Spaces:
Sleeping
Sleeping
File size: 10,200 Bytes
1812ff9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import streamlit as st
import numpy as np
import plotly.graph_objs as go
def convex_function(x, y):
return x**2 + y**2
def non_convex_function(x, y):
return np.sin(x) * np.cos(y) * x * y
def gradient_descent(func, grad_func, start, learning_rate, n_iter):
path = [start]
for _ in range(n_iter):
grad = grad_func(path[-1])
next_point = path[-1] - learning_rate * grad
path.append(next_point)
return np.array(path)
def stochastic_gradient_descent(func, grad_func, start, learning_rate, n_iter):
path = [start]
for _ in range(n_iter):
grad = grad_func(path[-1]) + np.random.normal(0, 0.1, 2)
next_point = path[-1] - learning_rate * grad
path.append(next_point)
return np.array(path)
def grad_convex(point):
x, y = point
return np.array([2*x, 2*y])
def grad_non_convex(point):
x, y = point
return np.array([np.cos(x) * np.cos(y) * y + np.sin(x) * np.sin(y) * x, np.cos(x) * np.cos(y) * x - np.sin(x) * np.sin(y) * y])
def simulated_annealing(func, start, temp, cooling_rate, n_iter):
path = [start]
current_point = start
lowest_point = current_point
for i in range(n_iter):
next_point = current_point + np.random.normal(0, 1, 2)
delta_E = func(next_point[0], next_point[1]) - func(current_point[0], current_point[1])
if delta_E < 0 or np.exp(-delta_E / temp) > np.random.rand():
current_point = next_point
if func(current_point[0], current_point[1]) < func(lowest_point[0], lowest_point[1]):
lowest_point = current_point
path.append(current_point)
temp *= cooling_rate
return np.array(path), lowest_point
def plot_3d_surface(func, path, title, alphas=None, lowest_point=None):
x_min, x_max = min(path[:, 0].min(), -6), max(path[:, 0].max(), 6)
y_min, y_max = min(path[:, 1].min(), -6), max(path[:, 1].max(), 6)
x = np.linspace(x_min, x_max, 200)
y = np.linspace(y_min, y_max, 200)
X, Y = np.meshgrid(x, y)
Z = func(X, Y)
fig = go.Figure(data=[go.Surface(z=Z, x=X, y=Y, opacity=0.7)])
if alphas is None:
alphas = [1.0] * len(path)
for i in range(len(path) - 1):
fig.add_trace(go.Scatter3d(
x=path[i:i+2, 0],
y=path[i:i+2, 1],
z=func(path[i:i+2, 0], path[i:i+2, 1]),
mode='lines',
line=dict(color='orange', width=4),
opacity=alphas[i],
showlegend=False
))
fig.add_trace(go.Scatter3d(
x=path[:, 0],
y=path[:, 1],
z=func(path[:, 0], path[:, 1]),
mode='markers',
marker=dict(size=4, color='orange', opacity=alphas[-1]),
name='Path'
))
fig.add_trace(go.Scatter3d(
x=[path[0, 0]],
y=[path[0, 1]],
z=[func(path[0, 0], path[0, 1])],
mode='markers',
marker=dict(size=6, color='green', opacity=alphas[0]),
name='Start'
))
if lowest_point is not None:
fig.add_trace(go.Scatter3d(
x=[lowest_point[0]],
y=[lowest_point[1]],
z=[func(lowest_point[0], lowest_point[1])],
mode='markers',
marker=dict(size=6, color='red', opacity=alphas[-1]),
name='Lowest Observed'
))
fig.update_layout(title=title, scene=dict(
xaxis_title='X',
yaxis_title='Y',
zaxis_title='Z'))
return fig
st.title("Convex and Non-Convex SGD Optimization")
tab1, tab2, tab3 = st.tabs(["Gradient Descent", "Stochastic Gradient Descent", "Simulated Annealing"])
st.sidebar.header("Parameters")
learning_rate = st.sidebar.slider("Learning Rate", 0.01, 1.0, 0.1)
n_iter = st.sidebar.slider("Number of Iterations", 10, 100, 50)
convex_start_x = st.sidebar.slider("Convex Start X", -3.0, 3.0, 2.5)
convex_start_y = st.sidebar.slider("Convex Start Y", -3.0, 3.0, 2.5)
non_convex_start_x = st.sidebar.slider("Non-Convex Start X", -3.0, 3.0, 2.5)
non_convex_start_y = st.sidebar.slider("Non-Convex Start Y", -3.0, 3.0, 2.5)
temp = st.sidebar.slider("Initial Temperature (Simulated Annealing)", 1.0, 10.0, 5.0)
cooling_rate = st.sidebar.slider("Cooling Rate (Simulated Annealing)", 0.8, 0.99, 0.95)
convex_start = np.array([convex_start_x, convex_start_y])
non_convex_start = np.array([non_convex_start_x, non_convex_start_y])
with tab1:
st.header("Gradient Descent")
st.write("Visualizing gradient descent on convex and non-convex functions.")
with st.expander("Gradient Descent Algorithm and Math"):
st.markdown(r"""
### Gradient Descent Algorithm
**Step-by-step Algorithm**:
1. Initialize starting point $\mathbf{x}_0$.
2. For each iteration $t$:
- Compute the gradient $\nabla f(\mathbf{x}_t)$.
- Update the current point: $\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \nabla f(\mathbf{x}_t)$.
**Mathematical Formulation**:
$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \nabla f(\mathbf{x}_t)
$$
where:
- $\mathbf{x}_t$ is the current point.
- $\alpha$ is the learning rate.
- $\nabla f(\mathbf{x}_t)$ is the gradient of the function at $\mathbf{x}_t$.
""")
convex_path_gd = gradient_descent(convex_function, grad_convex, convex_start, learning_rate, n_iter)
non_convex_path_gd = gradient_descent(non_convex_function, grad_non_convex, non_convex_start, learning_rate, n_iter)
st.plotly_chart(plot_3d_surface(convex_function, convex_path_gd, "Convex Function (GD)"))
st.plotly_chart(plot_3d_surface(non_convex_function, non_convex_path_gd, "Non-Convex Function (GD)"))
with tab2:
st.header("Stochastic Gradient Descent")
st.write("Visualizing stochastic gradient descent on convex and non-convex functions.")
with st.expander("Stochastic Gradient Descent Algorithm and Math"):
st.markdown(r"""
### Stochastic Gradient Descent Algorithm
**Step-by-step Algorithm**:
1. Initialize starting point $\mathbf{x}_0$.
2. For each iteration $t$:
- Compute a stochastic approximation of the gradient $\nabla f(\mathbf{x}_t) + \text{noise}$.
- Update the current point: $\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \left(\nabla f(\mathbf{x}_t) + \text{noise}\right)$.
**Mathematical Formulation**:
$$
\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \left(\nabla f(\mathbf{x}_t) + \text{noise}\right)
$$
where:
- $\mathbf{x}_t$ is the current point.
- $\alpha$ is the learning rate.
- $\nabla f(\mathbf{x}_t)$ is the gradient of the function at $\mathbf{x}_t$.
- $\text{noise}$ is a small random perturbation.
""")
convex_path_sgd = stochastic_gradient_descent(convex_function, grad_convex, convex_start, learning_rate, n_iter)
non_convex_path_sgd = stochastic_gradient_descent(non_convex_function, grad_non_convex, non_convex_start, learning_rate, n_iter)
st.plotly_chart(plot_3d_surface(convex_function, convex_path_sgd, "Convex Function (SGD)"))
st.plotly_chart(plot_3d_surface(non_convex_function, non_convex_path_sgd, "Non-Convex Function (SGD)"))
with tab3:
st.header("Simulated Annealing")
st.write("Visualizing simulated annealing on a non-convex function.")
with st.expander("Simulated Annealing Algorithm and Math"):
st.markdown(r"""
### Simulated Annealing Algorithm
**Step-by-step Algorithm**:
1. Initialize starting point $\mathbf{x}_0$ and temperature $T$.
2. For each iteration $t$:
- Generate a new point $\mathbf{x}'$ in the neighborhood of the current point $\mathbf{x}_t$.
- Compute the change in function value $\Delta E = f(\mathbf{x}') - f(\mathbf{x}_t)$.
- If $\Delta E < 0$, accept the new point $\mathbf{x}_{t+1} = \mathbf{x}'$.
- If $\Delta E \geq 0$, accept the new point with a probability $\exp\left(\frac{-\Delta E}{T}\right)$.
- Update the temperature $T$.
**Mathematical Formulation**:
$$
\mathbf{x}_{t+1} =
\begin{cases}
\mathbf{x}' & \text{if } \Delta E < 0 \\
\mathbf{x}' & \text{with probability } \exp\left(\frac{-\Delta E}{T}\right) \text{ if } \Delta E \geq 0 \\
\mathbf{x}_t & \text{otherwise}
\end{cases}
$$
where:
- $\mathbf{x}_t$ is the current point.
- $\mathbf{x}'$ is the new point.
- $T$ is the temperature.
- $\Delta E = f(\mathbf{x}') - f(\mathbf{x}_t)$ is the change in function value.
- $\exp\left(\frac{-\Delta E}{T}\right)$ is the acceptance probability.
""")
non_convex_path_sa, lowest_point = simulated_annealing(non_convex_function, non_convex_start, temp, cooling_rate, n_iter)
# Visualizing the path with alpha changing based on iteration
alphas = np.linspace(0.1, 1, len(non_convex_path_sa))
fig_sa = plot_3d_surface(non_convex_function, non_convex_path_sa, "Non-Convex Function (SA)", alphas=alphas, lowest_point=lowest_point)
# Adding blue points for other iteration's observed minimums
other_mins = non_convex_path_sa[:-1]
fig_sa.add_trace(go.Scatter3d(
x=other_mins[:, 0],
y=other_mins[:, 1],
z=non_convex_function(other_mins[:, 0], other_mins[:, 1]),
mode='markers',
marker=dict(size=4, color='blue'),
name='Observed Minima'
))
# Adding the final minimum point in red
fig_sa.add_trace(go.Scatter3d(
x=[lowest_point[0]],
y=[lowest_point[1]],
z=[non_convex_function(lowest_point[0], lowest_point[1])],
mode='markers',
marker=dict(size=6, color='red'),
name='Lowest Observed'
))
# Adding the starting point in green
fig_sa.add_trace(go.Scatter3d(
x=[non_convex_path_sa[0, 0]],
y=[non_convex_path_sa[0, 1]],
z=[non_convex_function(non_convex_path_sa[0, 0], non_convex_path_sa[0, 1])],
mode='markers',
marker=dict(size=6, color='green'),
name='Start'
))
st.plotly_chart(fig_sa) |