import gradio as gr import numpy as np import matplotlib.pyplot as plt import networkx as nx # Helper Functions def parse_graph_input(graph_input): """Parse user input to create an adjacency list.""" try: # Try interpreting as a dictionary (adjacency list) graph = eval(graph_input) if isinstance(graph, dict): return graph except: pass try: # Try interpreting as an edge list edges = eval(graph_input) if not isinstance(edges, list): raise ValueError("Invalid graph input. Please use an adjacency list or edge list.") graph = {} for u, v in edges: graph.setdefault(u, []).append(v) graph.setdefault(v, []).append(u) return graph except: raise ValueError("Invalid graph input. Please use a valid adjacency list or edge list.") def visualize_graph(graph): """Generate a visualization of the graph using a circular layout.""" plt.figure() nodes = list(graph.keys()) edges = [(u, v) for u in graph for v in graph[u]] # Use a circular layout for faster visualization pos = nx.circular_layout(nx.Graph(edges)) # Draw the graph nx.draw( nx.Graph(edges), pos, with_labels=True, node_color='lightblue', edge_color='gray', node_size=500, font_size=10 ) # Identify the graph type graph_type = identify_graph_type(graph) # Add a label for the graph type below the visualization plt.title(f"Graph Type: {graph_type}", fontsize=12, color='darkblue') return plt.gcf() def identify_graph_type(graph): """Identify the type of graph based on its structure.""" num_nodes = len(graph) num_edges = sum(len(neighbors) for neighbors in graph.values()) // 2 if num_nodes == 0: return "Empty Graph" elif num_nodes == 1: return "Single Vertex Graph" elif num_edges == 0: return f"Empty Graph with {num_nodes} vertices" elif num_edges == num_nodes - 1: return f"Path Graph P{num_nodes}" elif num_edges == num_nodes: return f"Cycle Graph C{num_nodes}" elif num_edges == num_nodes * (num_nodes - 1) // 2: return f"Complete Graph K{num_nodes}" elif num_edges == 2 * num_nodes - 2: return f"Wheel Graph W{num_nodes - 1}" else: return "Custom Graph (Unknown Type)" def spectral_isomorphism_test(graph1, graph2): """Perform spectral isomorphism test with step-by-step explanation.""" adj_spectrum1 = sorted(np.linalg.eigvals(nx.adjacency_matrix(nx.Graph(graph1)).todense()).real) adj_spectrum2 = sorted(np.linalg.eigvals(nx.adjacency_matrix(nx.Graph(graph2)).todense()).real) lap_spectrum1 = sorted(np.linalg.eigvals(nx.laplacian_matrix(nx.Graph(graph1)).todense()).real) lap_spectrum2 = sorted(np.linalg.eigvals(nx.laplacian_matrix(nx.Graph(graph2)).todense()).real) # Round spectra to 2 decimal places adj_spectrum1 = [round(float(x), 2) for x in adj_spectrum1] adj_spectrum2 = [round(float(x), 2) for x in adj_spectrum2] lap_spectrum1 = [round(float(x), 2) for x in lap_spectrum1] lap_spectrum2 = [round(float(x), 2) for x in lap_spectrum2] output = ( f"### **Spectral Isomorphism Test Results**\n\n" f"#### **Step 1: Node and Edge Counts**\n" f"- **Graph 1**: \n" f" - Nodes: **{len(graph1)}** \n" f" - Edges: **{sum(len(neighbors) for neighbors in graph1.values()) // 2}**\n" f"- **Graph 2**: \n" f" - Nodes: **{len(graph2)}** \n" f" - Edges: **{sum(len(neighbors) for neighbors in graph2.values()) // 2}**\n\n" f"**Observation:** Both graphs have the same number of nodes, but Graph 1 has {sum(len(neighbors) for neighbors in graph1.values()) // 2} edges, while Graph 2 has {sum(len(neighbors) for neighbors in graph2.values()) // 2} edges.\n\n" f"---\n\n" f"#### **Step 2: Adjacency Spectra**\n" f"- **What is an Adjacency Spectrum?** \n" f" The adjacency spectrum is the set of eigenvalues of the graph's adjacency matrix, which represents connections between vertices.\n\n" f"- **Adjacency Spectrum of Graph 1**: \n" f" ```{adj_spectrum1}```\n" f"- **Adjacency Spectrum of Graph 2**: \n" f" ```{adj_spectrum2}```\n\n" f"**Comparison:** \n" f"- Are the adjacency spectra approximately equal? {'✅ Yes' if np.allclose(adj_spectrum1, adj_spectrum2) else '❌ No'}\n" f"- **Reason:** The eigenvalues {'match' if np.allclose(adj_spectrum1, adj_spectrum2) else 'differ significantly'} between the two graphs.\n\n" f"---\n\n" f"#### **Step 3: Laplacian Spectra**\n" f"- **What is a Laplacian Spectrum?** \n" f" The Laplacian spectrum is the set of eigenvalues of the graph's Laplacian matrix, which combines information about vertex degrees and adjacency.\n\n" f"- **Laplacian Spectrum of Graph 1**: \n" f" ```{lap_spectrum1}```\n" f"- **Laplacian Spectrum of Graph 2**: \n" f" ```{lap_spectrum2}```\n\n" f"**Comparison:** \n" f"- Are the Laplacian spectra approximately equal? {'✅ Yes' if np.allclose(lap_spectrum1, lap_spectrum2) else '❌ No'}\n" f"- **Reason:** The eigenvalues {'match' if np.allclose(lap_spectrum1, lap_spectrum2) else 'differ significantly'} between the two graphs.\n\n" f"---\n\n" f"#### **Final Result**\n" f"- **Outcome:** {'✅ PASS' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else '❌ FAIL'}\n" f"- **Conclusion:** The graphs are {'isomorphic' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else 'NOT isomorphic'} because their adjacency and Laplacian spectra {'match' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else 'do not match'}.\n\n" f"---\n\n" f"### **Explanation**\n" f"- **Adjacency Spectrum:** Represents the eigenvalues of the adjacency matrix. If two graphs are isomorphic, their adjacency spectra must match.\n" f"- **Laplacian Spectrum:** Represents the eigenvalues of the Laplacian matrix. Similar to adjacency spectra, matching Laplacian spectra is a strong indicator of isomorphism.\n" f"- **Result Interpretation:** Since {'both' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else 'neither'} the adjacency nor the Laplacian spectra match, the graphs are {'structurally identical' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else 'structurally different'} and cannot be isomorphic.\n" ) return output def check_graph_homomorphism(graph1, graph2, mapping): """Check if a mapping defines a graph homomorphism.""" result = [] for u, v in graph1.edges(): mapped_u, mapped_v = mapping.get(u), mapping.get(v) if mapped_u is None or mapped_v is None: result.append(f"Mapping is incomplete. Missing vertex {u} or {v}.") continue if (mapped_u, mapped_v) not in graph2.edges() and (mapped_v, mapped_u) not in graph2.edges(): result.append(f"Edge ({u}, {v}) in Graph 1 maps to ({mapped_u}, {mapped_v}) in Graph 2. Edge does NOT exist in Graph 2.") else: result.append(f"Edge ({u}, {v}) in Graph 1 maps to ({mapped_u}, {mapped_v}) in Graph 2. Edge exists in Graph 2.") is_homomorphism = all(("exists" in line) for line in result) final_result = ( f"**Final Result:** {'✅ Mapping IS a Graph Homomorphism.' if is_homomorphism else '❌ Mapping IS NOT a Graph Homomorphism.'}\n" f"Explanation: A graph homomorphism must preserve all adjacencies. If any edge fails to map correctly, the mapping is invalid." ) return "\n".join(result) + "\n\n" + final_result def demonstrate_matrix_representations(graph): """Display adjacency matrix, Laplacian matrix, and spectra.""" adj_matrix = nx.adjacency_matrix(nx.Graph(graph)).todense() laplacian_matrix = nx.laplacian_matrix(nx.Graph(graph)).todense() degree_matrix = np.diag([len(graph[v]) for v in graph]) adj_spectrum = sorted(np.linalg.eigvals(adj_matrix).real) lap_spectrum = sorted(np.linalg.eigvals(laplacian_matrix).real) algebraic_connectivity = lap_spectrum[1] # Second smallest eigenvalue output = ( f"### **Matrix Representations and Spectra**\n\n" f"#### **Adjacency Matrix**\n" f"```\n{adj_matrix}\n```\n\n" f"#### **Laplacian Matrix**\n" f"```\n{laplacian_matrix}\n```\n\n" f"#### **Degree Matrix**\n" f"```\n{degree_matrix}\n```\n\n" f"#### **Adjacency Spectrum**\n" f"```{[round(x, 2) for x in adj_spectrum]}```\n\n" f"#### **Laplacian Spectrum**\n" f"```{[round(x, 2) for x in lap_spectrum]}```\n\n" f"#### **Algebraic Connectivity**\n" f"The second smallest eigenvalue (Algebraic Connectivity): {round(algebraic_connectivity, 2)}\n\n" f"**Explanation:** These matrices and spectra provide insights into the graph's structure. Algebraic connectivity measures robustness." ) return output def process_inputs(graph1_input, graph2_input, question_type, mapping=None): """Process user inputs and perform the selected operation.""" # Parse graphs graph1 = parse_graph_input(graph1_input) graph2 = parse_graph_input(graph2_input) # Determine operation based on question type if question_type == "Spectral Isomorphism Test": result = spectral_isomorphism_test(graph1, graph2) elif question_type == "Graph Homomorphism Check": if mapping is None: result = "Error: Mapping is required for Graph Homomorphism Check." else: result = check_graph_homomorphism(nx.Graph(graph1), nx.Graph(graph2), mapping) elif question_type == "Matrix Representations and Spectra": result = demonstrate_matrix_representations(graph1) else: result = "Unsupported question type. Please select a valid operation." # Visualize graphs graph1_plot = visualize_graph(graph1) graph2_plot = visualize_graph(graph2) return graph1_plot, graph2_plot, result # Gradio Interface with gr.Blocks(title="Graph Theory Project") as demo: gr.Markdown("# Graph Theory Project") gr.Markdown("Select a question type and analyze two graphs!") with gr.Row(): graph1_input = gr.Textbox(label="Graph 1 Input (e.g., '{0: [1], 1: [0, 2], 2: [1]}' or edge list)") graph2_input = gr.Textbox(label="Graph 2 Input (e.g., '{0: [1], 1: [0, 2], 2: [1]}' or edge list)") question_type = gr.Dropdown( choices=["Spectral Isomorphism Test", "Graph Homomorphism Check", "Matrix Representations and Spectra"], label="Select Question Type" ) mapping_input = gr.Textbox(label="Mapping (for Graph Homomorphism Check, e.g., '{0: 0, 1: 1, 2: 2}')", visible=False) def toggle_mapping_visibility(question_type): """Show/hide the mapping input based on the selected question type.""" return {"visible": question_type == "Graph Homomorphism Check"} question_type.change(toggle_mapping_visibility, inputs=question_type, outputs=mapping_input) with gr.Row(): graph1_output = gr.Plot(label="Graph 1 Visualization") graph2_output = gr.Plot(label="Graph 2 Visualization") result_output = gr.Textbox(label="Results", lines=20) submit_button = gr.Button("Run") submit_button.click(process_inputs, inputs=[graph1_input, graph2_input, question_type, mapping_input], outputs=[graph1_output, graph2_output, result_output]) # Launch the app demo.launch()