f4f4f9;
14
+ color: #333;
15
+ }
16
+ .container {
17
+ max-width: 800px;
18
+ margin: auto;
19
+ background: #fff;
20
+ padding: 25px;
21
+ border-radius: 8px;
22
+ box-shadow: 0 0 15px rgba(0,0,0,0.1);
23
+ }
24
+ h1, h2, h3 {
25
+ color: #2c3e50;
26
+ border-bottom: 2px solid #3498db;
27
+ padding-bottom: 5px;
28
+ }
29
+ h1 {
30
+ text-align: center;
31
+ font-size: 2em;
32
+ }
33
+ h2 {
34
+ font-size: 1.5em;
35
+ margin-top: 30px;
36
+ }
37
+ h3 {
38
+ font-size: 1.2em;
39
+ margin-top: 20px;
40
+ color: #3498db;
41
+ }
42
+ p {
43
+ margin-bottom: 15px;
44
+ }
45
+ .equations, .matrix-display {
46
+ background-color: #ecf0f1;
47
+ border: 1px solid #bdc3c7;
48
+ padding: 15px;
49
+ border-radius: 5px;
50
+ margin-bottom: 20px;
51
+ font-family: 'Courier New', Courier, monospace;
52
+ font-size: 1.1em;
53
+ overflow-x: auto; /* Responsive banane ke liye */
54
+ white-space: pre; /* Whitespace aur formatting ko preserve karne ke liye */
55
+ }
56
+ .matrix-display code {
57
+ display: block; /* code block ko full width lene ke liye */
58
+ }
59
+ .solution {
60
+ background-color: #e8f6f3;
61
+ border: 1px solid #1abc9c;
62
+ padding: 15px;
63
+ border-radius: 5px;
64
+ font-size: 1.1em;
65
+ font-weight: bold;
66
+ color: #16a085;
67
+ }
68
+ .operation {
69
+ font-style: italic;
70
+ color: #7f8c8d;
71
+ }
72
+ .highlight {
73
+ color: #c0392b;
74
+ font-weight: bold;
75
+ }
76
+ </style>
77
+ </head>
78
+ <body>
79
+ <div class="container">
80
+ <h1>Linear Equations Ko Solve Karna</h1>
81
+ <h2>(a) Sawaal (Problem)</h2>
82
+ <p>Yeh equations ko Gauss-Jordan method ka istemal karke solve karo:</p>
83
+ <div class="equations">
84
+ x + 4y - z = -5
85
+ x + y - 6z = -12
86
+ 3x - y - z = 4
87
+ </div>
88
+
89
+ <h2>Gauss-Jordan Elimination Ke Steps</h2>
90
+ <p>Sabse pehle, hum in equations ka augmented matrix (sanjojit avyuh) banayenge:</p>
91
+ <div class="matrix-display"><code>[ 1 4 -1 | -5 ]
92
+ [ 1 1 -6 | -12 ]
93
+ [ 3 -1 -1 | 4 ]</code></div>
94
+
95
+ <h3>Step 1: Pehle pivot ke neeche zeros banana</h3>
96
+ <p>Pehla pivot R1,C1 mein 1 hai. Iske neeche ke elements (R2,C1 aur R3,C1) ko zero karenge.</p>
97
+ <p class="operation">R2 β†’ R2 - R1 (Row 2 mein se Row 1 ko minus karo)</p>
98
+ <p class="operation">R3 β†’ R3 - 3*R1 (Row 3 mein se Row 1 ka 3 guna minus karo)</p>
99
+ <div class="matrix-display"><code>[ <span class="highlight">1</span> 4 -1 | -5 ]
100
+ [ 0 -3 -5 | -7 ] <-- (1-1=0, 1-4=-3, -6-(-1)=-5, -12-(-5)=-7)
101
+ [ 0 -13 2 | 19 ] <-- (3-3*1=0, -1-3*4=-13, -1-3*(-1)=2, 4-3*(-5)=19)</code></div>
102
+
103
+ <h3>Step 2: Dusra pivot (R2,C2) ko 1 banana</h3>
104
+ <p>Ab R2,C2 wale element (-3) ko 1 banana hai.</p>
105
+ <p class="operation">R2 β†’ R2 / (-3) (Row 2 ko -3 se divide karo)</p>
106
+ <div class="matrix-display"><code>[ 1 4 -1 | -5 ]
107
+ [ 0 <span class="highlight">1</span> 5/3 | 7/3 ]
108
+ [ 0 -13 2 | 19 ]</code></div>
109
+
110
+ <h3>Step 3: Dusre pivot ke upar aur neeche zeros banana</h3>
111
+ <p>Ab R2,C2 wale pivot (1) ke upar (R1,C2) aur neeche (R3,C2) zero banana hai.</p>
112
+ <p class="operation">R1 β†’ R1 - 4*R2 (Row 1 mein se Row 2 ka 4 guna minus karo)</p>
113
+ <p class="operation">R3 β†’ R3 + 13*R2 (Row 3 mein Row 2 ka 13 guna add karo)</p>
114
+ <div class="matrix-display"><code>[ 1 0 -23/3 | -43/3 ] <-- R1: [1, 4-4*1, -1-4*(5/3) | -5-4*(7/3)] = [1,0,-23/3|-43/3]
115
+ [ 0 1 5/3 | 7/3 ]
116
+ [ 0 0 71/3 | 148/3 ] <-- R3: [0, -13+13*1, 2+13*(5/3) | 19+13*(7/3)] = [0,0,71/3|148/3]</code></div>
117
+
118
+ <h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3>
119
+ <p>Ab R3,C3 wale element (71/3) ko 1 banana hai.</p>
120
+ <p class="operation">R3 β†’ R3 * (3/71) (Row 3 ko 3/71 se multiply karo)</p>
121
+ <div class="matrix-display"><code>[ 1 0 -23/3 | -43/3 ]
122
+ [ 0 1 5/3 | 7/3 ]
123
+ [ 0 0 <span class="highlight">1</span> | 148/71 ]</code></div>
124
+
125
+ <h3>Step 5: Teesre pivot ke upar zeros banana</h3>
126
+ <p>Ab R3,C3 wale pivot (1) ke upar (R1,C3 aur R2,C3) zero banana hai.</p>
127
+ <p class="operation">R1 β†’ R1 + (23/3)*R3 (Row 1 mein Row 3 ka 23/3 guna add karo)</p>
128
+ <p class="operation">R2 β†’ R2 - (5/3)*R3 (Row 2 mein se Row 3 ka 5/3 guna minus karo)</p>
129
+ <div class="matrix-display"><code>[ 1 0 0 | 117/71 ] <-- R1: [-23/3 + (23/3)*1 = 0], [-43/3 + (23/3)*(148/71) = 117/71]
130
+ [ 0 1 0 | -81/71 ] <-- R2: [5/3 - (5/3)*1 = 0], [7/3 - (5/3)*(148/71) = -81/71]
131
+ [ 0 0 1 | 148/71 ]</code></div>
132
+ <p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p>
133
+
134
+ <h2>Hal (Solution)</h2>
135
+ <p>RREF matrix se humein solution milta hai:</p>
136
+ <div class="solution">
137
+ x = 117/71 <br>
138
+ y = -81/71 <br>
139
+ z = 148/71
140
+ </div>
141
+
142
+ <h2>Jaanch (Verification)</h2>
143
+ <p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p>
144
+
145
+ <h3>Equation 1: x + 4y - z = -5</h3>
146
+ <p>(117/71) + 4(-81/71) - (148/71) = (117 - 324 - 148) / 71 = (117 - 472) / 71 = -355 / 71 = <strong>-5</strong> (Sahi hai!)</p>
147
+
148
+ <h3>Equation 2: x + y - 6z = -12</h3>
149
+ <p>(117/71) + (-81/71) - 6(148/71) = (117 - 81 - 888) / 71 = (36 - 888) / 71 = -852 / 71 = <strong>-12</strong> (Sahi hai!)</p>
150
+
151
+ <h3>Equation 3: 3x - y - z = 4</h3>
152
+ <p>3(117/71) - (-81/71) - (148/71) = (351 + 81 - 148) / 71 = (432 - 148) / 71 = 284 / 71 = <strong>4</strong> (Sahi hai!)</p>
153
+
154
+ <p>Solution sahi hai.</p>
155
+ </div>
156
+ </body>
157
+ </html>