Gauss Elimination method ka istemal karke yeh system of equations solve karo:
Pehle, augmented matrix banate hain:
[ 10 1 2 | 13 ]
[ 3 10 1 | 14 ]
[ 2 3 10 | 15 ]Pehla element (R1,C1) 10 hai, isko 1 banana hai.
R1 → R1 / 10
[ 1 0.1 0.2 | 1.3 ] <-- (10/10=1, 1/10=0.1, 2/10=0.2, 13/10=1.3)
[ 3 10 1 | 14 ]
[ 2 3 10 | 15 ]Ab R1,C1 wale pivot (1) ke neeche ke elements ko zero karenge.
R2 → R2 - 3*R1
R3 → R3 - 2*R1
[ 1 0.1 0.2 | 1.3 ]
[ 0 9.7 0.4 | 10.1 ] <-- R2: [3-3*1, 10-3*0.1, 1-3*0.2 | 14-3*1.3] = [0, 9.7, 0.4 | 10.1]
[ 0 2.8 9.6 | 12.4 ] <-- R3: [2-2*1, 3-2*0.1, 10-2*0.2 | 15-2*1.3] = [0, 2.8, 9.6 | 12.4]Ab R2,C2 wala element 9.7 hai, isko 1 banana hai.
R2 → R2 / 9.7
[ 1 0.1 0.2 | 1.3 ]
[ 0 1 0.4/9.7 | 10.1/9.7 ] <-- (0.4/9.7 ≈ 0.041237, 10.1/9.7 ≈ 1.041237)
[ 0 2.8 9.6 | 12.4 ]Decimal values ko thoda round off karke likh sakte hain, ya fractions mein bhi rakh sakte hain accuracy ke liye. Hum yahan calculation mein exact values use karenge, display mein approximate.
[ 1 0.1 0.2 | 1.3 ]
[ 0 1 0.041237 | 1.041237 ] (Approx values for display)
[ 0 2.8 9.6 | 12.4 ]Ab R2,C2 wale pivot (1) ke neeche (R3,C2) zero banana hai.
R3 → R3 - 2.8*R2
[ 1 0.1 0.2 | 1.3 ]
[ 0 1 0.041237 | 1.041237 ]
[ 0 0 9.484536 | 9.484536 ] <-- R3_C3: 9.6 - 2.8*(0.4/9.7) = (9.6*9.7 - 2.8*0.4)/9.7 = (93.12 - 1.12)/9.7 = 92/9.7 ≈ 9.484536
R3_Const: 12.4 - 2.8*(10.1/9.7) = (12.4*9.7 - 2.8*10.1)/9.7 = (120.28 - 28.28)/9.7 = 92/9.7 ≈ 9.484536Matrix ab Row Echelon Form (REF) mein hai. Ab teesre pivot ko 1 banana hai.
R3,C3 mein ab 92/9.7 hai.
R3 → R3 / (92/9.7) (Yaani R3 * (9.7/92))
[ 1 0.1 0.2 | 1.3 ]
[ 0 1 0.041237 | 1.041237 ] (0.4/9.7 | 10.1/9.7)
[ 0 0 1 | 1 ]Matrix ab Row Echelon Form (REF) mein hai aur pivots 1 hain. Gauss Elimination yahan tak hota hai. Ab hum back-substitution karenge.
Matrix se equations wapas likhte hain (accurate fractions use karte hue):
Equation 3 se:
z = 1
z ki value Equation 2 mein daalo:
y + (4/97)(1) = 101/97
y = 101/97 - 4/97
y = 97/97
y = 1
y aur z ki values Equation 1 mein daalo:
x + (1/10)(1) + (2/10)(1) = 13/10
x + 1/10 + 2/10 = 13/10
x + 3/10 = 13/10
x = 13/10 - 3/10
x = 10/10
x = 1
Values ko original equations mein daal kar check karte hain:
10(1) + (1) + 2(1) = 10 + 1 + 2 = 13 (Sahi hai!)
3(1) + 10(1) + (1) = 3 + 10 + 1 = 14 (Sahi hai!)
2(1) + 3(1) + 10(1) = 2 + 3 + 10 = 15 (Sahi hai!)
Solution bilkul sahi hai! Ekdum perfect!