# -*- coding: utf-8 -*- """natural_language_gradio.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/135ewhMpX2YZA9ysE_QNN0yFQVWYaeW34 """ import json, pandas as pd from dataclasses import dataclass, asdict import math from dataclasses import dataclass, asdict from typing import Dict, Any @dataclass class PIDInputs: tau_s: float # plant time constant [s], tau > 0 Kp: float # proportional gain Ki: float # integral gain (>0 for step tracking) Kd: float # derivative gain step_amplitude: float = 1.0 # unit step default settling_pct: float = 0.02 # 2% criterion for settling time def validate_inputs(x: PIDInputs) -> Dict[str, Any]: issues = [] # Reasonable ranges for a compact, safe demo. Adjust as needed. if not (0.01 <= x.tau_s <= 10.0): issues.append(f"tau must be in [0.01, 10] s, got {x.tau_s:.4g}") if not (-0.9 <= x.Kp <= 200.0): issues.append(f"Kp should be in [-0.9, 200], got {x.Kp:.4g}") if not (1e-6 <= x.Ki <= 1e4): issues.append(f"Ki should be in [1e-6, 1e4], got {x.Ki:.4g}") if not (-0.009 <= x.Kd <= 100.0): issues.append(f"Kd should be in [-0.009, 100], got {x.Kd:.4g}") if x.tau_s + x.Kd <= 0: issues.append("tau + Kd must be > 0 for a proper 2nd-order form.") if x.step_amplitude == 0: issues.append("step amplitude should be non-zero for meaningful metrics.") if not (0.005 <= x.settling_pct <= 0.1): issues.append("settling_pct should be within [0.005, 0.1] (i.e., 0.5% to 10%).") return {"ok": len(issues) == 0, "issues": issues} def compute_pid(x: PIDInputs) -> Dict[str, Any]: val = validate_inputs(x) status = "ok" if val["ok"] else "invalid" wn = None zeta = None if (x.tau_s + x.Kd) > 0 and x.Ki > 0: wn = math.sqrt(x.Ki / (x.tau_s + x.Kd)) denom = 2.0 * math.sqrt(x.Ki * (x.tau_s + x.Kd)) zeta = (x.Kp + 1.0) / denom # --- NEW: poles & damping classification --- poles = None damping_class = None if wn is not None and wn > 0 and zeta is not None: # Standard 2nd-order characteristic: s^2 + 2ζωn s + ωn^2 = 0 # Poles: s = -ζωn ± ωn*sqrt(ζ^2 - 1) re = -zeta * wn disc = zeta**2 - 1.0 if disc < 0: # complex-conjugate poles im = wn * math.sqrt(1.0 - zeta**2) poles = [complex(re, im), complex(re, -im)] damping_class = "underdamped (ζ<1): complex-conjugate poles" elif abs(disc) < 1e-12: poles = [complex(re, 0.0), complex(re, 0.0)] damping_class = "critically damped (ζ≈1): repeated real pole" else: # distinct real poles root = wn * math.sqrt(disc) poles = [complex(re + root, 0.0), complex(re - root, 0.0)] damping_class = "overdamped (ζ>1): two distinct real poles" metrics = {} if wn is not None and zeta is not None and wn > 0 and zeta > 0: if zeta < 1.0: wd = wn * math.sqrt(1.0 - zeta**2) Tp = math.pi / wd Mp = math.exp(-math.pi * zeta / math.sqrt(1.0 - zeta**2)) # ratio else: wd = None Tp = None Mp = 0.0 Ts = 4.0 / (zeta * wn) * (0.02 / x.settling_pct) if zeta < 1.0: theta = math.acos(zeta) Tr = (math.pi - theta) / (wn * math.sqrt(1.0 - zeta**2)) else: Tr = 2.0 / wn ess = 0.0 metrics = { "wn_rad_s": wn, "zeta": zeta, "wd_rad_s": wd, "Mp_pct": 100.0 * Mp, "Tp_s": Tp, "Ts_s": Ts, "Tr_s": Tr, "ess": ess, } structured = { "meta": { "model": "PID_on_1stOrder_v1", "deterministic": True, "assumptions": [ "Unity feedback.", "1st-order plant G(s) = 1/(tau s + 1).", "Linear time-invariant dynamics.", "PID controller C(s) = Kp + Ki/s + Kd s.", "Small-signal step response analysis." ], "units": { "tau_s": "s", "wn_rad_s": "rad/s", "wd_rad_s": "rad/s", "Tp_s": "s", "Ts_s": "s", "Tr_s": "s", "Mp_pct": "%" }, "valid_ranges": { "tau_s": "[0.01, 10] s", "Kp": "[-0.9, 200]", "Ki": "[1e-6, 1e4]", "Kd": "[-0.009, 100]", "tau+Kd": "> 0", "Ki_positive": "> 0", "settling_pct": "[0.005, 0.1]" } }, "inputs": asdict(x), "validation": val, "normalized_second_order": { "a2": x.tau_s + x.Kd, "a1": 1.0 + x.Kp, "a0": x.Ki, "wn": wn, "zeta": zeta }, # --- NEW: add poles & classification in the payload --- "poles": [complex(p).real if abs(p.imag) < 1e-15 else p for p in (poles or [])], "damping_class": damping_class, "metrics": metrics, "status": status } return structured import gradio as gr import pandas as pd from transformers import pipeline from typing import Dict, Any # from core import PIDInputs, compute_pid from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline MODEL_ID = "HuggingFaceTB/SmolLM2-135M-Instruct" _tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) _model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto") explainer = pipeline(task="text-generation", model=_model, tokenizer=_tokenizer) def explain_structured(d: dict) -> str: """ Explain what the OUTPUT means (stability class, ωn, ζ, poles, overshoot, Tr/Tp/Ts, ess). Uses the SmolLM explainer with deterministic decoding, then falls back to a deterministic Markdown explanation if the model returns too little text. """ meta = d.get("meta", {}) m = d.get("metrics", {}) norm = d.get("normalized_second_order", {}) poles = d.get("poles", []) dampc = d.get("damping_class", None) val = d.get("validation", {}) status = d.get("status") issues = val.get("issues", []) # ---------- helpers ---------- def r(v, n=4, na="N/A"): try: return f"{float(v):.{n}g}" except Exception: return na if v is None else str(v) def pstr(p): try: # p may already be complex or a float if isinstance(p, complex) or (hasattr(p, "imag") and p.imag != 0): return f"{p.real:+.4g} {'+' if p.imag>=0 else '-'} j{abs(p.imag):.4g}" return f"{float(p):+.4g}" except Exception: return str(p) def dedup_lines(md: str) -> str: seen, out = set(), [] for line in md.splitlines(): key = line.strip() # never dedup headers; only de-dup plain bullet/paragraph lines if key and not key.startswith("#") and key in seen: continue seen.add(key) out.append(line) return "\n".join(out) # ---------- invalid → deterministic, no LLM ---------- if status != "ok" or issues: bullets = "\n".join([f"- {iss}" for iss in issues]) if issues else "- Check inputs." return f"""# Results Explanation **Status:** ❌ Invalid inputs Fix these first: {bullets} **Why it matters** - τ+Kd must be > 0 to form a valid 2nd-order model. - Ki > 0 (type-1) gives zero steady-state error to a step. """ # ---------- numeric snapshot for prompt & fallback ---------- wn = norm.get("wn") zeta = norm.get("zeta") Mp = m.get("Mp_pct") Tp = m.get("Tp_s") Ts = m.get("Ts_s") Tr = m.get("Tr_s") ess = m.get("ess") poles_text = ", ".join(pstr(p) for p in poles) if poles else "N/A" snapshot = ( f"- ωₙ (natural frequency): {r(wn)} rad/s\n" f"- ζ (damping ratio): {r(zeta)} → {dampc or 'N/A'}\n" f"- Poles: {poles_text}\n" f"- Overshoot: ≈ {r(Mp,3)} %\n" f"- Rise time Tr: ≈ {r(Tr)} s\n" f"- Peak time Tp: ≈ {r(Tp)} s\n" f"- Settling time Ts: ≈ {r(Ts)} s\n" f"- Steady-state error (step): {r(ess)}" ) # ---------- LLM prompt (deterministic, stability-focused) ---------- prompt = ( "You are a controls engineer. Explain what the OUTPUT VALUES MEAN.\n" "Write CLEAR MARKDOWN with short, specific bullets. No repetition.\n\n" "## Stability classification (what ζ and the poles tell you)\n" "- State whether the system is underdamped, critically damped, or overdamped based on ζ and the pole pattern.\n" "- Explain what complex vs real poles imply for oscillations and smoothness.\n\n" "## What ωₙ means (speed)\n" "- Explain that ωₙ sets the overall speed scale of the response (larger ωₙ → shorter Tr and Ts).\n\n" "## What ζ means (smoothness vs overshoot)\n" "- Interpret ζ ranges (<1, ≈1, >1) in terms of oscillation and overshoot.\n\n" "## What each time/percent metric means\n" "- Overshoot: how much the peak exceeds final value.\n" "- Tr: time to go from low to near-final (e.g., 10–90%).\n" "- Tp: time to first peak.\n" "- Ts: time to settle within the chosen band.\n" "- ess: final error for a step; with Ki>0 it is 0.\n\n" "## How the poles relate to that behavior\n" "- Connect pole real part to decay speed; imaginary part to oscillation frequency.\n\n" "## Numeric snapshot\n" f"{snapshot}\n" ) # ---------- deterministic generation with anti-repetition ---------- gen = explainer( prompt, max_new_tokens=220, do_sample=False, temperature=0.0, top_p=1.0, top_k=0, repetition_penalty=1.15, no_repeat_ngram_size=4, eos_token_id=_tokenizer.eos_token_id, pad_token_id=_tokenizer.eos_token_id, return_full_text=False )[0]["generated_text"] # ---------- SHORT-OUTPUT FALLBACK (your requested addition) ---------- MIN_WORDS = 30 if not gen or len(gen.split()) < MIN_WORDS: gen = f"""## Stability classification - ζ = {r(zeta)} → {dampc or 'N/A'}. ## Meaning of ωₙ and ζ - ωₙ = {r(wn)} rad/s sets the speed scale (larger ωₙ → faster rise/settle). - ζ controls smoothness/overshoot: ζ<1 underdamped; ζ≈1 critically damped; ζ>1 overdamped. ## Poles and behavior - Poles: {poles_text} - More negative real part → faster decay; nonzero imaginary part → oscillations. ## Time-domain metrics - Overshoot ≈ {r(Mp,3)} % | Tr ≈ {r(Tr)} s | Tp ≈ {r(Tp)} s | Ts ≈ {r(Ts)} s | ess = {r(ess)} ## Tuning tip - Raise Ki to increase ωₙ (speed). If overshoot or oscillation appears (ζ too low), add Kd or increase Kp to raise damping. """ return dedup_lines(gen) def run_calc(tau_s, Kp, Ki, Kd, step_amp, settling_pct): x = PIDInputs( tau_s=float(tau_s), Kp=float(Kp), Ki=float(Ki), Kd=float(Kd), step_amplitude=float(step_amp), settling_pct=float(settling_pct) / 100.0 # slider in %, convert to fraction ) structured = compute_pid(x) # Display normalized form + metrics in a compact table rows = [] for k, v in structured.get("normalized_second_order", {}).items(): rows.append(["2nd-order", k, v]) for k, v in structured.get("metrics", {}).items(): rows.append(["metrics", k, v]) df = pd.DataFrame(rows, columns=["section", "key", "value"]) explanation = explain_structured(structured) return df, explanation, structured with gr.Blocks(title="PID Controls Calculator (1st-Order Plant)", theme=gr.themes.Soft()) as demo: gr.Markdown("# PID Feedback Controls — Deterministic Calculator") gr.Markdown( "Unity-feedback PID on a first-order plant G(s)=1/(τs+1). " "We derive the equivalent 2nd-order parameters (ωₙ, ζ) and step-response metrics (overshoot, rise, peak, settling)." ) with gr.Row(): with gr.Column(): tau_s = gr.Slider(0.01, 10.0, value=0.5, step=0.01, label="Plant time constant τ [s]") Kp = gr.Slider(-0.9, 200.0, value=1.0, step=0.1, label="Kp") Ki = gr.Slider(1e-6, 1e4, value=1.0, step=0.1, label="Ki") Kd = gr.Slider(-0.009, 100.0, value=0.0, step=0.001, label="Kd") step_amp = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="Step amplitude") settling_pct = gr.Slider(0.5, 10.0, value=2.0, step=0.1, label="Settling band [%]") go = gr.Button("Compute", variant="primary") with gr.Column(): gr.Markdown("### Numerical Results") table = gr.Dataframe(headers=["section", "key", "value"], interactive=False) gr.Markdown("### Explain the Results") explanation = gr.Markdown() gr.Markdown("### Raw Structured Output") json_out = gr.JSON(label="Structured JSON") go.click(run_calc, inputs=[tau_s, Kp, Ki, Kd, step_amp, settling_pct], outputs=[table, explanation, json_out]) if __name__ == "__main__": demo.launch()