File size: 13,775 Bytes
a53f381
 
 
 
 
 
 
cb79870
a53f381
500c16d
 
a53f381
 
 
 
 
ca69551
 
 
a53f381
 
ca69551
 
 
 
 
 
 
 
 
9628d55
e5fab0b
500c16d
9628d55
e5fab0b
9628d55
 
 
 
 
 
e5fab0b
ca69551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a53f381
 
ca69551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500c16d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import os
# turn off Streamlit’s automatic file-watching
os.environ["STREAMLIT_SERVER_ENABLE_FILE_WATCHER"] = "false"

import sys
import types
import torch               # now safe to import
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import numpy as np

# Prevent Streamlit from trying to walk torch.classes' non-standard __path__
if isinstance(getattr(sys.modules.get("torch"), "classes", None), types.ModuleType):
    torch.classes.__path__ = []

import torch
import numpy as np
import streamlit as st
from transformers import GPT2TokenizerFast

# --- Setup ---
st.set_page_config(page_title="Text to Embedding Visualizer", layout="wide")
st.title("🔍 Token Embedding & Positional Encoding Coding Demo")

# --- Input UI ---
sentence = st.text_input("Enter your sentence", "Learning is fun")
embedding_dim = st.slider("Embedding Dimension (even only)", min_value=4, max_value=64, value=8, step=2)

# --- Load tokenizer ---

# Set custom cache directory within your app's working directory (which is writable on Spaces)
# os.environ['TRANSFORMERS_CACHE'] = './hf_cache'

# Load the tokenizer using the custom cache path
# tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="./hf_cache")
from transformers import GPT2TokenizerFast
# Load tokenizer from bundled local files only
tokenizer = GPT2TokenizerFast.from_pretrained("./assets/tokenizer", local_files_only=True)


# tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
input_ids = tokenizer.encode(sentence, return_tensors="pt")[0]
tokens = tokenizer.convert_ids_to_tokens(input_ids)

# st.markdown("### 1️⃣ Tokenization")
# with st.expander("Show Token IDs"):
#     st.write("**Tokens:**", tokens)
#     st.write("**Token IDs:**", input_ids.tolist())

st.markdown("### 1️⃣ Tokenization")
with st.expander("Token IDs and Subwords"):
    st.write("**Tokens:**", tokens)
    st.write("**Token IDs:**", input_ids.tolist())

with st.expander("📜 Show Code: Tokenization"):
    st.code("""
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
input_ids = tokenizer.encode(sentence, return_tensors="pt")[0]
tokens = tokenizer.convert_ids_to_tokens(input_ids)
    """, language="python")


# --- Embedding Matrix ---
torch.manual_seed(0)  # Reproducibility
embedding_matrix = torch.nn.Embedding(tokenizer.vocab_size, embedding_dim)
embedded = embedding_matrix(input_ids)

st.markdown("### 2️⃣ Embedding")
with st.expander("Show Token Embeddings"):
    st.write("Shape:", embedded.shape)
    st.write(embedded)

with st.expander("📜 Show Code: Embedding"):
    st.code(f"""
embedding_matrix = torch.nn.Embedding(tokenizer.vocab_size, {embedding_dim})
embedded = embedding_matrix(input_ids)
    """, language="python")

# --- Positional Encoding ---
def get_positional_encoding(seq_len, dim):
    pe = torch.zeros(seq_len, dim)
    position = torch.arange(0, seq_len, dtype=torch.float32).unsqueeze(1)
    div_term = torch.exp(torch.arange(0, dim, 2).float() * (-np.log(10000.0) / dim))
    pe[:, 0::2] = torch.sin(position * div_term)
    pe[:, 1::2] = torch.cos(position * div_term)
    return pe

pos_enc = get_positional_encoding(len(input_ids), embedding_dim)

st.markdown("### 3️⃣ Positional Encoding")
with st.expander("Show Positional Encoding"):
    st.write("Shape:", pos_enc.shape)
    st.write(pos_enc)

with st.expander("📜 Show Code: Positional Encoding"):
    st.code(f'''
def get_positional_encoding(seq_len, dim):
    pe = torch.zeros(seq_len, dim)
    position = torch.arange(0, seq_len).unsqueeze(1).float()
    div_term = torch.exp(torch.arange(0, dim, 2).float() * (-np.log(10000.0) / dim))
    pe[:, 0::2] = torch.sin(position * div_term)
    pe[:, 1::2] = torch.cos(position * div_term)
    return pe

pos_enc = get_positional_encoding(len(input_ids), {embedding_dim})
    ''', language="python")

# --- Combined Embedding + Position ---
embedded_with_pos = embedded + pos_enc

st.markdown("### 4️⃣ Embedding + Positional Encoding")
with st.expander("Show Combined Embedding"):
    st.write(embedded_with_pos)

with st.expander("📜 Show Code: Add Positional Encoding"):
    st.code("""
embedded_with_pos = embedded + pos_enc
    """, language="python")

# --- Approximate Reverse to Token IDs ---
def find_closest_token(vec, emb_matrix):
    sims = torch.nn.functional.cosine_similarity(vec.unsqueeze(0), emb_matrix.weight, dim=1)
    return torch.argmax(sims).item()

recovered_ids = [find_closest_token(vec, embedding_matrix) for vec in embedded]
#recovered_text = tokenizer.decode(recovered_ids)

#st.markdown("### 5️⃣ Approximate Reverse")
#with st.expander("Recovered Tokens"):
#    st.write("**Recovered IDs:**", recovered_ids)
#    st.write("**Recovered Text:**", recovered_text)

recovered_tokens = tokenizer.convert_ids_to_tokens(recovered_ids)  # ← Subwords
recovered_text = tokenizer.decode(recovered_ids)                   # ← Final string

st.markdown("### 5️⃣ Approximate Reverse")
with st.expander("Recovered Tokens and Text"):
    st.write("**Recovered Token IDs:**", recovered_ids)
    st.write("**Recovered Subword Tokens (BPE):**", recovered_tokens)
    st.write("**Recovered Sentence:**", recovered_text)

with st.expander("📜 Show Code: Recover Token IDs and Text"):
    st.code("""
def find_closest_token(vec, emb_matrix):
    sims = torch.nn.functional.cosine_similarity(vec.unsqueeze(0), emb_matrix.weight, dim=1)
    return torch.argmax(sims).item()

recovered_ids = [find_closest_token(vec, embedding_matrix) for vec in embedded]
recovered_tokens = tokenizer.convert_ids_to_tokens(recovered_ids)
recovered_text = tokenizer.decode(recovered_ids)
    """, language="python")

# --- Recover Position (Approx) ---
recovered_pos = embedded_with_pos - embedded
position_error = pos_enc - recovered_pos

st.markdown("### 6️⃣ Recovered Positional Encoding")
with st.expander("Compare Recovered vs Original"):
    st.write("**Recovered Positional Encoding:**")
    st.write(recovered_pos)
    st.write("**Difference from Original (should be ~0):**")
    st.write(position_error)

with st.expander("📜 Show Code: Recovered Positional Encoding"):
    st.code("""
recovered_pos = embedded_with_pos - embedded
position_error = pos_enc - recovered_pos
    """, language="python")

# Estimate position from positional encoding using cosine similarity
def estimate_position_from_encoding(pe_row, full_table):
    sims = torch.nn.functional.cosine_similarity(pe_row.unsqueeze(0), full_table, dim=1)
    return torch.argmax(sims).item()

# Build reference table of known encodings for positions 0 to N
reference_pos_table = get_positional_encoding(seq_len=len(input_ids), dim=embedding_dim)

# Now estimate each token's position
estimated_positions = [estimate_position_from_encoding(row, reference_pos_table) for row in recovered_pos]

st.markdown("### 7️⃣ Estimate Position from Positional Encoding")
with st.expander("Recovered Positions"):
    st.write("**Estimated Token Positions:**", estimated_positions)
    st.write("**Original True Positions:**", list(range(len(input_ids))))

with st.expander("📜 Show Code: Estimate Positions"):
    st.code("""
def estimate_position_from_encoding(pe_row, full_table):
    sims = torch.nn.functional.cosine_similarity(pe_row.unsqueeze(0), full_table, dim=1)
    return torch.argmax(sims).item()

reference_pos_table = get_positional_encoding(seq_len=len(input_ids), dim=embedding_dim)
estimated_positions = [estimate_position_from_encoding(row, reference_pos_table) for row in recovered_pos]
    """, language="python")


st.markdown("### 📘 Final Notes: Theory & Formulas")

with st.expander("🧠 Theory and Formulas"):
    st.markdown(r"""
### 1️⃣ Tokenization (BPE)

We use **Byte Pair Encoding (BPE)** to break text into subword units.
For example:

"Learning is fun" → ["Learning", "Ġis", "Ġfun"]


Note: The "Ġ" indicates a **space** before the token.

---

### 2️⃣ Embedding

Each token ID $t_i \in \mathbb{Z}$ is mapped to a dense vector:

$$
\text{Embedding}(t_i) = \mathbf{e}_i \in \mathbb{R}^d
$$

Where:

- $t_i$: token ID  
- $\mathbf{e}_i$: embedding vector of dimension $d$

---

### 3️⃣ Sinusoidal Positional Encoding

Used to encode the **position $p$** of a token without learnable parameters:

$$
\text{PE}(p, 2i) = \sin\left(\frac{p}{10000^{\frac{2i}{d}}}\right)
$$

$$
\text{PE}(p, 2i+1) = \cos\left(\frac{p}{10000^{\frac{2i}{d}}}\right)
$$

Where:

- $p$: position index (0, 1, 2, …)  
- $i$: dimension index  
- $d$: total embedding dimension

This gives a positional vector $\text{PE}(p) \in \mathbb{R}^d$

---

### 4️⃣ Add Embedding and Positional Encoding

We add the embedding and positional encoding element-wise:

$$
\mathbf{z}_i = \mathbf{e}_i + \text{PE}(p_i)
$$

Where:

- $\mathbf{z}_i$: final input to the transformer

---

### 5️⃣ Reverse Lookup (Approximate)

We find the nearest embedding using cosine similarity:

$$
\hat{t}_i = \underset{j}{\arg\max} \left( \frac{ \mathbf{z}_i \cdot \mathbf{e}_j }{ \| \mathbf{z}_i \| \, \| \mathbf{e}_j \| } \right)
$$

---

### 6️⃣ Recover Position from Embedding + PE

To isolate positional encoding:

$$
\text{Recovered PE}_i = \mathbf{z}_i - \mathbf{e}_i
$$

We then compare this with reference positional encodings to estimate token position.

---

### 🌟 Summary Table

| Step | What Happens |
|------|--------------|
| **Tokenization** | Sentence → Subwords → Token IDs |
| **Embedding** | Token IDs → Vectors |
| **Pos Encoding** | Position Index → Sin/Cos Vector |
| **Sum** | Embedding + PE = Input to Transformer |
| **Reverse** | Approximate token ID from vector |
| **PE Recovery** | Recover position using similarity |

    """, unsafe_allow_html=True)


st.markdown("### 🤖 Transformer Internals: Key Concepts")

with st.expander("🔁 Multi-Head Attention: Q, K, V Projections"):
    st.markdown(r"""
Each token embedding $\mathbf{x}_i$ is linearly projected into:
- Query vector: $Q_i = \mathbf{x}_i W^Q$
- Key vector: $K_i = \mathbf{x}_i W^K$
- Value vector: $V_i = \mathbf{x}_i W^V$

All of shape: $\mathbb{R}^{d_{model} \times d_{head}}$

Multiple such projections (heads) run in parallel:

$$
\text{MultiHead}(X) = \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O
$$

Each head does:
$$
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^\top}{\sqrt{d_k}} \right) V
$$
""", unsafe_allow_html=True)

with st.expander("🧠 Contextualized Representations"):
    st.markdown(r"""
The attention mechanism lets each token **attend to others**, allowing the output for each token to contain **context**.

For example:
- Token "fun" gets influenced by "is" and "learning"
- The output is no longer static but dynamic, depending on sentence context

This is what makes Transformers powerful for understanding relationships between tokens.
""")

with st.expander("🛠 Feed-Forward Neural Network (FFN)"):
    st.markdown(r"""
After attention, each token’s vector goes through a two-layer feed-forward network applied independently:

$$
\text{FFN}(x) = \max(0, x W_1 + b_1) W_2 + b_2
$$

This allows deeper transformations on each token representation.
""")

with st.expander("📊 Softmax Over Vocabulary"):
    st.markdown(r"""
The final output layer transforms each token representation to **logits** for the full vocabulary.

Then, softmax is applied to convert them into probabilities:

$$
P(w_i \mid \text{context}) = \frac{\exp(\text{logit}_i)}{\sum_j \exp(\text{logit}_j)}
$$

The token with the highest probability is typically selected as the **predicted next word**.
""")

with st.expander("🔮 Predicted Next Token"):
    st.markdown(r"""
By chaining all steps (embedding → attention → FFN → softmax), the model predicts the **next token**:

E.g.,  
Input: `"Learning is"`  
Predicted next token: `"fun"`

This is how autoregressive models like GPT-2 **generate text** one token at a time.
""")

st.markdown("### 🎨 Visualizations: Transformer Internals")

# ---- 1. Attention Heatmap ----
with st.expander("🔁 Multi-Head Attention Score Heatmap (QKᵀ / √d)"):
    st.markdown("""
This heatmap shows how the attention mechanism scores each query against all keys.  
Brighter color = higher attention weight.

$$
\\text{Attention}(Q, K, V) = \\text{softmax}\\left( \\frac{QK^T}{\\sqrt{d_k}} \\right)V
$$
""", unsafe_allow_html=True)

    tokens = ["Learning", "is", "fun"]
    Q = np.array([[1, 0], [0.5, 0.5], [0, 1]])
    K = np.array([[1, 0], [0.5, 0.5], [0, 1]])
    scores = np.dot(Q, K.T) / np.sqrt(2)
    softmax_scores = np.exp(scores) / np.sum(np.exp(scores), axis=1, keepdims=True)

    fig1, ax1 = plt.subplots()
    cax = ax1.matshow(softmax_scores, cmap="Blues")
    fig1.colorbar(cax)
    ax1.set_xticks(np.arange(len(tokens)))
    ax1.set_xticklabels(tokens)
    ax1.set_yticks(np.arange(len(tokens)))
    ax1.set_yticklabels(tokens)
    ax1.set_xlabel("Key Tokens (K)")
    ax1.set_ylabel("Query Tokens (Q)")
    ax1.set_title("Attention Score Heatmap")
    st.pyplot(fig1)

# ---- 2. Softmax Curve ----
with st.expander("📊 Softmax Curve for Vocabulary Logits"):
    st.markdown("""
This curve shows how softmax converts logits into probabilities.  
Higher logits result in higher predicted probabilities:

$$
\\text{Softmax}(x_i) = \\frac{e^{x_i}}{\\sum_j e^{x_j}}
$$
""", unsafe_allow_html=True)

    x = np.linspace(-4, 4, 100)
    logits = np.vstack([x, x + 1, x - 1])
    exps = np.exp(logits)
    softmax = exps / np.sum(exps, axis=0)

    fig2, ax2 = plt.subplots()
    ax2.plot(x, softmax[0], label='Token A')
    ax2.plot(x, softmax[1], label='Token B')
    ax2.plot(x, softmax[2], label='Token C')
    ax2.set_title("Softmax Output vs Logit Value")
    ax2.set_xlabel("Logit")
    ax2.set_ylabel("Probability")
    ax2.legend()
    st.pyplot(fig2)