File size: 9,179 Bytes
923982b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
from scipy.sparse.linalg import eigsh
from scipy.sparse import csgraph
import ast
# Helper Functions
def parse_graph_input(graph_input):
"""Parse user input to create an adjacency list."""
try:
# Try interpreting as a dictionary (adjacency list)
graph = ast.literal_eval(graph_input)
if isinstance(graph, dict):
return graph
except:
pass
try:
# Try interpreting as an edge list
edges = ast.literal_eval(graph_input)
if not isinstance(edges, list):
raise ValueError("Invalid graph input. Please use an adjacency list or edge list.")
graph = {}
for u, v in edges:
graph.setdefault(u, []).append(v)
graph.setdefault(v, []).append(u)
return graph
except:
raise ValueError("Invalid graph input. Please use a valid adjacency list or edge list.")
def visualize_graph(graph):
"""Generate a visualization of the graph using a circular layout."""
if len(graph) > 50: # Skip visualization for large graphs
return None
plt.figure()
nodes = list(graph.keys())
edges = [(u, v) for u in graph for v in graph[u]]
pos = nx.circular_layout(nx.Graph(edges))
nx.draw(
nx.Graph(edges),
pos,
with_labels=True,
node_color='lightblue',
edge_color='gray',
node_size=500,
font_size=10
)
return plt.gcf()
def calculate_spectrum(matrix, k=6, which='LM'):
"""Calculate the largest k eigenvalues of a sparse matrix."""
eigenvalues, _ = eigsh(matrix, k=k, which=which)
return sorted(eigenvalues.real)
def spectral_isomorphism_test(graph1, graph2):
"""Perform spectral isomorphism test with step-by-step explanation."""
adj_matrix1 = nx.adjacency_matrix(nx.Graph(graph1))
adj_matrix2 = nx.adjacency_matrix(nx.Graph(graph2))
lap_matrix1 = nx.laplacian_matrix(nx.Graph(graph1))
lap_matrix2 = nx.laplacian_matrix(nx.Graph(graph2))
adj_spectrum1 = calculate_spectrum(adj_matrix1, k=min(6, len(graph1) - 1))
adj_spectrum2 = calculate_spectrum(adj_matrix2, k=min(6, len(graph2) - 1))
lap_spectrum1 = calculate_spectrum(lap_matrix1, k=min(6, len(graph1) - 1), which='SM')
lap_spectrum2 = calculate_spectrum(lap_matrix2, k=min(6, len(graph2) - 1), which='SM')
adj_spectrum1 = [round(float(x), 2) for x in adj_spectrum1]
adj_spectrum2 = [round(float(x), 2) for x in adj_spectrum2]
lap_spectrum1 = [round(float(x), 2) for x in lap_spectrum1]
lap_spectrum2 = [round(float(x), 2) for x in lap_spectrum2]
output = (
f"### **Spectral Isomorphism Test Results**\n\n"
f"#### **Step 1: Node and Edge Counts**\n"
f"- **Graph 1**: Nodes: {len(graph1)}, Edges: {sum(len(neighbors) for neighbors in graph1.values()) // 2}\n"
f"- **Graph 2**: Nodes: {len(graph2)}, Edges: {sum(len(neighbors) for neighbors in graph2.values()) // 2}\n\n"
f"#### **Step 2: Adjacency Spectra**\n"
f"- Graph 1: {adj_spectrum1}\n"
f"- Graph 2: {adj_spectrum2}\n"
f"- Are the adjacency spectra approximately equal? {'β
Yes' if np.allclose(adj_spectrum1, adj_spectrum2) else 'β No'}\n\n"
f"#### **Step 3: Laplacian Spectra**\n"
f"- Graph 1: {lap_spectrum1}\n"
f"- Graph 2: {lap_spectrum2}\n"
f"- Are the Laplacian spectra approximately equal? {'β
Yes' if np.allclose(lap_spectrum1, lap_spectrum2) else 'β No'}\n\n"
f"#### **Final Result**\n"
f"- Outcome: {'β
PASS' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else 'β FAIL'}\n"
f"- Conclusion: The graphs are {'isomorphic' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else 'NOT isomorphic'}.\n"
)
return output
def check_graph_homomorphism(graph1, graph2, mapping):
"""Check if a mapping defines a graph homomorphism."""
result = []
for u, v in graph1.edges():
mapped_u, mapped_v = mapping.get(u), mapping.get(v)
if mapped_u is None or mapped_v is None:
result.append(f"Mapping is incomplete. Missing vertex {u} or {v}.")
continue
if (mapped_u, mapped_v) not in graph2.edges() and (mapped_v, mapped_u) not in graph2.edges():
result.append(f"Edge ({u}, {v}) in Graph 1 maps to ({mapped_u}, {mapped_v}) in Graph 2. Edge does NOT exist in Graph 2.")
else:
result.append(f"Edge ({u}, {v}) in Graph 1 maps to ({mapped_u}, {mapped_v}) in Graph 2. Edge exists in Graph 2.")
is_homomorphism = all(("exists" in line) for line in result)
final_result = (
f"**Final Result:** {'β
Mapping IS a Graph Homomorphism.' if is_homomorphism else 'β Mapping IS NOT a Graph Homomorphism.'}\n"
f"Explanation: A graph homomorphism must preserve all adjacencies. If any edge fails to map correctly, the mapping is invalid."
)
return "\n".join(result) + "\n\n" + final_result
def demonstrate_matrix_representations(graph):
"""Display adjacency matrix, Laplacian matrix, and spectra."""
adj_matrix = nx.adjacency_matrix(nx.Graph(graph)).todense()
laplacian_matrix = nx.laplacian_matrix(nx.Graph(graph)).todense()
degree_matrix = np.diag([len(graph[v]) for v in graph])
adj_spectrum = calculate_spectrum(nx.adjacency_matrix(nx.Graph(graph)), k=min(6, len(graph) - 1))
lap_spectrum = calculate_spectrum(nx.laplacian_matrix(nx.Graph(graph)), k=min(6, len(graph) - 1), which='SM')
algebraic_connectivity = lap_spectrum[1] if len(lap_spectrum) > 1 else 0 # Second smallest eigenvalue
output = (
f"### **Matrix Representations and Spectra**\n\n"
f"#### **Adjacency Matrix**\n"
f"```\n{adj_matrix}\n```\n\n"
f"#### **Laplacian Matrix**\n"
f"```\n{laplacian_matrix}\n```\n\n"
f"#### **Degree Matrix**\n"
f"```\n{degree_matrix}\n```\n\n"
f"#### **Adjacency Spectrum**\n"
f"```{[round(x, 2) for x in adj_spectrum]}```\n\n"
f"#### **Laplacian Spectrum**\n"
f"```{[round(x, 2) for x in lap_spectrum]}```\n\n"
f"#### **Algebraic Connectivity**\n"
f"The second smallest eigenvalue (Algebraic Connectivity): {round(algebraic_connectivity, 2)}\n\n"
f"**Explanation:** These matrices and spectra provide insights into the graph's structure. Algebraic connectivity measures robustness."
)
return output
def process_inputs(graph1_input, graph2_input, question_type, mapping=None):
"""Process user inputs and perform the selected operation."""
# Parse graphs
graph1 = parse_graph_input(graph1_input)
graph2 = parse_graph_input(graph2_input)
# Determine operation based on question type
if question_type == "Spectral Isomorphism Test":
result = spectral_isomorphism_test(graph1, graph2)
elif question_type == "Graph Homomorphism Check":
if mapping is None:
result = "Error: Mapping is required for Graph Homomorphism Check."
else:
result = check_graph_homomorphism(nx.Graph(graph1), nx.Graph(graph2), eval(mapping))
elif question_type == "Matrix Representations and Spectra":
result = demonstrate_matrix_representations(graph1)
else:
result = "Unsupported question type."
# Visualize graphs
graph1_plot = visualize_graph(graph1)
graph2_plot = visualize_graph(graph2)
return graph1_plot, graph2_plot, result
# Gradio Interface
with gr.Blocks(title="Graph Theory Project") as demo:
gr.Markdown("# Graph Theory Project")
gr.Markdown("Analyze graphs using algebraic methods!")
with gr.Row():
graph1_input = gr.Textbox(label="Graph 1 Input (e.g., '{0: [1], 1: [0, 2], 2: [1]}' or edge list)")
graph2_input = gr.Textbox(label="Graph 2 Input (e.g., '{0: [1], 1: [0, 2], 2: [1]}' or edge list)")
question_type = gr.Dropdown(
choices=["Spectral Isomorphism Test", "Graph Homomorphism Check", "Matrix Representations and Spectra"],
label="Select Question Type"
)
mapping_input = gr.Textbox(label="Mapping (for Graph Homomorphism Check, e.g., '{0: 0, 1: 1, 2: 2}')", visible=False)
def toggle_mapping_visibility(question_type):
return {"visible": question_type == "Graph Homomorphism Check"}
question_type.change(toggle_mapping_visibility, inputs=question_type, outputs=mapping_input)
with gr.Row():
graph1_output = gr.Plot(label="Graph 1 Visualization")
graph2_output = gr.Plot(label="Graph 2 Visualization")
result_output = gr.Textbox(label="Results", lines=20)
submit_button = gr.Button("Run")
submit_button.click(
lambda g1, g2, qt, m: process_inputs(g1, g2, qt, m),
inputs=[graph1_input, graph2_input, question_type, mapping_input],
outputs=[graph1_output, graph2_output, result_output]
)
# Launch the app
demo.launch() |