Sina Media Lab
commited on
Commit
·
e29cc8c
1
Parent(s):
3540df9
Updates
Browse files
modules/number_system/grouping_techniques.py
CHANGED
|
@@ -1,41 +1,81 @@
|
|
| 1 |
-
# modules/grouping_techniques.py
|
| 2 |
|
| 3 |
title = "Grouping Techniques for Conversion"
|
| 4 |
-
description = "This module focuses on grouping techniques for conversion between bases such as binary and hexadecimal."
|
| 5 |
|
| 6 |
def generate_question():
|
| 7 |
import random
|
| 8 |
|
|
|
|
| 9 |
from_base = random.choice([2, 8, 16])
|
| 10 |
-
to_base = 8 if from_base == 2 else 2
|
| 11 |
-
number = ''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def group_conversion(number, from_base, to_base):
|
| 14 |
-
# Group the binary digits for conversion
|
| 15 |
if from_base == 2 and to_base == 8:
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
elif from_base == 2 and to_base == 16:
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
elif from_base == 8 and to_base == 2:
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
elif from_base == 16 and to_base == 2:
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
correct_answer = group_conversion(number, from_base, to_base)
|
| 25 |
-
options =
|
| 26 |
|
| 27 |
-
# Generate incorrect answers
|
| 28 |
while len(options) < 4:
|
| 29 |
-
invalid_number = ''.join(random.choice('
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
random.shuffle(options)
|
| 34 |
|
| 35 |
-
question = f"Convert the
|
| 36 |
-
explanation = f"The number {number} in base {from_base} is {correct_answer} in base {to_base} using grouping technique."
|
| 37 |
step_by_step_solution = [
|
| 38 |
-
"Step 1: Group the
|
| 39 |
"Step 2: Convert each group to the corresponding digit in the target base.",
|
| 40 |
"Step 3: Combine the digits to form the final answer."
|
| 41 |
]
|
|
|
|
| 1 |
+
# modules/number_system/grouping_techniques.py
|
| 2 |
|
| 3 |
title = "Grouping Techniques for Conversion"
|
| 4 |
+
description = "This module focuses on grouping techniques for conversion between bases such as binary, octal, and hexadecimal."
|
| 5 |
|
| 6 |
def generate_question():
|
| 7 |
import random
|
| 8 |
|
| 9 |
+
# Choose a random base to convert from, either 2, 8, or 16
|
| 10 |
from_base = random.choice([2, 8, 16])
|
| 11 |
+
to_base = 8 if from_base == 2 else 2 if from_base == 8 else 2
|
| 12 |
+
number = ''
|
| 13 |
+
|
| 14 |
+
if from_base == 2:
|
| 15 |
+
# Generate a random binary number, optionally with a fractional part
|
| 16 |
+
number = ''.join(random.choice('01') for _ in range(random.randint(4, 8)))
|
| 17 |
+
if random.choice([True, False]):
|
| 18 |
+
number += '.' + ''.join(random.choice('01') for _ in range(random.randint(1, 4)))
|
| 19 |
+
elif from_base == 8:
|
| 20 |
+
# Generate a random octal number, optionally with a fractional part
|
| 21 |
+
number = ''.join(random.choice('01234567') for _ in range(random.randint(2, 4)))
|
| 22 |
+
if random.choice([True, False]):
|
| 23 |
+
number += '.' + ''.join(random.choice('01234567') for _ in range(random.randint(1, 3)))
|
| 24 |
+
elif from_base == 16:
|
| 25 |
+
# Generate a random hexadecimal number, optionally with a fractional part
|
| 26 |
+
number = ''.join(random.choice('0123456789ABCDEF') for _ in range(random.randint(2, 4)))
|
| 27 |
+
if random.choice([True, False]):
|
| 28 |
+
number += '.' + ''.join(random.choice('0123456789ABCDEF') for _ in range(random.randint(1, 3)))
|
| 29 |
|
| 30 |
def group_conversion(number, from_base, to_base):
|
|
|
|
| 31 |
if from_base == 2 and to_base == 8:
|
| 32 |
+
# Convert binary to octal
|
| 33 |
+
integer_part, *fraction_part = number.split('.')
|
| 34 |
+
integer_result = oct(int(integer_part, 2))[2:]
|
| 35 |
+
if fraction_part:
|
| 36 |
+
fraction_result = ''.join([oct(int(f'{fraction_part[0][i:i+3]:0<3}', 2))[2:] for i in range(0, len(fraction_part[0]), 3)])
|
| 37 |
+
return f"{integer_result}.{fraction_result}"
|
| 38 |
+
return integer_result
|
| 39 |
elif from_base == 2 and to_base == 16:
|
| 40 |
+
# Convert binary to hexadecimal
|
| 41 |
+
integer_part, *fraction_part = number.split('.')
|
| 42 |
+
integer_result = hex(int(integer_part, 2))[2:].upper()
|
| 43 |
+
if fraction_part:
|
| 44 |
+
fraction_result = ''.join([hex(int(f'{fraction_part[0][i:i+4]:0<4}', 2))[2:].upper() for i in range(0, len(fraction_part[0]), 4)])
|
| 45 |
+
return f"{integer_result}.{fraction_result}"
|
| 46 |
+
return integer_result
|
| 47 |
elif from_base == 8 and to_base == 2:
|
| 48 |
+
# Convert octal to binary
|
| 49 |
+
integer_part, *fraction_part = number.split('.')
|
| 50 |
+
integer_result = bin(int(integer_part, 8))[2:]
|
| 51 |
+
if fraction_part:
|
| 52 |
+
fraction_result = ''.join([bin(int(digit, 8))[2:].zfill(3) for digit in fraction_part[0]])
|
| 53 |
+
return f"{integer_result}.{fraction_result}"
|
| 54 |
+
return integer_result
|
| 55 |
elif from_base == 16 and to_base == 2:
|
| 56 |
+
# Convert hexadecimal to binary
|
| 57 |
+
integer_part, *fraction_part = number.split('.')
|
| 58 |
+
integer_result = bin(int(integer_part, 16))[2:]
|
| 59 |
+
if fraction_part:
|
| 60 |
+
fraction_result = ''.join([bin(int(digit, 16))[2:].zfill(4) for digit in fraction_part[0]])
|
| 61 |
+
return f"{integer_result}.{fraction_result}"
|
| 62 |
+
return integer_result
|
| 63 |
|
| 64 |
correct_answer = group_conversion(number, from_base, to_base)
|
| 65 |
+
options = {correct_answer}
|
| 66 |
|
| 67 |
+
# Generate incorrect answers ensuring they are unique
|
| 68 |
while len(options) < 4:
|
| 69 |
+
invalid_number = group_conversion(''.join(random.choice('0123456789ABCDEF') for _ in range(len(correct_answer))), from_base, to_base)
|
| 70 |
+
options.add(invalid_number)
|
| 71 |
+
|
| 72 |
+
options = list(options)
|
| 73 |
random.shuffle(options)
|
| 74 |
|
| 75 |
+
question = f"Convert the number {number} from base {from_base} to base {to_base} using grouping technique."
|
| 76 |
+
explanation = f"The number {number} in base {from_base} is {correct_answer} in base {to_base} using the grouping technique."
|
| 77 |
step_by_step_solution = [
|
| 78 |
+
"Step 1: Group the digits of the number according to the conversion rules.",
|
| 79 |
"Step 2: Convert each group to the corresponding digit in the target base.",
|
| 80 |
"Step 3: Combine the digits to form the final answer."
|
| 81 |
]
|