sameernotes commited on
Commit
edc850c
Β·
verified Β·
1 Parent(s): 9a00fa8

Create 4.html

Browse files
Files changed (1) hide show
  1. 4.html +159 -0
4.html ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="hi-IN">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>Gauss-Jordan Method Se Equations Solve Karna (x,y,z)</title>
7
+ <style>
8
+ body {
9
+ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
10
+ line-height: 1.8;
11
+ margin: 0;
12
+ padding: 20px;
13
+ background-color: #fff0f5; /* LavenderBlush background */
14
+ color: #333;
15
+ }
16
+ .container {
17
+ max-width: 800px;
18
+ margin: auto;
19
+ background: #fff;
20
+ padding: 25px;
21
+ border-radius: 8px;
22
+ box-shadow: 0 0 15px rgba(0,0,0,0.1);
23
+ }
24
+ h1, h2, h3 {
25
+ color: #c71585; /* MediumVioletRed */
26
+ border-bottom: 2px solid #ff69b4; /* HotPink border */
27
+ padding-bottom: 5px;
28
+ }
29
+ h1 {
30
+ text-align: center;
31
+ font-size: 2em;
32
+ }
33
+ h2 {
34
+ font-size: 1.5em;
35
+ margin-top: 30px;
36
+ }
37
+ h3 {
38
+ font-size: 1.2em;
39
+ margin-top: 20px;
40
+ color: #ff69b4; /* HotPink */
41
+ }
42
+ p {
43
+ margin-bottom: 15px;
44
+ }
45
+ .equations, .matrix-display {
46
+ background-color: #ffe4e1; /* MistyRose */
47
+ border: 1px solid #ffb6c1; /* LightPink border */
48
+ padding: 15px;
49
+ border-radius: 5px;
50
+ margin-bottom: 20px;
51
+ font-family: 'Courier New', Courier, monospace;
52
+ font-size: 1.1em;
53
+ overflow-x: auto;
54
+ white-space: pre;
55
+ }
56
+ .matrix-display code {
57
+ display: block;
58
+ }
59
+ .solution {
60
+ background-color: #f5fffa; /* MintCream */
61
+ border: 1px solid #90ee90; /* LightGreen border */
62
+ padding: 15px;
63
+ border-radius: 5px;
64
+ font-size: 1.1em;
65
+ font-weight: bold;
66
+ color: #32cd32; /* LimeGreen */
67
+ }
68
+ .operation {
69
+ font-style: italic;
70
+ color: #8a2be2; /* BlueViolet */
71
+ }
72
+ .highlight {
73
+ color: #ff4500; /* OrangeRed for pivot */
74
+ font-weight: bold;
75
+ }
76
+ .comment {
77
+ color: #20b2aa; /* LightSeaGreen for comments */
78
+ font-style: italic;
79
+ }
80
+ </style>
81
+ </head>
82
+ <body>
83
+ <div class="container">
84
+ <h1>Gauss-Jordan Method (x,y,z Variables)</h1>
85
+ <h2>(a) Sawaal (Problem Statement)</h2>
86
+ <p>Gauss-Jordan method ka istemal karke yeh equations solve karo:</p>
87
+ <div class="equations">
88
+ x + 2y + z = 3
89
+ 2x + 3y + 3z = 10
90
+ 3x - y + 2z = 13
91
+ </div>
92
+
93
+ <h2>Gauss-Jordan Elimination Ke Steps</h2>
94
+ <p>Sabse pehle, augmented matrix banayenge:</p>
95
+ <div class="matrix-display"><code>[ 1 2 1 | 3 ]
96
+ [ 2 3 3 | 10 ]
97
+ [ 3 -1 2 | 13 ]</code></div>
98
+ <p>Pehla pivot (R1,C1) already 1 hai, bahut accha!</p>
99
+
100
+ <h3>Step 1: Pehle pivot ke neeche zeros banana</h3>
101
+ <p class="operation">R2 β†’ R2 - 2*R1</p>
102
+ <p class="operation">R3 β†’ R3 - 3*R1</p>
103
+ <div class="matrix-display"><code>[ <span class="highlight">1</span> 2 1 | 3 ]
104
+ [ 0 -1 1 | 4 ] <span class="comment"><-- R2: [2-2*1, 3-2*2, 3-2*1 | 10-2*3] = [0, -1, 1 | 4]</span>
105
+ [ 0 -7 -1 | 4 ] <span class="comment"><-- R3: [3-3*1, -1-3*2, 2-3*1 | 13-3*3] = [0, -7, -1 | 4]</span></code></div>
106
+
107
+ <h3>Step 2: Dusra pivot (R2,C2) ko 1 banana</h3>
108
+ <p>Ab R2,C2 wale element (-1) ko 1 banana hai.</p>
109
+ <p class="operation">R2 β†’ R2 * (-1)</p>
110
+ <div class="matrix-display"><code>[ 1 2 1 | 3 ]
111
+ [ 0 <span class="highlight">1</span> -1 | -4 ]
112
+ [ 0 -7 -1 | 4 ]</code></div>
113
+
114
+ <h3>Step 3: Dusre pivot ke upar aur neeche zeros banana</h3>
115
+ <p class="operation">R1 β†’ R1 - 2*R2</p>
116
+ <p class="operation">R3 β†’ R3 + 7*R2</p>
117
+ <div class="matrix-display"><code>[ 1 0 3 | 11 ] <span class="comment"><-- R1: [1-2*0, 2-2*1, 1-2*(-1) | 3-2*(-4)] = [1, 0, 3 | 11]</span>
118
+ [ 0 1 -1 | -4 ]
119
+ [ 0 0 -8 | -24 ] <span class="comment"><-- R3: [0+7*0, -7+7*1, -1+7*(-1) | 4+7*(-4)] = [0, 0, -8 | -24]</span></code></div>
120
+
121
+ <h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3>
122
+ <p>Ab R3,C3 wale element (-8) ko 1 banana hai.</p>
123
+ <p class="operation">R3 β†’ R3 / (-8)</p>
124
+ <div class="matrix-display"><code>[ 1 0 3 | 11 ]
125
+ [ 0 1 -1 | -4 ]
126
+ [ 0 0 <span class="highlight">1</span> | 3 ]</code></div>
127
+
128
+ <h3>Step 5: Teesre pivot ke upar zeros banana</h3>
129
+ <p class="operation">R1 β†’ R1 - 3*R3</p>
130
+ <p class="operation">R2 β†’ R2 + R3</p>
131
+ <div class="matrix-display"><code>[ 1 0 0 | 2 ] <span class="comment"><-- R1: [1-3*0, 0-3*0, 3-3*1 | 11-3*3] = [1, 0, 0 | 2]</span>
132
+ [ 0 1 0 | -1 ] <span class="comment"><-- R2: [0+0, 1+0, -1+1 | -4+3] = [0, 1, 0 | -1]</span>
133
+ [ 0 0 1 | 3 ]</code></div>
134
+ <p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p>
135
+
136
+ <h2>Hal (Solution)</h2>
137
+ <p>RREF matrix se humein solution milta hai:</p>
138
+ <div class="solution">
139
+ x = 2 <br>
140
+ y = -1 <br>
141
+ z = 3
142
+ </div>
143
+
144
+ <h2>Jaanch (Verification)</h2>
145
+ <p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p>
146
+
147
+ <h3>Equation 1: x + 2y + z = 3</h3>
148
+ <p>(2) + 2(-1) + (3) = 2 - 2 + 3 = 0 + 3 = <strong>3</strong> (Sahi hai!)</p>
149
+
150
+ <h3>Equation 2: 2x + 3y + 3z = 10</h3>
151
+ <p>2(2) + 3(-1) + 3(3) = 4 - 3 + 9 = 1 + 9 = <strong>10</strong> (Sahi hai!)</p>
152
+
153
+ <h3>Equation 3: 3x - y + 2z = 13</h3>
154
+ <p>3(2) - (-1) + 2(3) = 6 + 1 + 6 = 7 + 6 = <strong>13</strong> (Sahi hai!)</p>
155
+
156
+ <p>Solution bilkul sahi hai! Ekdum mast!</p>
157
+ </div>
158
+ </body>
159
+ </html>