Spaces:
Sleeping
Sleeping
Uploaded main app file and package requirements
Browse files- app.py +239 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Demo is Derived from https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_fa_model_selection.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-fa-model-selection-py
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
from scipy import linalg
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
|
| 13 |
+
from sklearn.decomposition import PCA, FactorAnalysis
|
| 14 |
+
from sklearn.covariance import ShrunkCovariance, LedoitWolf
|
| 15 |
+
from sklearn.model_selection import cross_val_score
|
| 16 |
+
from sklearn.model_selection import GridSearchCV
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def create_dataset(n_samples=500, n_features=25, rank=5, sigma=1.0, random_state=42, n_components=5):
|
| 20 |
+
'''
|
| 21 |
+
Function to create a dataset with homoscedastic noise and heteroscedastic noise
|
| 22 |
+
'''
|
| 23 |
+
|
| 24 |
+
# Create a random dataset and add homoscedastic noise and heteroscedastic noise
|
| 25 |
+
|
| 26 |
+
rng = np.random.RandomState(random_state)
|
| 27 |
+
U, _, _ = linalg.svd(rng.randn(n_features, n_features))
|
| 28 |
+
# here n_features must be >= rank as we do a dot product with U[:, :rank].T
|
| 29 |
+
X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T)
|
| 30 |
+
|
| 31 |
+
# Adding homoscedastic noise
|
| 32 |
+
X_homo = X + sigma * rng.randn(n_samples, n_features)
|
| 33 |
+
|
| 34 |
+
# Adding heteroscedastic noise
|
| 35 |
+
sigmas = sigma * rng.rand(n_features) + sigma / 2.0
|
| 36 |
+
X_hetero = X + rng.randn(n_samples, n_features) * sigmas
|
| 37 |
+
n_components_range = np.arange(0, n_features, n_components)
|
| 38 |
+
return X_homo, X_hetero, n_components_range, rank
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def compute_scores(X, n_components_range):
|
| 42 |
+
'''
|
| 43 |
+
Function to run PCA and FA with different number of componenets and run cross validation
|
| 44 |
+
|
| 45 |
+
Returns mean PCA and FA scores
|
| 46 |
+
'''
|
| 47 |
+
|
| 48 |
+
pca = PCA(svd_solver="full")
|
| 49 |
+
fa = FactorAnalysis()
|
| 50 |
+
|
| 51 |
+
pca_scores, fa_scores = [], []
|
| 52 |
+
for n in n_components_range:
|
| 53 |
+
pca.n_components = n
|
| 54 |
+
fa.n_components = n
|
| 55 |
+
pca_scores.append(np.mean(cross_val_score(pca, X)))
|
| 56 |
+
fa_scores.append(np.mean(cross_val_score(fa, X)))
|
| 57 |
+
|
| 58 |
+
return pca_scores, fa_scores
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def shrunk_cov_score(X):
|
| 62 |
+
shrinkages = np.logspace(-2, 0, 30)
|
| 63 |
+
cv = GridSearchCV(ShrunkCovariance(), {"shrinkage": shrinkages})
|
| 64 |
+
return np.mean(cross_val_score(cv.fit(X).best_estimator_, X))
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def lw_score(X):
|
| 68 |
+
return np.mean(cross_val_score(LedoitWolf(), X))
|
| 69 |
+
|
| 70 |
+
#TODO - allow selection of one or both methods
|
| 71 |
+
# def plot_pca_fa_analysis(n_features, n_components):
|
| 72 |
+
|
| 73 |
+
# '''
|
| 74 |
+
# Function to plot results of PCA and FA cross validation analysis
|
| 75 |
+
# '''
|
| 76 |
+
|
| 77 |
+
# X_homo, X_hetero, n_components_range, rank = create_dataset(n_features=n_features, n_components = n_components)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# for X, title in [(X_homo, "Homoscedastic Noise"), (X_hetero, "Heteroscedastic Noise")]:
|
| 81 |
+
|
| 82 |
+
# # compute the pca and fa scores
|
| 83 |
+
# pca_scores, fa_scores = compute_scores(X, n_components_range=n_components_range)
|
| 84 |
+
# n_components_pca = n_components_range[np.argmax(pca_scores)]
|
| 85 |
+
# n_components_fa = n_components_range[np.argmax(fa_scores)]
|
| 86 |
+
|
| 87 |
+
# pca = PCA(svd_solver="full", n_components="mle")
|
| 88 |
+
# pca.fit(X)
|
| 89 |
+
# n_components_pca_mle = pca.n_components_
|
| 90 |
+
|
| 91 |
+
# print("best n_components by PCA CV = %d" % n_components_pca)
|
| 92 |
+
# print("best n_components by FactorAnalysis CV = %d" % n_components_fa)
|
| 93 |
+
# print("best n_components by PCA MLE = %d" % n_components_pca_mle)
|
| 94 |
+
|
| 95 |
+
# fig = plt.figure()
|
| 96 |
+
# fig, (ax1, ax2) = plt.subplots(1,2)
|
| 97 |
+
# plt.plot(n_components_range, pca_scores, "b", label="PCA scores")
|
| 98 |
+
# plt.plot(n_components_range, fa_scores, "r", label="FA scores")
|
| 99 |
+
# plt.axvline(rank, color="g", label="TRUTH: %d" % rank, linestyle="-")
|
| 100 |
+
# plt.axvline(
|
| 101 |
+
# n_components_pca,
|
| 102 |
+
# color="b",
|
| 103 |
+
# label="PCA CV: %d" % n_components_pca,
|
| 104 |
+
# linestyle="--",
|
| 105 |
+
# )
|
| 106 |
+
# plt.axvline(
|
| 107 |
+
# n_components_fa,
|
| 108 |
+
# color="r",
|
| 109 |
+
# label="FactorAnalysis CV: %d" % n_components_fa,
|
| 110 |
+
# linestyle="--",
|
| 111 |
+
# )
|
| 112 |
+
# plt.axvline(
|
| 113 |
+
# n_components_pca_mle,
|
| 114 |
+
# color="k",
|
| 115 |
+
# label="PCA MLE: %d" % n_components_pca_mle,
|
| 116 |
+
# linestyle="--",
|
| 117 |
+
# )
|
| 118 |
+
|
| 119 |
+
# # compare with other covariance estimators
|
| 120 |
+
# plt.axhline(
|
| 121 |
+
# shrunk_cov_score(X),
|
| 122 |
+
# color="violet",
|
| 123 |
+
# label="Shrunk Covariance MLE",
|
| 124 |
+
# linestyle="-.",
|
| 125 |
+
# )
|
| 126 |
+
# plt.axhline(
|
| 127 |
+
# lw_score(X),
|
| 128 |
+
# color="orange",
|
| 129 |
+
# label="LedoitWolf MLE" % n_components_pca_mle,
|
| 130 |
+
# linestyle="-.",
|
| 131 |
+
# )
|
| 132 |
+
|
| 133 |
+
# plt.xlabel("nb of components")
|
| 134 |
+
# plt.ylabel("CV scores")
|
| 135 |
+
# plt.legend(loc="lower right")
|
| 136 |
+
# plt.title(title)
|
| 137 |
+
|
| 138 |
+
# return fig
|
| 139 |
+
|
| 140 |
+
def plot_pca_fa_analysis_side(n_samples, n_features, n_components):
|
| 141 |
+
|
| 142 |
+
X_homo, X_hetero, n_components_range, rank = create_dataset(n_samples = n_samples, n_features=n_features, n_components = n_components)
|
| 143 |
+
|
| 144 |
+
# set up figure - here we will be doing a side by side plot
|
| 145 |
+
fig, axes = plt.subplots(2,1, sharey= False, sharex=True, figsize = (10,8))
|
| 146 |
+
|
| 147 |
+
for X, title, idx in [(X_homo, "Homoscedastic Noise", 0), (X_hetero, "Heteroscedastic Noise", 1)]:
|
| 148 |
+
|
| 149 |
+
# compute the pca and fa scores
|
| 150 |
+
pca_scores, fa_scores = compute_scores(X, n_components_range=n_components_range)
|
| 151 |
+
n_components_pca = n_components_range[np.argmax(pca_scores)]
|
| 152 |
+
n_components_fa = n_components_range[np.argmax(fa_scores)]
|
| 153 |
+
|
| 154 |
+
pca = PCA(svd_solver="full", n_components="mle")
|
| 155 |
+
pca.fit(X)
|
| 156 |
+
n_components_pca_mle = pca.n_components_
|
| 157 |
+
|
| 158 |
+
print("best n_components by PCA CV = %d" % n_components_pca)
|
| 159 |
+
print("best n_components by FactorAnalysis CV = %d" % n_components_fa)
|
| 160 |
+
print("best n_components by PCA MLE = %d" % n_components_pca_mle)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
axes[idx].plot(n_components_range, pca_scores, "b", label="PCA scores")
|
| 164 |
+
axes[idx].plot(n_components_range, fa_scores, "r", label="FA scores")
|
| 165 |
+
axes[idx].axvline(rank, color="g", label="TRUTH: %d" % rank, linestyle="-")
|
| 166 |
+
axes[idx].axvline(
|
| 167 |
+
n_components_pca,
|
| 168 |
+
color="b",
|
| 169 |
+
label="PCA CV: %d" % n_components_pca,
|
| 170 |
+
linestyle="--",
|
| 171 |
+
)
|
| 172 |
+
axes[idx].axvline(
|
| 173 |
+
n_components_fa,
|
| 174 |
+
color="r",
|
| 175 |
+
label="FactorAnalysis CV: %d" % n_components_fa,
|
| 176 |
+
linestyle="--",
|
| 177 |
+
)
|
| 178 |
+
axes[idx].axvline(
|
| 179 |
+
n_components_pca_mle,
|
| 180 |
+
color="k",
|
| 181 |
+
label="PCA MLE: %d" % n_components_pca_mle,
|
| 182 |
+
linestyle="--",
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
# compare with other covariance estimators
|
| 186 |
+
axes[idx].axhline(
|
| 187 |
+
shrunk_cov_score(X),
|
| 188 |
+
color="violet",
|
| 189 |
+
label="Shrunk Covariance MLE",
|
| 190 |
+
linestyle="-.",
|
| 191 |
+
)
|
| 192 |
+
axes[idx].axhline(
|
| 193 |
+
lw_score(X),
|
| 194 |
+
color="orange",
|
| 195 |
+
label="LedoitWolf MLE" % n_components_pca_mle,
|
| 196 |
+
linestyle="-.",
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
# axes[idx].legend(bbox_to_anchor=(1.01, 1.05))
|
| 201 |
+
# plt.xlabel("nb of components")
|
| 202 |
+
# plt.ylabel("CV scores")
|
| 203 |
+
axes[idx].set_xlabel("nb of components")
|
| 204 |
+
axes[idx].set_ylabel("CV scores")
|
| 205 |
+
axes[idx].legend(loc="lower right")
|
| 206 |
+
axes[idx].set_title(title)
|
| 207 |
+
|
| 208 |
+
return fig
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
title = " Illustration of Model Selection with Probabilistic PCA and Factor Analysis (FA)"
|
| 213 |
+
with gr.Blocks(title=title) as demo:
|
| 214 |
+
gr.Markdown(f"# {title}")
|
| 215 |
+
gr.Markdown(" This example shows how one can use Prinicipal Components Analysis (PCA) and Factor Analysis (FA) for model selection by observing the likelihood of a held-out dataset with added noise <br>"
|
| 216 |
+
" The number of samples (n_samples) will determine the number of data points to produce. <br>"
|
| 217 |
+
" The number of components (n_components) will determine the number of components each method will fit to, and will affect the likelihood of the held-out set. <br>"
|
| 218 |
+
" The number of features (n_components) determine the number of features the toy dataset X variable will have. <br>"
|
| 219 |
+
" Play with the n_components parameter to see.<br>")
|
| 220 |
+
|
| 221 |
+
gr.Markdown(" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_fa_model_selection.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-fa-model-selection-py)** <br>")
|
| 222 |
+
|
| 223 |
+
gr.Markdown(" **Dataset** : A toy dataset with corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature) . <br>")
|
| 224 |
+
gr.Markdown(" Different number of features and number of components affect how well the low rank space is recovered. <br>"
|
| 225 |
+
" Larger Depth trying to overfit and learn even the finner details of the data.<br>"
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
with gr.Row():
|
| 229 |
+
n_samples = gr.Slider(value=100, min=100, maximum=1000, step=100, label="n_samples")
|
| 230 |
+
n_components = gr.Slider(value=2, min=1, maximum=20, step=1, label="n_components")
|
| 231 |
+
n_features = gr.Slider(value=5, min=5, maximum=25, step=1, label="n_features")
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
# options for n_components
|
| 235 |
+
btn = gr.Button(value="Submit")
|
| 236 |
+
btn.click(plot_pca_fa_analysis_side, inputs= [n_samples, n_features, n_components], outputs= gr.Plot(label='Multi-output regression with decision trees') ) #
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scikit-learn==1.2.2
|
| 2 |
+
matplotlib==3.5.1
|
| 3 |
+
numpy==1.21.6
|