import streamlit as st import numpy as np import matplotlib.pyplot as plt # Constants epsilon_0 = 8.85e-12 # Permittivity of free space in F/m # Streamlit UI st.title("Capacitance Simulation") st.markdown(""" This simulation demonstrates the capacitance of a parallel plate capacitor. - **Capacitance (C)** is calculated as \( C = \epsilon_0 \frac{A}{d} \), where \(\epsilon_0 = 8.85 \times 10^{-12} \, \text{F/m}\). - **Charge (Q)** is calculated as \( Q = C \times V \). Adjust the sliders below to explore how \(A\), \(d\), and \(V\) affect \(C\) and \(Q\). """) # Inputs A = st.slider("Plate Area (m²)", 0.01, 1.0, 0.1, step=0.01) d = st.slider("Plate Separation (m)", 0.001, 0.1, 0.01, step=0.001) V = st.slider("Voltage (V)", 0.0, 10.0, 5.0, step=0.1) # Calculations C = epsilon_0 * A / d Q = C * V # Display results st.write(f"**Capacitance (C):** {C:.2e} F") st.write(f"**Charge (Q):** {Q:.2e} C") # Visualizations fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6)) # Capacitor diagram h = 0.05 # Fixed height of plates # Scale width based on sqrt(A) for visual representation w = 0.1 + 0.4 * (np.sqrt(A) - np.sqrt(0.01)) / (np.sqrt(1) - np.sqrt(0.01)) # Scale separation based on d d_scaled = 0.1 + 0.4 * (d - 0.001) / (0.1 - 0.001) # Draw bottom plate ax1.add_patch(plt.Rectangle((0.5 - w/2, 0), w, h, color='blue')) # Draw top plate ax1.add_patch(plt.Rectangle((0.5 - w/2, d_scaled), w, h, color='red')) ax1.set_xlim(0, 1) ax1.set_ylim(0, 1) ax1.set_aspect('equal') ax1.set_title("Parallel Plate Capacitor") ax1.axis('off') # Add labels ax1.text(0.5, -0.1, f'A = {A:.2f} m²', ha='center') ax1.text(0.5, d_scaled/2, f'd = {d:.3f} m', ha='center', va='center') # Q vs V plot V_range = np.linspace(0, 10, 100) Q_range = C * V_range ax2.plot(V_range, Q_range, label=f'C = {C:.2e} F') ax2.plot(V, Q, 'ro', label='Current point') ax2.set_xlabel('Voltage (V)') ax2.set_ylabel('Charge (C)') ax2.set_title('Q vs V') ax2.legend() ax2.grid(True) # Display the plot st.pyplot(fig)