Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""natural_language_gradio.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/135ewhMpX2YZA9ysE_QNN0yFQVWYaeW34
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
!pip install gradio transformers sentencepiece pandas
|
| 11 |
+
|
| 12 |
+
import json, pandas as pd
|
| 13 |
+
from dataclasses import dataclass, asdict
|
| 14 |
+
|
| 15 |
+
import math
|
| 16 |
+
from dataclasses import dataclass, asdict
|
| 17 |
+
from typing import Dict, Any
|
| 18 |
+
|
| 19 |
+
@dataclass
|
| 20 |
+
class PIDInputs:
|
| 21 |
+
tau_s: float # plant time constant [s], tau > 0
|
| 22 |
+
Kp: float # proportional gain
|
| 23 |
+
Ki: float # integral gain (>0 for step tracking)
|
| 24 |
+
Kd: float # derivative gain
|
| 25 |
+
step_amplitude: float = 1.0 # unit step default
|
| 26 |
+
settling_pct: float = 0.02 # 2% criterion for settling time
|
| 27 |
+
|
| 28 |
+
def validate_inputs(x: PIDInputs) -> Dict[str, Any]:
|
| 29 |
+
issues = []
|
| 30 |
+
# Reasonable ranges for a compact, safe demo. Adjust as needed.
|
| 31 |
+
if not (0.01 <= x.tau_s <= 10.0):
|
| 32 |
+
issues.append(f"tau must be in [0.01, 10] s, got {x.tau_s:.4g}")
|
| 33 |
+
if not (-0.9 <= x.Kp <= 200.0):
|
| 34 |
+
issues.append(f"Kp should be in [-0.9, 200], got {x.Kp:.4g}")
|
| 35 |
+
if not (1e-6 <= x.Ki <= 1e4):
|
| 36 |
+
issues.append(f"Ki should be in [1e-6, 1e4], got {x.Ki:.4g}")
|
| 37 |
+
if not (-0.009 <= x.Kd <= 100.0):
|
| 38 |
+
issues.append(f"Kd should be in [-0.009, 100], got {x.Kd:.4g}")
|
| 39 |
+
if x.tau_s + x.Kd <= 0:
|
| 40 |
+
issues.append("tau + Kd must be > 0 for a proper 2nd-order form.")
|
| 41 |
+
if x.step_amplitude == 0:
|
| 42 |
+
issues.append("step amplitude should be non-zero for meaningful metrics.")
|
| 43 |
+
if not (0.005 <= x.settling_pct <= 0.1):
|
| 44 |
+
issues.append("settling_pct should be within [0.005, 0.1] (i.e., 0.5% to 10%).")
|
| 45 |
+
return {"ok": len(issues) == 0, "issues": issues}
|
| 46 |
+
|
| 47 |
+
def compute_pid(x: PIDInputs) -> Dict[str, Any]:
|
| 48 |
+
val = validate_inputs(x)
|
| 49 |
+
status = "ok" if val["ok"] else "invalid"
|
| 50 |
+
|
| 51 |
+
wn = None
|
| 52 |
+
zeta = None
|
| 53 |
+
if (x.tau_s + x.Kd) > 0 and x.Ki > 0:
|
| 54 |
+
wn = math.sqrt(x.Ki / (x.tau_s + x.Kd))
|
| 55 |
+
denom = 2.0 * math.sqrt(x.Ki * (x.tau_s + x.Kd))
|
| 56 |
+
zeta = (x.Kp + 1.0) / denom
|
| 57 |
+
|
| 58 |
+
# --- NEW: poles & damping classification ---
|
| 59 |
+
poles = None
|
| 60 |
+
damping_class = None
|
| 61 |
+
if wn is not None and wn > 0 and zeta is not None:
|
| 62 |
+
# Standard 2nd-order characteristic: s^2 + 2ζωn s + ωn^2 = 0
|
| 63 |
+
# Poles: s = -ζωn ± ωn*sqrt(ζ^2 - 1)
|
| 64 |
+
re = -zeta * wn
|
| 65 |
+
disc = zeta**2 - 1.0
|
| 66 |
+
if disc < 0:
|
| 67 |
+
# complex-conjugate poles
|
| 68 |
+
im = wn * math.sqrt(1.0 - zeta**2)
|
| 69 |
+
poles = [complex(re, im), complex(re, -im)]
|
| 70 |
+
damping_class = "underdamped (ζ<1): complex-conjugate poles"
|
| 71 |
+
elif abs(disc) < 1e-12:
|
| 72 |
+
poles = [complex(re, 0.0), complex(re, 0.0)]
|
| 73 |
+
damping_class = "critically damped (ζ≈1): repeated real pole"
|
| 74 |
+
else:
|
| 75 |
+
# distinct real poles
|
| 76 |
+
root = wn * math.sqrt(disc)
|
| 77 |
+
poles = [complex(re + root, 0.0), complex(re - root, 0.0)]
|
| 78 |
+
damping_class = "overdamped (ζ>1): two distinct real poles"
|
| 79 |
+
|
| 80 |
+
metrics = {}
|
| 81 |
+
if wn is not None and zeta is not None and wn > 0 and zeta > 0:
|
| 82 |
+
if zeta < 1.0:
|
| 83 |
+
wd = wn * math.sqrt(1.0 - zeta**2)
|
| 84 |
+
Tp = math.pi / wd
|
| 85 |
+
Mp = math.exp(-math.pi * zeta / math.sqrt(1.0 - zeta**2)) # ratio
|
| 86 |
+
else:
|
| 87 |
+
wd = None
|
| 88 |
+
Tp = None
|
| 89 |
+
Mp = 0.0
|
| 90 |
+
Ts = 4.0 / (zeta * wn) * (0.02 / x.settling_pct)
|
| 91 |
+
if zeta < 1.0:
|
| 92 |
+
theta = math.acos(zeta)
|
| 93 |
+
Tr = (math.pi - theta) / (wn * math.sqrt(1.0 - zeta**2))
|
| 94 |
+
else:
|
| 95 |
+
Tr = 2.0 / wn
|
| 96 |
+
ess = 0.0
|
| 97 |
+
|
| 98 |
+
metrics = {
|
| 99 |
+
"wn_rad_s": wn,
|
| 100 |
+
"zeta": zeta,
|
| 101 |
+
"wd_rad_s": wd,
|
| 102 |
+
"Mp_pct": 100.0 * Mp,
|
| 103 |
+
"Tp_s": Tp,
|
| 104 |
+
"Ts_s": Ts,
|
| 105 |
+
"Tr_s": Tr,
|
| 106 |
+
"ess": ess,
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
structured = {
|
| 110 |
+
"meta": {
|
| 111 |
+
"model": "PID_on_1stOrder_v1",
|
| 112 |
+
"deterministic": True,
|
| 113 |
+
"assumptions": [
|
| 114 |
+
"Unity feedback.",
|
| 115 |
+
"1st-order plant G(s) = 1/(tau s + 1).",
|
| 116 |
+
"Linear time-invariant dynamics.",
|
| 117 |
+
"PID controller C(s) = Kp + Ki/s + Kd s.",
|
| 118 |
+
"Small-signal step response analysis."
|
| 119 |
+
],
|
| 120 |
+
"units": {
|
| 121 |
+
"tau_s": "s",
|
| 122 |
+
"wn_rad_s": "rad/s",
|
| 123 |
+
"wd_rad_s": "rad/s",
|
| 124 |
+
"Tp_s": "s",
|
| 125 |
+
"Ts_s": "s",
|
| 126 |
+
"Tr_s": "s",
|
| 127 |
+
"Mp_pct": "%"
|
| 128 |
+
},
|
| 129 |
+
"valid_ranges": {
|
| 130 |
+
"tau_s": "[0.01, 10] s",
|
| 131 |
+
"Kp": "[-0.9, 200]",
|
| 132 |
+
"Ki": "[1e-6, 1e4]",
|
| 133 |
+
"Kd": "[-0.009, 100]",
|
| 134 |
+
"tau+Kd": "> 0",
|
| 135 |
+
"Ki_positive": "> 0",
|
| 136 |
+
"settling_pct": "[0.005, 0.1]"
|
| 137 |
+
}
|
| 138 |
+
},
|
| 139 |
+
"inputs": asdict(x),
|
| 140 |
+
"validation": val,
|
| 141 |
+
"normalized_second_order": {
|
| 142 |
+
"a2": x.tau_s + x.Kd,
|
| 143 |
+
"a1": 1.0 + x.Kp,
|
| 144 |
+
"a0": x.Ki,
|
| 145 |
+
"wn": wn,
|
| 146 |
+
"zeta": zeta
|
| 147 |
+
},
|
| 148 |
+
# --- NEW: add poles & classification in the payload ---
|
| 149 |
+
"poles": [complex(p).real if abs(p.imag) < 1e-15 else p for p in (poles or [])],
|
| 150 |
+
"damping_class": damping_class,
|
| 151 |
+
"metrics": metrics,
|
| 152 |
+
"status": status
|
| 153 |
+
}
|
| 154 |
+
return structured
|
| 155 |
+
|
| 156 |
+
import gradio as gr
|
| 157 |
+
import pandas as pd
|
| 158 |
+
from transformers import pipeline
|
| 159 |
+
from typing import Dict, Any
|
| 160 |
+
|
| 161 |
+
# from core import PIDInputs, compute_pid
|
| 162 |
+
|
| 163 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 164 |
+
MODEL_ID = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
| 165 |
+
_tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 166 |
+
_model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto")
|
| 167 |
+
explainer = pipeline(task="text-generation", model=_model, tokenizer=_tokenizer)
|
| 168 |
+
|
| 169 |
+
def explain_structured(d: dict) -> str:
|
| 170 |
+
"""
|
| 171 |
+
Explain what the OUTPUT means (stability class, ωn, ζ, poles, overshoot, Tr/Tp/Ts, ess).
|
| 172 |
+
Uses the SmolLM explainer with deterministic decoding, then falls back to a
|
| 173 |
+
deterministic Markdown explanation if the model returns too little text.
|
| 174 |
+
"""
|
| 175 |
+
meta = d.get("meta", {})
|
| 176 |
+
m = d.get("metrics", {})
|
| 177 |
+
norm = d.get("normalized_second_order", {})
|
| 178 |
+
poles = d.get("poles", [])
|
| 179 |
+
dampc = d.get("damping_class", None)
|
| 180 |
+
val = d.get("validation", {})
|
| 181 |
+
status = d.get("status")
|
| 182 |
+
issues = val.get("issues", [])
|
| 183 |
+
|
| 184 |
+
# ---------- helpers ----------
|
| 185 |
+
def r(v, n=4, na="N/A"):
|
| 186 |
+
try:
|
| 187 |
+
return f"{float(v):.{n}g}"
|
| 188 |
+
except Exception:
|
| 189 |
+
return na if v is None else str(v)
|
| 190 |
+
|
| 191 |
+
def pstr(p):
|
| 192 |
+
try:
|
| 193 |
+
# p may already be complex or a float
|
| 194 |
+
if isinstance(p, complex) or (hasattr(p, "imag") and p.imag != 0):
|
| 195 |
+
return f"{p.real:+.4g} {'+' if p.imag>=0 else '-'} j{abs(p.imag):.4g}"
|
| 196 |
+
return f"{float(p):+.4g}"
|
| 197 |
+
except Exception:
|
| 198 |
+
return str(p)
|
| 199 |
+
|
| 200 |
+
def dedup_lines(md: str) -> str:
|
| 201 |
+
seen, out = set(), []
|
| 202 |
+
for line in md.splitlines():
|
| 203 |
+
key = line.strip()
|
| 204 |
+
# never dedup headers; only de-dup plain bullet/paragraph lines
|
| 205 |
+
if key and not key.startswith("#") and key in seen:
|
| 206 |
+
continue
|
| 207 |
+
seen.add(key)
|
| 208 |
+
out.append(line)
|
| 209 |
+
return "\n".join(out)
|
| 210 |
+
|
| 211 |
+
# ---------- invalid → deterministic, no LLM ----------
|
| 212 |
+
if status != "ok" or issues:
|
| 213 |
+
bullets = "\n".join([f"- {iss}" for iss in issues]) if issues else "- Check inputs."
|
| 214 |
+
return f"""# Results Explanation
|
| 215 |
+
|
| 216 |
+
**Status:** ❌ Invalid inputs
|
| 217 |
+
|
| 218 |
+
Fix these first:
|
| 219 |
+
{bullets}
|
| 220 |
+
|
| 221 |
+
**Why it matters**
|
| 222 |
+
- τ+Kd must be > 0 to form a valid 2nd-order model.
|
| 223 |
+
- Ki > 0 (type-1) gives zero steady-state error to a step.
|
| 224 |
+
"""
|
| 225 |
+
|
| 226 |
+
# ---------- numeric snapshot for prompt & fallback ----------
|
| 227 |
+
wn = norm.get("wn")
|
| 228 |
+
zeta = norm.get("zeta")
|
| 229 |
+
Mp = m.get("Mp_pct")
|
| 230 |
+
Tp = m.get("Tp_s")
|
| 231 |
+
Ts = m.get("Ts_s")
|
| 232 |
+
Tr = m.get("Tr_s")
|
| 233 |
+
ess = m.get("ess")
|
| 234 |
+
poles_text = ", ".join(pstr(p) for p in poles) if poles else "N/A"
|
| 235 |
+
|
| 236 |
+
snapshot = (
|
| 237 |
+
f"- ωₙ (natural frequency): {r(wn)} rad/s\n"
|
| 238 |
+
f"- ζ (damping ratio): {r(zeta)} → {dampc or 'N/A'}\n"
|
| 239 |
+
f"- Poles: {poles_text}\n"
|
| 240 |
+
f"- Overshoot: ≈ {r(Mp,3)} %\n"
|
| 241 |
+
f"- Rise time Tr: ≈ {r(Tr)} s\n"
|
| 242 |
+
f"- Peak time Tp: ≈ {r(Tp)} s\n"
|
| 243 |
+
f"- Settling time Ts: ≈ {r(Ts)} s\n"
|
| 244 |
+
f"- Steady-state error (step): {r(ess)}"
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
# ---------- LLM prompt (deterministic, stability-focused) ----------
|
| 248 |
+
prompt = (
|
| 249 |
+
"You are a controls engineer. Explain what the OUTPUT VALUES MEAN.\n"
|
| 250 |
+
"Write CLEAR MARKDOWN with short, specific bullets. No repetition.\n\n"
|
| 251 |
+
"## Stability classification (what ζ and the poles tell you)\n"
|
| 252 |
+
"- State whether the system is underdamped, critically damped, or overdamped based on ζ and the pole pattern.\n"
|
| 253 |
+
"- Explain what complex vs real poles imply for oscillations and smoothness.\n\n"
|
| 254 |
+
"## What ωₙ means (speed)\n"
|
| 255 |
+
"- Explain that ωₙ sets the overall speed scale of the response (larger ωₙ → shorter Tr and Ts).\n\n"
|
| 256 |
+
"## What ζ means (smoothness vs overshoot)\n"
|
| 257 |
+
"- Interpret ζ ranges (<1, ≈1, >1) in terms of oscillation and overshoot.\n\n"
|
| 258 |
+
"## What each time/percent metric means\n"
|
| 259 |
+
"- Overshoot: how much the peak exceeds final value.\n"
|
| 260 |
+
"- Tr: time to go from low to near-final (e.g., 10–90%).\n"
|
| 261 |
+
"- Tp: time to first peak.\n"
|
| 262 |
+
"- Ts: time to settle within the chosen band.\n"
|
| 263 |
+
"- ess: final error for a step; with Ki>0 it is 0.\n\n"
|
| 264 |
+
"## How the poles relate to that behavior\n"
|
| 265 |
+
"- Connect pole real part to decay speed; imaginary part to oscillation frequency.\n\n"
|
| 266 |
+
"## Numeric snapshot\n"
|
| 267 |
+
f"{snapshot}\n"
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
# ---------- deterministic generation with anti-repetition ----------
|
| 271 |
+
gen = explainer(
|
| 272 |
+
prompt,
|
| 273 |
+
max_new_tokens=220,
|
| 274 |
+
do_sample=False,
|
| 275 |
+
temperature=0.0,
|
| 276 |
+
top_p=1.0,
|
| 277 |
+
top_k=0,
|
| 278 |
+
repetition_penalty=1.15,
|
| 279 |
+
no_repeat_ngram_size=4,
|
| 280 |
+
eos_token_id=_tokenizer.eos_token_id,
|
| 281 |
+
pad_token_id=_tokenizer.eos_token_id,
|
| 282 |
+
return_full_text=False
|
| 283 |
+
)[0]["generated_text"]
|
| 284 |
+
|
| 285 |
+
# ---------- SHORT-OUTPUT FALLBACK (your requested addition) ----------
|
| 286 |
+
MIN_WORDS = 30
|
| 287 |
+
if not gen or len(gen.split()) < MIN_WORDS:
|
| 288 |
+
gen = f"""## Stability classification
|
| 289 |
+
- ζ = {r(zeta)} → {dampc or 'N/A'}.
|
| 290 |
+
|
| 291 |
+
## Meaning of ωₙ and ζ
|
| 292 |
+
- ωₙ = {r(wn)} rad/s sets the speed scale (larger ωₙ → faster rise/settle).
|
| 293 |
+
- ζ controls smoothness/overshoot: ζ<1 underdamped; ζ≈1 critically damped; ζ>1 overdamped.
|
| 294 |
+
|
| 295 |
+
## Poles and behavior
|
| 296 |
+
- Poles: {poles_text}
|
| 297 |
+
- More negative real part → faster decay; nonzero imaginary part → oscillations.
|
| 298 |
+
|
| 299 |
+
## Time-domain metrics
|
| 300 |
+
- Overshoot ≈ {r(Mp,3)} % | Tr ≈ {r(Tr)} s | Tp ≈ {r(Tp)} s | Ts ≈ {r(Ts)} s | ess = {r(ess)}
|
| 301 |
+
|
| 302 |
+
## Tuning tip
|
| 303 |
+
- Raise Ki to increase ωₙ (speed). If overshoot or oscillation appears (ζ too low), add Kd or increase Kp to raise damping.
|
| 304 |
+
"""
|
| 305 |
+
|
| 306 |
+
return dedup_lines(gen)
|
| 307 |
+
|
| 308 |
+
def run_calc(tau_s, Kp, Ki, Kd, step_amp, settling_pct):
|
| 309 |
+
x = PIDInputs(
|
| 310 |
+
tau_s=float(tau_s), Kp=float(Kp), Ki=float(Ki), Kd=float(Kd),
|
| 311 |
+
step_amplitude=float(step_amp), settling_pct=float(settling_pct) / 100.0 # slider in %, convert to fraction
|
| 312 |
+
)
|
| 313 |
+
structured = compute_pid(x)
|
| 314 |
+
|
| 315 |
+
# Display normalized form + metrics in a compact table
|
| 316 |
+
rows = []
|
| 317 |
+
for k, v in structured.get("normalized_second_order", {}).items():
|
| 318 |
+
rows.append(["2nd-order", k, v])
|
| 319 |
+
for k, v in structured.get("metrics", {}).items():
|
| 320 |
+
rows.append(["metrics", k, v])
|
| 321 |
+
df = pd.DataFrame(rows, columns=["section", "key", "value"])
|
| 322 |
+
|
| 323 |
+
explanation = explain_structured(structured)
|
| 324 |
+
return df, explanation, structured
|
| 325 |
+
|
| 326 |
+
with gr.Blocks(title="PID Controls Calculator (1st-Order Plant)", theme=gr.themes.Soft()) as demo:
|
| 327 |
+
gr.Markdown("# PID Feedback Controls — Deterministic Calculator")
|
| 328 |
+
gr.Markdown(
|
| 329 |
+
"Unity-feedback PID on a first-order plant G(s)=1/(τs+1). "
|
| 330 |
+
"We derive the equivalent 2nd-order parameters (ωₙ, ζ) and step-response metrics (overshoot, rise, peak, settling)."
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
with gr.Row():
|
| 334 |
+
with gr.Column():
|
| 335 |
+
tau_s = gr.Slider(0.01, 10.0, value=0.5, step=0.01, label="Plant time constant τ [s]")
|
| 336 |
+
Kp = gr.Slider(-0.9, 200.0, value=1.0, step=0.1, label="Kp")
|
| 337 |
+
Ki = gr.Slider(1e-6, 1e4, value=1.0, step=0.1, label="Ki")
|
| 338 |
+
Kd = gr.Slider(-0.009, 100.0, value=0.0, step=0.001, label="Kd")
|
| 339 |
+
step_amp = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="Step amplitude")
|
| 340 |
+
settling_pct = gr.Slider(0.5, 10.0, value=2.0, step=0.1, label="Settling band [%]")
|
| 341 |
+
go = gr.Button("Compute", variant="primary")
|
| 342 |
+
|
| 343 |
+
with gr.Column():
|
| 344 |
+
gr.Markdown("### Numerical Results")
|
| 345 |
+
table = gr.Dataframe(headers=["section", "key", "value"], interactive=False)
|
| 346 |
+
gr.Markdown("### Explain the Results")
|
| 347 |
+
explanation = gr.Markdown()
|
| 348 |
+
gr.Markdown("### Raw Structured Output")
|
| 349 |
+
json_out = gr.JSON(label="Structured JSON")
|
| 350 |
+
|
| 351 |
+
go.click(run_calc, inputs=[tau_s, Kp, Ki, Kd, step_amp, settling_pct],
|
| 352 |
+
outputs=[table, explanation, json_out])
|
| 353 |
+
|
| 354 |
+
if __name__ == "__main__":
|
| 355 |
+
demo.launch()
|