Gauss-Jordan method ka istemal karke yeh equations solve karo:
Sabse pehle, augmented matrix banayenge:
[ 1 2 1 | 3 ]
[ 2 3 3 | 10 ]
[ 3 -1 2 | 13 ]Pehla pivot (R1,C1) already 1 hai, bahut accha!
R2 → R2 - 2*R1
R3 → R3 - 3*R1
[ 1 2 1 | 3 ]
[ 0 -1 1 | 4 ] <-- R2: [2-2*1, 3-2*2, 3-2*1 | 10-2*3] = [0, -1, 1 | 4]
[ 0 -7 -1 | 4 ] <-- R3: [3-3*1, -1-3*2, 2-3*1 | 13-3*3] = [0, -7, -1 | 4]Ab R2,C2 wale element (-1) ko 1 banana hai.
R2 → R2 * (-1)
[ 1 2 1 | 3 ]
[ 0 1 -1 | -4 ]
[ 0 -7 -1 | 4 ]R1 → R1 - 2*R2
R3 → R3 + 7*R2
[ 1 0 3 | 11 ] <-- R1: [1-2*0, 2-2*1, 1-2*(-1) | 3-2*(-4)] = [1, 0, 3 | 11]
[ 0 1 -1 | -4 ]
[ 0 0 -8 | -24 ] <-- R3: [0+7*0, -7+7*1, -1+7*(-1) | 4+7*(-4)] = [0, 0, -8 | -24]Ab R3,C3 wale element (-8) ko 1 banana hai.
R3 → R3 / (-8)
[ 1 0 3 | 11 ]
[ 0 1 -1 | -4 ]
[ 0 0 1 | 3 ]R1 → R1 - 3*R3
R2 → R2 + R3
[ 1 0 0 | 2 ] <-- R1: [1-3*0, 0-3*0, 3-3*1 | 11-3*3] = [1, 0, 0 | 2]
[ 0 1 0 | -1 ] <-- R2: [0+0, 1+0, -1+1 | -4+3] = [0, 1, 0 | -1]
[ 0 0 1 | 3 ]Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.
RREF matrix se humein solution milta hai:
Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:
(2) + 2(-1) + (3) = 2 - 2 + 3 = 0 + 3 = 3 (Sahi hai!)
2(2) + 3(-1) + 3(3) = 4 - 3 + 9 = 1 + 9 = 10 (Sahi hai!)
3(2) - (-1) + 2(3) = 6 + 1 + 6 = 7 + 6 = 13 (Sahi hai!)
Solution bilkul sahi hai! Ekdum mast!