Gauss Elimination method ka istemal karke yeh system of equations solve karo:
Pehle, augmented matrix banate hain:
[ 6 3 2 | 6 ]
[ 6 4 3 | 0 ]
[ 20 15 12 | 0 ]Pehla element (R1,C1) 6 hai, isko 1 banana hai.
R1 → R1 / 6
[ 1 1/2 1/3 | 1 ] <-- (6/6=1, 3/6=1/2, 2/6=1/3, 6/6=1)
[ 6 4 3 | 0 ]
[ 20 15 12 | 0 ]Ab R1,C1 wale pivot (1) ke neeche ke elements ko zero karenge.
R2 → R2 - 6*R1
R3 → R3 - 20*R1
[ 1 1/2 1/3 | 1 ]
[ 0 1 1 | -6 ] <-- R2: [6-6*1, 4-6*(1/2), 3-6*(1/3) | 0-6*1] = [0, 1, 1 | -6]
[ 0 5 16/3 | -20] <-- R3: [20-20*1, 15-20*(1/2), 12-20*(1/3) | 0-20*1] = [0, 5, (36-20)/3 | -20] = [0, 5, 16/3 | -20]Yahaan R2,C2 mein already 1 aa gaya, toh accha hai!
Ab R2,C2 wala pivot 1 hai. Iske neeche (R3,C2) zero banana hai.
R3 → R3 - 5*R2
[ 1 1/2 1/3 | 1 ]
[ 0 1 1 | -6 ]
[ 0 0 1/3 | 10] <-- R3: [0-5*0, 5-5*1, 16/3-5*1 | -20-5*(-6)] = [0, 0, (16-15)/3 | -20+30] = [0, 0, 1/3 | 10]Matrix ab Row Echelon Form (REF) mein hai. Ab pivot elements ko 1 banana hai (teesre ko).
R3 → R3 * 3
[ 1 1/2 1/3 | 1 ]
[ 0 1 1 | -6 ]
[ 0 0 1 | 30 ]Matrix ab Row Echelon Form (REF) mein hai aur pivots 1 hain. Gauss Elimination yahan tak hota hai. Ab hum back-substitution karenge.
Matrix se equations wapas likhte hain:
Equation 3 se:
x₃ = 30
x₃ ki value Equation 2 mein daalo:
x₂ + (30) = -6
x₂ = -6 - 30
x₂ = -36
x₂ aur x₃ ki values Equation 1 mein daalo:
x₁ + (1/2)(-36) + (1/3)(30) = 1
x₁ - 18 + 10 = 1
x₁ - 8 = 1
x₁ = 1 + 8
x₁ = 9
Values ko original equations mein daal kar check karte hain:
6(9) + 3(-36) + 2(30) = 54 - 108 + 60 = 114 - 108 = 6 (Sahi hai!)
6(9) + 4(-36) + 3(30) = 54 - 144 + 90 = 144 - 144 = 0 (Sahi hai!)
20(9) + 15(-36) + 12(30) = 180 - 540 + 360 = 540 - 540 = 0 (Sahi hai!)
Solution bilkul sahi hai!