Gauss-Jordan method ka istemal karke yeh equations solve karo:
Sabse pehle, in equations ka augmented matrix banayenge:
[ 2 -6 8 | 24 ]
[ 5 4 -3 | 2 ]
[ 3 1 2 | 16 ]Pehla element (R1,C1) abhi 2 hai, isko 1 banana hai.
R1 → R1 / 2 (Row 1 ko 2 se divide karo)
[ 1 -3 4 | 12 ]
[ 5 4 -3 | 2 ]
[ 3 1 2 | 16 ]Ab R1,C1 wale pivot (1) ke neeche ke elements (R2,C1 aur R3,C1) ko zero karenge.
R2 → R2 - 5*R1
R3 → R3 - 3*R1
[ 1 -3 4 | 12 ]
[ 0 19 -23 | -58 ] <-- R2: [5-5*1, 4-5*(-3), -3-5*4 | 2-5*12] = [0, 19, -23 | -58]
[ 0 10 -10 | -20 ] <-- R3: [3-3*1, 1-3*(-3), 2-3*4 | 16-3*12] = [0, 10, -10 | -20]Dekho, Row 3 (R3) ko 10 se divide karke simplify kar sakte hain:
R3 → R3 / 10
[ 1 -3 4 | 12 ]
[ 0 19 -23 | -58 ]
[ 0 1 -1 | -2 ] <-- Simplified R3Ab R2 aur R3 ko swap (badal) kar lete hain taaki R2,C2 mein 1 aa jaaye.
R2 ↔ R3
[ 1 -3 4 | 12 ]
[ 0 1 -1 | -2 ]
[ 0 19 -23 | -58 ]Ab R2,C2 wala pivot 1 ho gaya!
Ab R2,C2 wale pivot (1) ke upar (R1,C2) aur neeche (R3,C2) zero banana hai.
R1 → R1 + 3*R2
R3 → R3 - 19*R2
[ 1 0 1 | 6 ] <-- R1: [1, -3+3*1, 4+3*(-1) | 12+3*(-2)] = [1, 0, 1 | 6]
[ 0 1 -1 | -2 ]
[ 0 0 -4 | -20 ] <-- R3: [0, 19-19*1, -23-19*(-1) | -58-19*(-2)] = [0, 0, -4 | -20]Ab R3,C3 wale element (-4) ko 1 banana hai.
R3 → R3 / (-4)
[ 1 0 1 | 6 ]
[ 0 1 -1 | -2 ]
[ 0 0 1 | 5 ]Ab R3,C3 wale pivot (1) ke upar (R1,C3 aur R2,C3) zero banana hai.
R1 → R1 - R3
R2 → R2 + R3
[ 1 0 0 | 1 ] <-- R1: [1-0, 0-0, 1-1 | 6-5] = [1, 0, 0 | 1]
[ 0 1 0 | 3 ] <-- R2: [0+0, 1+0, -1+1 | -2+5] = [0, 1, 0 | 3]
[ 0 0 1 | 5 ]Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.
RREF matrix se humein solution milta hai:
Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:
2(1) - 6(3) + 8(5) = 2 - 18 + 40 = -16 + 40 = 24 (Sahi hai!)
5(1) + 4(3) - 3(5) = 5 + 12 - 15 = 17 - 15 = 2 (Sahi hai!)
3(1) + (3) + 2(5) = 3 + 3 + 10 = 6 + 10 = 16 (Sahi hai!)
Solution bilkul sahi hai!