Spaces:
Sleeping
Sleeping
| #! /usr/bin/python3 | |
| r'''############################################################################ | |
| ################################################################################ | |
| # | |
| # | |
| # Tegridy Cupy Python Module (TCUPY) | |
| # Version 1.0 | |
| # | |
| # Project Los Angeles | |
| # | |
| # Tegridy Code 2025 | |
| # | |
| # https://github.com/asigalov61/tegridy-tools | |
| # | |
| # | |
| ################################################################################ | |
| # | |
| # Copyright 2024 Project Los Angeles / Tegridy Code | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| ################################################################################ | |
| ################################################################################ | |
| # | |
| # Critical dependencies | |
| # | |
| # !pip install cupy-cuda12x | |
| # !pip install numpy==1.24.4 | |
| # | |
| ################################################################################ | |
| ''' | |
| ################################################################################ | |
| print('=' * 70) | |
| print('Loading module...') | |
| print('Please wait...') | |
| print('=' * 70) | |
| ################################################################################ | |
| import sys | |
| import os | |
| ################################################################################ | |
| try: | |
| import cupy as cp | |
| import cupy as np | |
| print('=' * 70) | |
| print('CuPy is found!') | |
| print('Will use CuPy and GPU for processing!') | |
| print('=' * 70) | |
| except ImportError as e: | |
| print(f"Error: Could not import CuPy. Details: {e}") | |
| # Handle the error, such as providing a fallback or exiting the program | |
| # For example: | |
| print("Please make sure CuPy is installed.") | |
| print('=' * 70) | |
| raise RuntimeError("CuPy could not be loaded!") from e | |
| ################################################################################ | |
| from collections import defaultdict, deque | |
| from typing import Optional, Tuple, Dict, Any, List | |
| ################################################################################ | |
| # Constants | |
| MEMORY_LEN = 12 # Autoregressive context length | |
| SEQUENCE_LENGTH = 32 # Each sequence has 24 triplets | |
| # Baseline penalty values: | |
| REPETITION_PENALTY = (1.0, 1.0, 1.0) # base repetition penalty per element | |
| SPIKE_PENALTY_STRENGTH = (1.0, 1.0, 1.0) # base spike penalty strength per element | |
| SPIKE_SIGMA = (1.0, 1.0, 1.0) # baseline sigma value per element (minimum allowed) | |
| ################################################################################### | |
| def find_numpy_array(src_array, trg_array): | |
| """ | |
| Finds 1D numpy array in 2D numpy array | |
| """ | |
| match_mask = np.all(src_array == trg_array, axis=1) | |
| return np.where(match_mask)[0] | |
| ################################################################################### | |
| def vertical_list_search(src_list, trg_list): | |
| """ | |
| For each vertical window of consecutive rows of height len(trg_list) in src_list, | |
| this function checks whether for every offset j (0 <= j < len(trg_list)) the row | |
| at index (window_start + j) contains trg_list[j]. | |
| It returns a list of windows (each a list of consecutive row indices) that meet this condition. | |
| """ | |
| if not src_list or not trg_list: | |
| return [] | |
| n = len(src_list) | |
| k = len(trg_list) | |
| num_windows = n - k + 1 | |
| if num_windows <= 0: | |
| return [] | |
| # Determine the maximum row length. | |
| max_len = max(len(row) for row in src_list) | |
| # Determine a fill value guaranteed to be less than any valid value. | |
| global_min = min(min(row) for row in src_list if row) | |
| fill_value = global_min - 1 | |
| # Build a padded 2D array A (shape n x max_len) from src_list. | |
| A = np.full((n, max_len), fill_value, dtype=np.int64) | |
| for i, row in enumerate(src_list): | |
| L = len(row) | |
| A[i, :L] = row | |
| # For each unique target in trg_list, compute a Boolean vector of length n. | |
| # present[t][i] will be True if A[i, :] contains t, else False. | |
| unique_targets = set(trg_list) | |
| present_dict = {} | |
| for t in unique_targets: | |
| # Compute along axis=1 so that for each row we see if any element equals t. | |
| present_dict[t] = np.any(A == t, axis=1) | |
| # Build a Boolean array B of shape (k, num_windows) where for each offset j, | |
| # B[j, s] = present_dict[ trg_list[j] ][s + j] for each window starting index s. | |
| B = np.empty((k, num_windows), dtype=bool) | |
| for j in range(k): | |
| t = trg_list[j] | |
| # For a vertical window starting at s, row s+j should contain t. | |
| B[j, :] = present_dict[t][j: j + num_windows] | |
| # A window is valid if all k rows in that window contain the required target. | |
| valid_windows_mask = np.all(B, axis=0) | |
| valid_starts = np.nonzero(valid_windows_mask)[0] | |
| # Create output windows (each as a list of consecutive row indices). | |
| result = [list(range(s, s + k)) for s in valid_starts] | |
| return result | |
| ################################################################################### | |
| def pack_sequences(train_data, pad_val=-1): | |
| """ | |
| Packs a list of variable-length token sequences into a 2D CuPy array. | |
| This version computes lengths and builds the padded array and mask entirely on GPU. | |
| It converts each sequence into a CuPy array, concatenates them, and assigns tokens in one shot. | |
| Returns: | |
| batch: a CuPy array of shape (n, max_len) | |
| lengths: a CuPy array of shape (n,) containing each sequence's length. | |
| """ | |
| n = len(train_data) | |
| # Compute lengths of each sequence and convert to a CuPy array. | |
| lengths = cp.array([len(seq) for seq in train_data], dtype=cp.int64) | |
| max_len_val = int(cp.max(lengths).get()) | |
| # Allocate the padded 2D array filled with pad_val. | |
| batch = cp.full((n, max_len_val), pad_val, dtype=cp.int64) | |
| # Create a boolean mask: for each row, positions less than the sequence length are valid. | |
| mask = cp.arange(max_len_val).reshape(1, max_len_val) < lengths.reshape(n, 1) | |
| # Convert each sequence to a CuPy array and concatenate them. | |
| sequences = [cp.array(seq, dtype=cp.int64) for seq in train_data] | |
| flat = cp.concatenate(sequences) | |
| # Fill in the valid positions. | |
| batch[mask] = flat | |
| return batch, lengths | |
| ################################################################################### | |
| def count_best_pair_gpu(batch, lengths, factor, pad_val=-1): | |
| """ | |
| Given the entire GPU-resident packed data, compute the most frequent | |
| adjacent pair (encoded as: pair_val = first * factor + second) on GPU. | |
| """ | |
| n, L = batch.shape | |
| cols = cp.arange(L - 1, dtype=cp.int64) | |
| cols_expanded = cp.broadcast_to(cols, (n, L - 1)) | |
| valid_mask = cols_expanded < cp.reshape(lengths, (n, 1)) - 1 | |
| first_tokens = batch[:, :L - 1] | |
| second_tokens = batch[:, 1:L] | |
| valid_first = first_tokens[valid_mask] | |
| valid_second = second_tokens[valid_mask] | |
| pairs = valid_first * factor + valid_second | |
| if pairs.size == 0: | |
| return None | |
| sorted_pairs = cp.sort(pairs) | |
| diff = cp.diff(sorted_pairs) | |
| boundaries = cp.nonzero(diff)[0] + 1 | |
| group_starts = cp.concatenate([cp.array([0], dtype=cp.int64), boundaries]) | |
| group_ends = cp.concatenate([boundaries, cp.array([sorted_pairs.size], dtype=cp.int64)]) | |
| group_counts = group_ends - group_starts | |
| max_idx = int(cp.argmax(group_counts)) | |
| best_pair_enc = int(sorted_pairs[group_starts[max_idx]]) | |
| best_freq = int(group_counts[max_idx]) | |
| first = best_pair_enc // factor | |
| second = best_pair_enc % factor | |
| return (first, second, best_freq) | |
| ################################################################################### | |
| merge_kernel_code = r''' | |
| extern "C" __global__ | |
| void merge_pair_kernel(const long* input, long* output, | |
| const long* input_lengths, long* output_lengths, | |
| const long num_rows, const long num_cols, | |
| const long a, const long b, const long new_token, | |
| const long pad_val) { | |
| int row = blockIdx.x * blockDim.x + threadIdx.x; | |
| if (row >= num_rows) return; | |
| long in_length = input_lengths[row]; | |
| long out_idx = 0; | |
| bool skip_next = false; | |
| for (long i = 0; i < in_length; i++) { | |
| if (skip_next) { | |
| skip_next = false; | |
| continue; | |
| } | |
| long token = input[row * num_cols + i]; | |
| if (i < in_length - 1 && token == a && input[row * num_cols + i + 1] == b) { | |
| output[row * num_cols + out_idx] = new_token; | |
| out_idx++; | |
| skip_next = true; | |
| } else { | |
| output[row * num_cols + out_idx] = token; | |
| out_idx++; | |
| } | |
| } | |
| output_lengths[row] = out_idx; | |
| for (long j = out_idx; j < num_cols; j++) { | |
| output[row * num_cols + j] = pad_val; | |
| } | |
| } | |
| ''' | |
| merge_kernel = cp.RawKernel(merge_kernel_code, 'merge_pair_kernel') | |
| ################################################################################### | |
| def learn_bpe_codes_gpu(train_data, vocab_size=4096, max_merges=None, pad_val=-1): | |
| """ | |
| Learn BPE merge rules completely on GPU. | |
| The training data is packed once (using the vectorized pack_sequences). | |
| On each merge iteration, the best adjacent pair is computed on GPU and then merged | |
| into a new token via a custom merge kernel (with double-buffering). | |
| Returns: | |
| codes: a list of merge rules as ((first, second), new_token) | |
| final_data: the merged training data (list of sequences) | |
| """ | |
| # Pack the entire dataset onto GPU. | |
| batch, lengths = pack_sequences(train_data, pad_val) | |
| n, L = batch.shape | |
| # Initialize vocabulary and the next available token. | |
| initial_vocab = {token for seq in train_data for token in seq} | |
| next_token = max(initial_vocab) + 1 | |
| codes = [] | |
| merge_count = 0 | |
| pbar = tqdm.tqdm(total=max_merges if max_merges is not None else None, | |
| desc="Learning BPE Codes (GPU)", leave=True) | |
| # Preallocate buffers for double-buffering. | |
| work_batch = cp.empty_like(batch) | |
| work_lengths = cp.empty_like(lengths) | |
| input_batch = batch | |
| input_lengths = lengths | |
| threads_per_block = 128 | |
| blocks = (n + threads_per_block - 1) // threads_per_block | |
| while next_token < vocab_size and (max_merges is None or merge_count < max_merges): | |
| # Early stop if all sequences have collapsed (checked on GPU). | |
| if bool(cp.all(input_lengths == 1)): | |
| pbar.write("All sequences have collapsed; stopping early.") | |
| break | |
| factor = next_token # by construction, every token is < next_token | |
| best = count_best_pair_gpu(input_batch, input_lengths, factor, pad_val) | |
| if best is None: | |
| pbar.write("No mergeable pairs found; stopping early.") | |
| break | |
| best_pair = (best[0], best[1]) | |
| best_freq = best[2] | |
| if best_freq < 2: | |
| pbar.write("Best pair frequency is less than 2; stopping early.") | |
| break | |
| codes.append((best_pair, next_token)) | |
| # Launch the merge kernel. | |
| merge_kernel((blocks,), (threads_per_block,), | |
| (input_batch, | |
| work_batch, | |
| input_lengths, | |
| work_lengths, | |
| cp.int64(n), | |
| cp.int64(L), | |
| cp.int64(best_pair[0]), | |
| cp.int64(best_pair[1]), | |
| cp.int64(next_token), | |
| cp.int64(pad_val))) | |
| # Swap buffers for double-buffering. | |
| input_batch, work_batch = work_batch, input_batch | |
| input_lengths, work_lengths = work_lengths, input_lengths | |
| next_token += 1 | |
| merge_count += 1 | |
| pbar.update(1) | |
| pbar.close() | |
| final_batch = cp.asnumpy(input_batch) | |
| final_lengths = cp.asnumpy(input_lengths) | |
| final_data = [final_batch[i, :final_lengths[i]].tolist() for i in range(n)] | |
| return codes, final_data | |
| ################################################################################### | |
| fused_merge_kernel_code = r''' | |
| extern "C" __global__ | |
| void fused_merge_kernel(long* data_in, long* data_out, long* lengths, const long pad_val, | |
| const long num_rows, const long max_len, const long num_merges, const long* merge_rules) { | |
| int row = blockIdx.x * blockDim.x + threadIdx.x; | |
| if (row >= num_rows) return; | |
| long base = row * max_len; | |
| long cur_len = lengths[row]; | |
| long* cur = data_in + base; | |
| long* other = data_out + base; | |
| // Process each merge rule sequentially. | |
| for (int m = 0; m < num_merges; m++) { | |
| long a = merge_rules[3 * m]; | |
| long b = merge_rules[3 * m + 1]; | |
| long new_token = merge_rules[3 * m + 2]; | |
| long out_idx = 0; | |
| for (int i = 0; i < cur_len; i++) { | |
| if (i < cur_len - 1 && cur[i] == a && cur[i+1] == b) { | |
| other[out_idx] = new_token; | |
| out_idx++; | |
| i++; // Skip the next token. | |
| } else { | |
| other[out_idx] = cur[i]; | |
| out_idx++; | |
| } | |
| } | |
| cur_len = out_idx; | |
| // Swap pointers for the next merge. | |
| long* temp = cur; | |
| cur = other; | |
| other = temp; | |
| } | |
| lengths[row] = cur_len; | |
| // Pad the remaining positions with pad_val. | |
| for (int i = cur_len; i < max_len; i++) { | |
| cur[i] = pad_val; | |
| } | |
| // If the final result is not in data_in, copy back. | |
| if (cur != data_in + base) { | |
| for (int i = 0; i < cur_len; i++) { | |
| data_in[base + i] = cur[i]; | |
| } | |
| } | |
| } | |
| ''' | |
| fused_kernel = cp.RawKernel(fused_merge_kernel_code, 'fused_merge_kernel') | |
| ################################################################################### | |
| def retokenize_train_data_fused_gpu(train_data, codes, pad_val=-1): | |
| """ | |
| Retokenize training data using the fully fused GPU kernel. | |
| The entire training dataset is first packed into GPU memory (using pack_sequences). | |
| All learned merge rules (provided in 'codes') are applied via a single kernel launch. | |
| Each GPU thread processes one sequence by applying all merge rules sequentially. | |
| Returns: | |
| tokenized_data: list of retokenized sequences. | |
| """ | |
| # Pack the data. | |
| batch, lengths = pack_sequences(train_data, pad_val) | |
| n, max_len = batch.shape | |
| # Build a flattened merge_rules array using CuPy. | |
| if len(codes) > 0: | |
| merge_rules_list = [[rule[0][0], rule[0][1], rule[1]] for rule in codes] | |
| merge_rules_gpu = cp.array(merge_rules_list, dtype=cp.int64) | |
| merge_rules_gpu = merge_rules_gpu.reshape(-1) | |
| else: | |
| merge_rules_gpu = cp.empty((0,), dtype=cp.int64) | |
| num_merges = merge_rules_gpu.shape[0] // 3 | |
| # Preallocate a scratch buffer. | |
| scratch = cp.empty_like(batch) | |
| threads_per_block = 128 | |
| blocks = (n + threads_per_block - 1) // threads_per_block | |
| # Launch the fused kernel. | |
| fused_kernel((blocks,), (threads_per_block,), | |
| (batch, scratch, lengths, cp.int64(pad_val), | |
| cp.int64(n), cp.int64(max_len), cp.int64(num_merges), merge_rules_gpu)) | |
| final_batch = cp.asnumpy(batch) | |
| final_lengths = cp.asnumpy(lengths) | |
| tokenized_data = [final_batch[i, :final_lengths[i]].tolist() for i in range(n)] | |
| return tokenized_data | |
| ################################################################################### | |
| def bpe_encode(seq, codes): | |
| """ | |
| Iteratively encodes a sequence using BPE merge rules provided in a dictionary. | |
| Args: | |
| seq (list): A list of tokens (e.g. integers) representing the input sequence. | |
| codes (dict): A dictionary mapping token pairs (a tuple of two tokens) | |
| to a merged token. For example: | |
| { (1, 2): 100, (100, 3): 101 } | |
| Returns: | |
| list: The encoded sequence after applying all possible merges. | |
| The function repeatedly scans the entire sequence from left to right; | |
| whenever it finds a contiguous token pair that exists as a key in the | |
| codes dict, it replaces that pair with the merged token. This pass is | |
| repeated until no more merges are possible. | |
| """ | |
| if type(codes) == list: | |
| codes = dict(codes) | |
| encoded_seq = seq.copy() # work on a copy so as not to modify the original | |
| done = False | |
| while not done: | |
| new_seq = [] | |
| i = 0 | |
| changed = False | |
| while i < len(encoded_seq): | |
| # If a merge is possible, merge the two tokens. | |
| if i < len(encoded_seq) - 1 and (encoded_seq[i], encoded_seq[i + 1]) in codes: | |
| new_seq.append(codes[(encoded_seq[i], encoded_seq[i + 1])]) | |
| i += 2 # Skip the next token as it was merged. | |
| changed = True | |
| else: | |
| new_seq.append(encoded_seq[i]) | |
| i += 1 | |
| # If no merges occurred in this pass, exit the loop. | |
| if not changed: | |
| done = True | |
| encoded_seq = new_seq | |
| return encoded_seq | |
| ################################################################################### | |
| def bpe_decode(seq, codes): | |
| """ | |
| Decodes a sequence encoded with BPE merge rules defined in a codes dictionary. | |
| Args: | |
| seq (list): The encoded sequence (a list of tokens). | |
| codes (dict): A dictionary mapping token pairs to the merged token, used during encoding. | |
| Returns: | |
| list: The fully decoded sequence, with all merged tokens recursively expanded. | |
| The function constructs a reverse mapping that converts a merged token back into | |
| its constituent pair. Each token in the sequence is then recursively expanded. | |
| """ | |
| if type(codes) == list: | |
| codes = dict(codes) | |
| # Build the reverse mapping: key = merged token, value = tuple (original token pair) | |
| reverse_mapping = {merged: pair for pair, merged in codes.items()} | |
| def recursive_expand(token): | |
| # If the token is a merged token, expand it recursively. | |
| if token in reverse_mapping: | |
| a, b = reverse_mapping[token] | |
| return recursive_expand(a) + recursive_expand(b) | |
| else: | |
| return [token] | |
| decoded_seq = [] | |
| for token in seq: | |
| decoded_seq.extend(recursive_expand(token)) | |
| return decoded_seq | |
| ################################################################################### | |
| def ensure_triplet(val: Any, name: str = "") -> Tuple[float, float, float]: | |
| """ | |
| Ensure the given parameter is returned as a triplet. | |
| If provided as a scalar, promote it to a triplet. | |
| """ | |
| if np.isscalar(val): | |
| return (float(val), float(val), float(val)) | |
| elif isinstance(val, (list, tuple)) and len(val) == 3: | |
| return tuple(float(x) for x in val) | |
| else: | |
| raise ValueError(f"{name} must be a scalar or a sequence of 3 numbers.") | |
| ################################################################################### | |
| REP_PENALTY = ensure_triplet(REPETITION_PENALTY, "REPETITION_PENALTY") | |
| SPIKE_STRENGTH = ensure_triplet(SPIKE_PENALTY_STRENGTH, "SPIKE_PENALTY_STRENGTH") | |
| SPIKE_SIG = ensure_triplet(SPIKE_SIGMA, "SPIKE_SIGMA") | |
| ################################################################################### | |
| def sliding_window_view_alternative(a: np.ndarray, window_length: int) -> np.ndarray: | |
| """ | |
| Create a sliding-window view (without copying) of an array. | |
| Expected input shape: (n, L, d) and returns: (n, L - window_length + 1, window_length, d) | |
| """ | |
| n, L, d = a.shape | |
| new_shape = (n, L - window_length + 1, window_length, d) | |
| new_strides = (a.strides[0], a.strides[1], a.strides[1], a.strides[2]) | |
| return np.lib.stride_tricks.as_strided(a, shape=new_shape, strides=new_strides) | |
| ################################################################################### | |
| def build_ngram_mapping(data: np.ndarray, memory_len: int) -> Dict[Any, Dict[Any, int]]: | |
| """ | |
| Build an n-gram mapping from a context (a sequence of triplets) to candidate triplets with frequencies. | |
| """ | |
| n, L, d = data.shape | |
| window_length = memory_len + 1 # context (memory) + candidate | |
| windows = sliding_window_view_alternative(data, window_length) | |
| # windows shape: (n, L - window_length + 1, window_length, d) | |
| # Split windows into context (first memory_len triplets) and candidates (last triplet) | |
| contexts = windows[:, :, :memory_len, :] # shape: (n, num_windows, memory_len, d) | |
| candidates = windows[:, :, memory_len, :] # shape: (n, num_windows, d) | |
| # Flatten the batch and window dimensions. | |
| contexts_flat = contexts.reshape(-1, memory_len, d) | |
| candidates_flat = candidates.reshape(-1, d) | |
| mapping = defaultdict(lambda: defaultdict(int)) | |
| total_windows = contexts_flat.shape[0] | |
| for context_arr, candidate_arr in tqdm.tqdm( | |
| zip(contexts_flat, candidates_flat), | |
| total=total_windows, | |
| desc="Building n-gram mapping"): | |
| context_key = tuple(map(tuple, context_arr)) # use a tuple of triplets as the key | |
| candidate_val = tuple(candidate_arr) | |
| mapping[context_key][candidate_val] += 1 | |
| return {context: dict(candidates) for context, candidates in mapping.items()} | |
| ################################################################################### | |
| def precompute_mapping_lookup(mapping: Dict[Any, Dict[Any, int]]) -> Dict[Any, Tuple[Tuple[Any, ...], np.ndarray]]: | |
| """ | |
| Converts the mapping into a lookup table: context -> (tuple(candidates), frequencies_array). | |
| """ | |
| mapping_lookup = {} | |
| for context, candidate_dict in tqdm.tqdm(mapping.items(), desc="Precomputing lookup"): | |
| candidates = tuple(candidate_dict.keys()) | |
| frequencies = np.array(list(candidate_dict.values()), dtype=np.float64) | |
| mapping_lookup[context] = (candidates, frequencies) | |
| return mapping_lookup | |
| ################################################################################### | |
| def build_training_sequences_set(data: np.ndarray) -> set: | |
| """ | |
| Build a set of training sequences (each as a tuple of triplets) for uniqueness checking. | |
| """ | |
| return {tuple(map(tuple, seq)) for seq in data} | |
| ################################################################################### | |
| def generate_sequence_optimized(mapping_lookup: Dict[Any, Tuple[Tuple[Any, ...], np.ndarray]], | |
| training_set: set, | |
| memory_len: int, | |
| sequence_length: int = 24, | |
| max_attempts: int = 1000) -> Optional[Tuple[Tuple[float, float, float], ...]]: | |
| """ | |
| Autoregressively generate a new, unique sequence using the precomputed mapping lookup. | |
| The invariant maintained is: the second element of one triplet is never greater than the first element | |
| of the following triplet. | |
| Two dynamic adjustments are applied for candidate selection: | |
| 1. **Dynamic Repetition Penalty:** | |
| For each candidate, count the occurrences of each element in the generated sequence. | |
| Rather than a fixed penalty, this repetition penalty scales with the ratio | |
| (current_length / sequence_length). In log-space, it subtracts: | |
| (current_length / sequence_length) * sum_k(count[k] * log(REP_PENALTY[k]) | |
| 2. **Dynamic Spike (Variance) Penalty:** | |
| For each candidate, compute the squared difference from the running average for each element. | |
| Use a dynamic sigma that is the maximum between the running standard deviation and the baseline. | |
| The penalty term for each element is: | |
| SPIKE_STRENGTH[k] * ((cand[k] - running_avg[k])^2) / (2 * dynamic_sigma[k]^2) | |
| The overall spike penalty is the sum of the three terms and is subtracted from the candidate’s log frequency. | |
| The resulting candidate log score is computed as: | |
| log(candidate_frequency) - rep_penalty_component - spike_penalty_component | |
| A numerical stable softmax is then applied over these scores to determine the probability for drawing a candidate. | |
| If no candidate passing the invariant is found, the attempt is aborted. | |
| Parameters: | |
| mapping_lookup: Precomputed lookup mapping (context → (candidates, frequencies)). | |
| training_set: Set of training sequences to ensure uniqueness. | |
| memory_len: Number of triplets used as context. | |
| sequence_length: Desired length of the generated sequence. | |
| max_attempts: Maximum number of generation attempts. | |
| Returns: | |
| A new unique sequence (tuple of triplets) that respects the invariant, or None if not found. | |
| """ | |
| mapping_keys = list(mapping_lookup.keys()) | |
| num_keys = len(mapping_keys) | |
| for attempt in range(max_attempts): | |
| # Select a seed context randomly (from training data so that the invariant holds). | |
| seed = mapping_keys[np.random.randint(0, num_keys)] | |
| generated_sequence: List[Tuple[float, float, float]] = list(seed) | |
| valid_generation = True | |
| while len(generated_sequence) < sequence_length: | |
| last_triplet = generated_sequence[-1] | |
| current_context = tuple(generated_sequence[-memory_len:]) # context as tuple of triplets | |
| candidate_found = False | |
| if current_context in mapping_lookup: | |
| candidates, frequencies = mapping_lookup[current_context] | |
| # Filter candidates by invariant: | |
| # Candidate's first element must be >= last triplet's second element. | |
| valid_indices = [i for i, cand in enumerate(candidates) if cand[0] >= last_triplet[1]] | |
| if valid_indices: | |
| # Filter candidates and their associated frequencies. | |
| filtered_freqs = frequencies[valid_indices] | |
| filtered_candidates = [candidates[i] for i in valid_indices] | |
| # Convert candidates into a NumPy array for vectorized operations. | |
| candidate_array = np.array(filtered_candidates, dtype=np.float64) # shape: (n_candidates, 3) | |
| # Prepare generation history as array. | |
| generated_array = np.array(generated_sequence, dtype=np.float64) # shape: (T, 3) | |
| current_length = generated_array.shape[0] | |
| # Running average and standard deviation for dynamic spike adjustment. | |
| running_avg = np.mean(generated_array, axis=0) # shape: (3,) | |
| running_std = np.std(generated_array, axis=0) # shape: (3,) | |
| # Dynamic sigma: ensure a minimum sigma value. | |
| dynamic_sigma = np.maximum(running_std, np.array(SPIKE_SIG)) | |
| # --- Compute Repetition Penalty --- | |
| # For each candidate, count the number of occurrences for each element along the corresponding column. | |
| rep_counts = np.array([ | |
| [np.sum(generated_array[:, k] == candidate_array[i, k]) for k in range(3)] | |
| for i in range(candidate_array.shape[0]) | |
| ]) # shape: (n_candidates, 3) | |
| # The repetition penalty in log-space. | |
| rep_penalty_term = np.sum(rep_counts * np.log(np.array(REP_PENALTY)) * | |
| (current_length / sequence_length), axis=1) # shape: (n_candidates,) | |
| # --- Compute Spike (Variance) Penalty --- | |
| # Compute the difference per candidate from the running average. | |
| diff = candidate_array - running_avg # shape: (n_candidates, 3) | |
| spike_penalty_term = np.sum(np.array(SPIKE_STRENGTH) * (diff**2) / (2 * (dynamic_sigma**2)), | |
| axis=1) # shape: (n_candidates,) | |
| # --- Compute Candidate Log-Scores --- | |
| # Use np.log on frequencies (they are positive by construction). | |
| log_freq = np.log(filtered_freqs) | |
| log_scores = log_freq - rep_penalty_term - spike_penalty_term | |
| # --- Softmax in Log-space (stable computation) --- | |
| max_log = np.max(log_scores) | |
| exp_scores = np.exp(log_scores - max_log) | |
| probabilities = exp_scores / np.sum(exp_scores) | |
| # Choose the next candidate using advanced probabilities. | |
| chosen_idx = np.random.choice(len(filtered_candidates), p=probabilities) | |
| next_triplet = filtered_candidates[chosen_idx] | |
| candidate_found = True | |
| if not candidate_found: | |
| # Abort this generation attempt if no valid candidate is available. | |
| valid_generation = False | |
| break | |
| generated_sequence.append(next_triplet) | |
| # Ensure the final sequence meets the invariant and is unique. | |
| if valid_generation and len(generated_sequence) == sequence_length: | |
| new_sequence = tuple(generated_sequence) | |
| invariant_ok = all(a[1] <= b[0] for a, b in zip(new_sequence, new_sequence[1:])) | |
| if invariant_ok and new_sequence not in training_set: | |
| return new_sequence | |
| return None | |
| ################################################################################### | |
| def analyze_generated_sequence(sequence: tuple, mapping_lookup: dict, memory_len: int) -> tuple: | |
| """ | |
| Analyze the generated sequence and return several useful statistics | |
| as both a dictionary and as a nicely formatted string report. | |
| Statistics Computed: | |
| - unigram_diversity: Ratio of unique triplets to total triplets. | |
| - repetition_rate: Fraction of repeated triplets. | |
| - bigram_diversity: Ratio of unique consecutive pairs to total pairs. | |
| - max_consecutive_repetitions: Maximum number of identical consecutive triplets. | |
| - avg_candidate_probability (overfit rate): For the transitions (using a sliding window of size | |
| MEMORY_LEN as context followed by candidate), the average probability of the chosen candidate | |
| as per the training mapping. | |
| Additional Analytics: | |
| - element_stats: For each element (index 0, 1, 2) in a triplet, includes: | |
| * mean, standard deviation, minimum, maximum, and average consecutive absolute difference. | |
| - avg_transition_entropy: The average entropy of the candidate distributions (from mapping_lookup) | |
| for each transition context. | |
| - context_coverage: The fraction of transitions (based on context of length MEMORY_LEN) that are found | |
| in the mapping_lookup. | |
| Parameters: | |
| sequence: Generated sequence (tuple of triplets). | |
| mapping_lookup: Precomputed mapping lookup. | |
| memory_len: The context length used. | |
| Returns: | |
| A tuple containing: | |
| (stats_dict, stats_report_string) | |
| """ | |
| stats = {} | |
| seq_len = len(sequence) | |
| # --- Basic Statistics --- | |
| # Unigram. | |
| unique_triplets = len(set(sequence)) | |
| stats["unigram_diversity"] = unique_triplets / seq_len | |
| stats["repetition_rate"] = 1 - (unique_triplets / seq_len) | |
| # Bigram. | |
| bigrams = [(sequence[i], sequence[i+1]) for i in range(seq_len - 1)] | |
| unique_bigrams = len(set(bigrams)) | |
| stats["bigram_diversity"] = unique_bigrams / (seq_len - 1) | |
| # Maximum consecutive repetitions. | |
| max_consecutive = 1 | |
| current_consecutive = 1 | |
| for i in range(1, seq_len): | |
| if sequence[i] == sequence[i-1]: | |
| current_consecutive += 1 | |
| if current_consecutive > max_consecutive: | |
| max_consecutive = current_consecutive | |
| else: | |
| current_consecutive = 1 | |
| stats["max_consecutive_repetitions"] = max_consecutive | |
| # Avg Candidate Probability (Overfit Rate) | |
| overfit_probs = [] | |
| for i in range(memory_len, seq_len): | |
| context = tuple(sequence[i - memory_len: i]) | |
| candidate = sequence[i] | |
| if context in mapping_lookup: | |
| candidates, frequencies = mapping_lookup[context] | |
| total_freq = np.sum(frequencies) | |
| try: | |
| idx = candidates.index(candidate) | |
| cand_prob = frequencies[idx] / total_freq | |
| overfit_probs.append(cand_prob) | |
| except ValueError: | |
| pass | |
| stats["avg_candidate_probability"] = np.mean(overfit_probs) if overfit_probs else None | |
| # --- Additional Analytics --- | |
| # 1. Element-Level Statistics. | |
| seq_arr = np.array(sequence) # shape: (seq_len, 3) | |
| element_stats = {} | |
| for dim in range(seq_arr.shape[1]): | |
| values = seq_arr[:, dim] | |
| mean_val = np.mean(values) | |
| std_val = np.std(values) | |
| min_val = np.min(values) | |
| max_val = np.max(values) | |
| # Calculate average absolute difference between consecutive values: | |
| diffs = np.abs(np.diff(values)) | |
| avg_diff = np.mean(diffs) if diffs.size > 0 else 0 | |
| element_stats[f"element_{dim}"] = { | |
| "mean": mean_val, | |
| "std": std_val, | |
| "min": min_val, | |
| "max": max_val, | |
| "avg_consecutive_diff": avg_diff, | |
| } | |
| stats["element_stats"] = element_stats | |
| # 2. Transition Entropy: | |
| entropies = [] | |
| valid_transitions = 0 | |
| for i in range(memory_len, seq_len): | |
| context = tuple(sequence[i - memory_len: i]) | |
| if context in mapping_lookup: | |
| candidates, freqs = mapping_lookup[context] | |
| total_freq = np.sum(freqs) | |
| if total_freq > 0: | |
| probs = freqs / total_freq | |
| # Add a very small constant to avoid log(0) | |
| epsilon = 1e-10 | |
| entropy = -np.sum(probs * np.log(probs + epsilon)) | |
| entropies.append(entropy) | |
| valid_transitions += 1 | |
| stats["avg_transition_entropy"] = np.mean(entropies) if entropies else None | |
| # 3. Context Coverage: | |
| total_transitions = seq_len - memory_len | |
| stats["context_coverage"] = (valid_transitions / total_transitions) if total_transitions > 0 else None | |
| # --- Build a Pretty Report String --- | |
| sep_line = "-" * 60 | |
| lines = [] | |
| lines.append(sep_line) | |
| lines.append("Sequence Analytics Report:") | |
| lines.append(sep_line) | |
| lines.append("Overall Statistics:") | |
| lines.append(f" Unigram Diversity : {stats['unigram_diversity']:.3f}") | |
| lines.append(f" Repetition Rate : {stats['repetition_rate']:.3f}") | |
| lines.append(f" Bigram Diversity : {stats['bigram_diversity']:.3f}") | |
| lines.append(f" Max Consecutive Repetitions: {stats['max_consecutive_repetitions']}") | |
| cand_prob = stats["avg_candidate_probability"] | |
| cand_prob_str = f"{cand_prob:.3f}" if cand_prob is not None else "N/A" | |
| lines.append(f" Avg Candidate Probability : {cand_prob_str}") | |
| lines.append("") | |
| lines.append("Element-Level Statistics:") | |
| for dim in sorted(element_stats.keys()): | |
| ed = element_stats[dim] | |
| lines.append(f" {dim.capitalize()}:") | |
| lines.append(f" Mean : {ed['mean']:.3f}") | |
| lines.append(f" Std Dev : {ed['std']:.3f}") | |
| lines.append(f" Min : {ed['min']:.3f}") | |
| lines.append(f" Max : {ed['max']:.3f}") | |
| lines.append(f" Avg Consecutive Diff : {ed['avg_consecutive_diff']:.3f}") | |
| lines.append("") | |
| lines.append("Transition Statistics:") | |
| avg_entropy = stats["avg_transition_entropy"] | |
| entropy_str = f"{avg_entropy:.3f}" if avg_entropy is not None else "N/A" | |
| lines.append(f" Average Transition Entropy: {entropy_str}") | |
| cc = stats["context_coverage"] | |
| cc_str = f"{cc:.3f}" if cc is not None else "N/A" | |
| lines.append(f" Context Coverage : {cc_str}") | |
| lines.append(sep_line) | |
| stats_report = "\n".join(lines) | |
| # Return both the dictionary and the formatted report string. | |
| return stats, stats_report | |
| ################################################################################### | |
| def autoregressive_generate(start_seq, mel_tones, trg_array, trg_matches_array, num_new_tokens, chunk_len=5): | |
| # Convert sequences to NumPy arrays. | |
| current_seq = np.array(start_seq, dtype=int) # Shape: (num_tokens, token_dim) | |
| trg_array = np.array(trg_array, dtype=int) # Shape: (num_candidates, 2, token_dim) | |
| start_len = len(start_seq) | |
| midx = start_len-1 | |
| # Deque for sliding memory of candidate pairs (immutable tuples). | |
| recent_candidates = deque(maxlen=5) | |
| while (len(current_seq) - start_len) < num_new_tokens: | |
| midx += 1 | |
| # Get the last two tokens as context. | |
| context = current_seq[-(chunk_len-1):] # Shape: (2, token_dim) | |
| sli = 0 | |
| msize = 0 | |
| ctx = context[:, :-1].reshape(1, -1) | |
| trg_mat_arr = trg_matches_array | |
| while msize < 8: | |
| print('=== Slice', sli) | |
| # Compare context with candidates in trg_array. | |
| match_mask = np.all(ctx == trg_mat_arr, axis=1) | |
| match_indices = np.where(match_mask)[0] | |
| msize = match_indices.size | |
| if msize < 8: | |
| sli += 1 | |
| ctx = context[:, :-1].reshape(1, -1)[:, sli:] | |
| trg_mat_arr = trg_matches_array[:, :-sli] | |
| if match_indices.size == 0: | |
| if len(current_seq) > start_len: | |
| #tones_chord = sorted([mel_tones[midx], (mel_tones[midx]+7) % 12]) | |
| tones_chord = sorted([mel_tones[midx]]) | |
| new_tuple = [[mel_tones[midx], TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)]] | |
| current_seq = np.concatenate((current_seq, new_tuple), axis=0) | |
| print('Subbed', midx) | |
| continue | |
| # From the matching candidates, filter out those whose candidate pair is in recent memory. | |
| available_candidates = [] | |
| cseen = [] | |
| for idx in match_indices: | |
| if idx not in recent_candidates: | |
| # Convert candidate pair to an immutable tuple | |
| candidate_pair = tuple(trg_array[idx].tolist()) | |
| if candidate_pair[-1][0] == mel_tones[midx] and candidate_pair[-1][1] not in cseen: | |
| available_candidates.append((idx, candidate_pair)) | |
| cseen.append(candidate_pair[-1][1]) | |
| # If all candidates have recently been used, backtrack. | |
| if len(available_candidates) < 3: | |
| if len(current_seq) >= start_len: | |
| #tones_chord = sorted([mel_tones[midx], (mel_tones[midx]+7) % 12]) | |
| tones_chord = sorted([mel_tones[midx]]) | |
| new_tuple = [[mel_tones[midx], TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)]] | |
| current_seq = np.concatenate((current_seq, new_tuple), axis=0) | |
| #rev_val = random.choice([-1, -2]) | |
| #current_seq = current_seq[:rev_val] | |
| #print(midx) | |
| #midx = len(current_seq) | |
| #print('Reverted', midx, len(current_seq)) | |
| continue | |
| else: | |
| print(len(available_candidates)) | |
| # Choose one available candidate at random. | |
| chosen_idx, chosen_pair = available_candidates[np.random.choice(len(available_candidates))] | |
| new_token = trg_array[chosen_idx][-1] # The second token of the candidate pair. | |
| # Append the new token to the sequence. | |
| current_seq = np.concatenate((current_seq, new_token[None, :]), axis=0) | |
| recent_candidates.append(chosen_idx) | |
| print('Gen seq len', len(current_seq)) | |
| return current_seq | |
| ################################################################################### | |
| def minkowski_distance_vector_to_matrix(x: cp.ndarray, X: cp.ndarray, p: float = 3) -> cp.ndarray: | |
| """ | |
| Computes the Minkowski distance between a 1D CuPy array 'x' and each row of a 2D CuPy array 'X'. | |
| Parameters: | |
| x (cp.ndarray): A 1D array with shape (n_features,) representing a single vector. | |
| X (cp.ndarray): A 2D array with shape (n_samples, n_features) where each row is a vector. | |
| p (float): The order of the Minkowski distance. | |
| For instance: | |
| - p=1 yields the Manhattan distance, | |
| - p=2 yields the Euclidean distance, | |
| - p=3 yields the Minkowski distance and will use the cube-root implementation, | |
| - p=∞ (or cp.inf) gives the Chebyshev distance. | |
| Returns: | |
| cp.ndarray: A 1D array of length n_samples containing the Minkowski distance between 'x' | |
| and the corresponding row in 'X'. | |
| """ | |
| # Compute the element-wise absolute differences between x and every row in X. | |
| # Broadcasting x over the rows of X results in an array of shape (n_samples, n_features). | |
| diff = cp.abs(X - x) | |
| if p == float('inf') or p == cp.inf: | |
| # For the Chebyshev distance, use the maximum absolute difference along the feature axis. | |
| distances = cp.max(diff, axis=1) | |
| elif p == 3: | |
| # Instead of using the generic power operation (sum(diff**3) ** (1/3)), | |
| # we use cp.cbrt for cube-root calculation when p is exactly 3. | |
| distances = cp.cbrt(cp.sum(diff ** 3, axis=1)) | |
| else: | |
| # For general Minkowski distance with finite p, | |
| # compute the p-th power of differences, sum them, then take the p-th root. | |
| distances = cp.sum(diff ** p, axis=1) ** (1.0 / p) | |
| return distances | |
| ################################################################################### | |
| def pairwise_minkowski_distance(X: cp.ndarray, p: float = 2) -> cp.ndarray: | |
| """ | |
| Computes pairwise Minkowski distances for a 2D CuPy array. | |
| Parameters: | |
| X (cp.ndarray): A 2D array of shape (n_samples, n_features), where each row represents a vector. | |
| p (float): The order of the Minkowski distance. | |
| For example: | |
| - p=1 is the Manhattan distance, | |
| - p=2 is the Euclidean distance, | |
| - p=∞ (e.g., float('inf') or cp.inf) is the Chebyshev distance. | |
| Returns: | |
| cp.ndarray: A 2D array of shape (n_samples, n_samples) containing the pairwise Minkowski distances. | |
| """ | |
| # Use broadcasting to compute the absolute difference between every pair of vectors. | |
| # The result of X[:, None, :] - X[None, :, :] will have shape (n_samples, n_samples, n_features). | |
| if p == float('inf') or p == cp.inf: | |
| # For the Chebyshev distance, take the maximum absolute difference along the feature axis. | |
| return cp.max(cp.abs(X[:, None, :] - X[None, :, :]), axis=-1) | |
| else: | |
| # Raise the absolute differences to the power p. | |
| diff_powered = cp.abs(X[:, None, :] - X[None, :, :]) ** p | |
| # Sum over the features for each pair (i, j) and then take the p-th root. | |
| distances = cp.sum(diff_powered, axis=-1) ** (1.0 / p) | |
| return distances | |
| ################################################################################### | |
| def pairwise_cosine_similarity(X: cp.ndarray, eps: float = 1e-10) -> cp.ndarray: | |
| """ | |
| Computes the pairwise cosine similarity for a 2D CuPy array. | |
| Parameters: | |
| X (cp.ndarray): A 2D array of shape (n_samples, n_features) where each row represents a vector. | |
| eps (float): A small constant added to the denominator to prevent division by zero. | |
| Returns: | |
| cp.ndarray: A 2D array of shape (n_samples, n_samples) containing the pairwise cosine similarities. | |
| """ | |
| # Compute the dot product between every pair of rows. | |
| # This results in a matrix where element (i, j) is the dot product of X[i] and X[j]. | |
| dot_product = cp.dot(X, X.T) | |
| # Compute the L2 norm (Euclidean norm) for each row vector. | |
| norms = cp.linalg.norm(X, axis=1) | |
| # Compute the outer product of the norms to form the denominator. | |
| # The element (i, j) in this matrix is norms[i] * norms[j]. | |
| norm_matrix = cp.outer(norms, norms) | |
| # Compute the cosine similarity matrix. | |
| # Adding a small epsilon (eps) to the denominator prevents division by zero. | |
| cosine_similarity = dot_product / (norm_matrix + eps) | |
| return cosine_similarity | |
| ################################################################################### | |
| def cosine_similarities(src_array, trg_array): | |
| """ | |
| Computes cosine similarities between 1D src array and 2D trg array | |
| """ | |
| src_norm = cp.linalg.norm(src_array) | |
| trg_norms = cp.linalg.norm(trg_array, axis=1) | |
| dot_products = cp.dot(trg_array, src_array) | |
| cosine_sims = dot_products / (src_norm * trg_norms + 1e-10) | |
| return cosine_sims | |
| ################################################################################### | |
| def embeddings_topk_cosine_neighbors(embeddings, | |
| k=1, | |
| row_batch=4096, | |
| col_batch=4096 | |
| ): | |
| """ | |
| For each embedding, find the indices and similarities of its top-k neighbors, | |
| excluding itself, sorted by descending similarity. | |
| Args: | |
| embeddings (cp.ndarray): shape (N, D), float32 on GPU. | |
| k (int): how many neighbors to return (must be < N). | |
| row_batch (int): number of rows to process at once. | |
| col_batch (int): number of columns to process at once. | |
| Returns: | |
| top_idx (cp.ndarray): shape (N, k), int32 indices of nearest neighbors. | |
| top_sim (cp.ndarray): shape (N, k), float32 cosine similarities. | |
| Each row is sorted descending. | |
| """ | |
| # normalize embeddings to unit length | |
| norms = cp.linalg.norm(embeddings, axis=1, keepdims=True) | |
| embeddings /= norms | |
| N, D = embeddings.shape | |
| if not (1 <= k < N): | |
| raise ValueError(f"k must satisfy 1 ≤ k < N; got N={N}, k={k}") | |
| # placeholders for top-k | |
| top_sim = cp.full((N, k), -cp.inf, dtype=cp.float32) | |
| top_idx = cp.full((N, k), -1, dtype=cp.int32) | |
| for i in tqdm.tqdm(range(0, N, row_batch)): | |
| i_end = min(i + row_batch, N) | |
| rows = embeddings[i:i_end] # (rb, D) | |
| rb = i_end - i | |
| # per-block buffers | |
| best_s = top_sim[i:i_end] # (rb, k) | |
| best_i = top_idx[i:i_end] # (rb, k) | |
| row_ids = cp.arange(i, i_end) # (rb,) | |
| for j in range(0, N, col_batch): | |
| j_end = min(j + col_batch, N) | |
| cols = embeddings[j:j_end] # (cb, D) | |
| sims = rows.dot(cols.T) # (rb, cb) | |
| # mask out self-similarities | |
| # find rows whose global index ∈ [j, j_end) | |
| mask = (row_ids >= j) & (row_ids < j_end) | |
| if mask.any(): | |
| local_rows = cp.where(mask)[0] | |
| local_cols = row_ids[mask] - j | |
| sims[local_rows, local_cols] = -cp.inf | |
| # get top-k within this block | |
| # argpartition to grab k largest in each row | |
| part = cp.argpartition(sims, -k, axis=1)[:, -k:] # (rb, k) | |
| blk_s = sims[cp.arange(rb)[:, None], part] # (rb, k) | |
| blk_i = part + j # (rb, k) | |
| # merge with running best | |
| cat_s = cp.concatenate([best_s, blk_s], axis=1) # (rb, 2k) | |
| cat_i = cp.concatenate([best_i, blk_i], axis=1) | |
| # select new top-k from the 2k candidates | |
| part2 = cp.argpartition(cat_s, -k, axis=1)[:, -k:] | |
| best_s = cat_s[cp.arange(rb)[:, None], part2] | |
| best_i = cat_i[cp.arange(rb)[:, None], part2] | |
| # write back | |
| top_sim[i:i_end] = best_s | |
| top_idx[i:i_end] = best_i | |
| # final sort per row so sims descend | |
| if k > 1: | |
| order = cp.argsort(-top_sim, axis=1) | |
| top_sim = cp.take_along_axis(top_sim, order, axis=1) | |
| top_idx = cp.take_along_axis(top_idx, order, axis=1) | |
| # if k==1, squeeze dims | |
| if k == 1: | |
| return top_idx.ravel(), top_sim.ravel() | |
| return top_idx, top_sim | |
| ################################################################################### | |
| print('Module is loaded!') | |
| print('Enjoy! :)') | |
| print('=' * 70) | |
| ################################################################################### | |
| # This is the end of the TCUPY Python module | |
| ################################################################################### |