ReSWD / src /utils /math.py
mboss's picture
Initial commit
7349148
raw
history blame
1.39 kB
import math
from typing import Optional, Union
import torch
def _random_orthonormal_matrix(d: int, device: torch.device) -> torch.Tensor:
"""Draw a random rotation matrix Q ∈ SO(d) (Haar) via QR-factorisation."""
a = torch.randn(d, d, device=device)
# QR gives orthonormal columns; ensure right-handed
q, r = torch.linalg.qr(a, mode="reduced")
# make determinant +1 (special orthogonal) – flip first column if needed
if torch.det(q) < 0:
q[:, 0] = -q[:, 0]
return q # (d,d)
def sobol_sphere(
n: int,
d: int,
device: torch.device,
sobol_engine: Optional[torch.quasirandom.SobolEngine] = None,
) -> Union[torch.Tensor, torch.quasirandom.SobolEngine]:
"""n unit vectors on S^{d-1} via scrambled Sobol + Gaussian + random rotation."""
if sobol_engine is None:
sob = torch.quasirandom.SobolEngine(dimension=d, scramble=True)
else:
sob = sobol_engine
# Draw in [0,1)^d then map β†’ 𝒩(0,1)
u01 = sob.draw(n).to(device)
eps = 1e-7
u01 = u01.clamp(min=eps, max=1.0 - eps) # avoid 0 and 1 exactly
z = torch.erfinv(2.0 * u01 - 1.0) * math.sqrt(2.0) # inverse-CDF of Normal
z = z / (z.norm(dim=1, keepdim=True) + 1e-8) # project to sphere
# Random global rotation (RQMC) to make estimator unbiased
Q = _random_orthonormal_matrix(d, device)
return z @ Q.T, sob # (n,d)