import math from typing import Optional, Union import torch def _random_orthonormal_matrix(d: int, device: torch.device) -> torch.Tensor: """Draw a random rotation matrix Q ∈ SO(d) (Haar) via QR-factorisation.""" a = torch.randn(d, d, device=device) # QR gives orthonormal columns; ensure right-handed q, r = torch.linalg.qr(a, mode="reduced") # make determinant +1 (special orthogonal) – flip first column if needed if torch.det(q) < 0: q[:, 0] = -q[:, 0] return q # (d,d) def sobol_sphere( n: int, d: int, device: torch.device, sobol_engine: Optional[torch.quasirandom.SobolEngine] = None, ) -> Union[torch.Tensor, torch.quasirandom.SobolEngine]: """n unit vectors on S^{d-1} via scrambled Sobol + Gaussian + random rotation.""" if sobol_engine is None: sob = torch.quasirandom.SobolEngine(dimension=d, scramble=True) else: sob = sobol_engine # Draw in [0,1)^d then map → 𝒩(0,1) u01 = sob.draw(n).to(device) eps = 1e-7 u01 = u01.clamp(min=eps, max=1.0 - eps) # avoid 0 and 1 exactly z = torch.erfinv(2.0 * u01 - 1.0) * math.sqrt(2.0) # inverse-CDF of Normal z = z / (z.norm(dim=1, keepdim=True) + 1e-8) # project to sphere # Random global rotation (RQMC) to make estimator unbiased Q = _random_orthonormal_matrix(d, device) return z @ Q.T, sob # (n,d)