# modules/number_system/twos_complement.py import random import sympy as sp title = "2's Complement Questions" description = "This module explains the 2's complement method for representing negative numbers." def generate_question(): bit_lengths = [4, 5, 6, 7, 8] num_bits = random.choice(bit_lengths) def generate_binary_number(length): return ''.join(random.choice('01') for _ in range(length)) number = generate_binary_number(num_bits) def calculate_twos_complement(binary_str, length): if binary_str == '0' * length: return binary_str # 2's complement of 0 is still 0 # Invert the bits (1's complement) ones_complement = ''.join('1' if bit == '0' else '0' for bit in binary_str) # Add 1 to the 1's complement twos_complement = bin(int(ones_complement, 2) + 1)[2:] # Ensure the result is truncated or zero-padded to fit the specified bit length return twos_complement.zfill(length)[-length:] correct_answer = calculate_twos_complement(number, num_bits) options = {correct_answer} # Generate incorrect answers while len(options) < 4: invalid_number = generate_binary_number(num_bits) invalid_twos_complement = calculate_twos_complement(invalid_number, num_bits) if invalid_twos_complement != correct_answer: options.add(invalid_twos_complement) options = list(options) random.shuffle(options) question = f"What is the 2's complement of the {num_bits}-bit binary number {number}?" explanation = f"The 2's complement of the {num_bits}-bit binary number {number} is {correct_answer}." step_by_step_solution = [ f"Step 1: Invert the bits (1's complement) of the binary number {number}.", f"Step 2: Add 1 to the result to get the 2's complement.", f"Step 3: Ensure the result is a {num_bits}-bit binary number by truncating or zero-padding if necessary.", f"Step 4: The 2's complement of the {num_bits}-bit binary number {number} is {correct_answer}." ] return { "question": question, "options": options, "correct_answer": correct_answer, "explanation": explanation, "step_by_step_solution": step_by_step_solution }