Spaces:
Runtime error
Runtime error
feat: update shampoo
Browse files
tools/train/scalable_shampoo/README.md
CHANGED
|
@@ -4,4 +4,4 @@ Files copied from [google-research/scalable_shampoo/optax](https://github.com/go
|
|
| 4 |
|
| 5 |
Imports have been modified to be relative.
|
| 6 |
|
| 7 |
-
This will be replaced with `optax-shampoo` package
|
|
|
|
| 4 |
|
| 5 |
Imports have been modified to be relative.
|
| 6 |
|
| 7 |
+
This will eventually be replaced with `optax-shampoo` package.
|
tools/train/scalable_shampoo/distributed_shampoo.py
CHANGED
|
@@ -25,13 +25,12 @@
|
|
| 25 |
# Authors: Rohan Anil (rohananil at google dot com)
|
| 26 |
# & Vineet Gupta (vineet at google dot com)
|
| 27 |
#
|
| 28 |
-
|
| 29 |
"""Distributed Shampoo Implementation."""
|
| 30 |
|
| 31 |
import enum
|
| 32 |
import functools
|
| 33 |
import itertools
|
| 34 |
-
from typing import Any, List, NamedTuple
|
| 35 |
|
| 36 |
import chex
|
| 37 |
import jax
|
|
@@ -43,6 +42,7 @@ from flax import struct
|
|
| 43 |
from jax import lax
|
| 44 |
|
| 45 |
from .quantization_utils import QuantizedValue
|
|
|
|
| 46 |
|
| 47 |
# Dtype for inverse-pth root routine
|
| 48 |
# Switch to f64 if you have hardware that supports it. Enable the jax flag
|
|
@@ -141,7 +141,10 @@ class GraftingType(enum.IntEnum):
|
|
| 141 |
|
| 142 |
|
| 143 |
def power_iteration(
|
| 144 |
-
matrix,
|
|
|
|
|
|
|
|
|
|
| 145 |
):
|
| 146 |
r"""Power iteration algorithm.
|
| 147 |
|
|
@@ -156,10 +159,10 @@ def power_iteration(
|
|
| 156 |
matrix: the symmetric PSD matrix.
|
| 157 |
num_iters: Number of iterations.
|
| 158 |
error_tolerance: Iterative exit condition.
|
| 159 |
-
precision: precision XLA related flag, the available options are:
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
|
| 164 |
Returns:
|
| 165 |
eigen vector, eigen value
|
|
@@ -196,7 +199,11 @@ def power_iteration(
|
|
| 196 |
return v_out, s_out
|
| 197 |
|
| 198 |
|
| 199 |
-
def mat_power(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
"""A simple matrix power method. M^p where p can be TracedValue."""
|
| 201 |
power = jnp.eye(mat_m.shape[0], dtype=_MAT_INV_PTH_ROOT_DTYPE)
|
| 202 |
|
|
@@ -245,15 +252,19 @@ def matrix_inverse_pth_root(
|
|
| 245 |
num_iters: Maximum number of iterations.
|
| 246 |
ridge_epsilon: Ridge epsilon added to make the matrix positive definite.
|
| 247 |
error_tolerance: Error indicator, useful for early termination.
|
| 248 |
-
precision: precision XLA related flag, the available options are:
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
|
| 253 |
Returns:
|
| 254 |
matrix^(-1/p)
|
| 255 |
"""
|
| 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
assert matrix.shape[0] == matrix.shape[1]
|
| 258 |
|
| 259 |
# We use _MAT_INV_PTH_ROOT_DTYPE for the matrix inverse pth root.
|
|
@@ -336,8 +347,8 @@ def merge_small_dims(shape_to_merge, max_dim):
|
|
| 336 |
return resulting_shape
|
| 337 |
|
| 338 |
|
| 339 |
-
def
|
| 340 |
-
"""Pad a matrix to
|
| 341 |
|
| 342 |
Args:
|
| 343 |
mat: a matrix to pad.
|
|
@@ -346,19 +357,132 @@ def pad_matrix(mat, max_size):
|
|
| 346 |
Returns:
|
| 347 |
Given M returns [[M, 0], [0, I]]
|
| 348 |
"""
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
return mat
|
| 353 |
-
pad_size = max_size -
|
| 354 |
-
|
| 355 |
-
|
|
|
|
| 356 |
eye = jnp.eye(pad_size, dtype=mat.dtype)
|
| 357 |
mat = jnp.concatenate([mat, zs1], 1)
|
| 358 |
mat = jnp.concatenate([mat, jnp.concatenate([zs2, eye], 1)], 0)
|
| 359 |
return mat
|
| 360 |
|
| 361 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
def pad_vector(vec, max_size):
|
| 363 |
"""Pad a vector to a max_size.
|
| 364 |
|
|
@@ -694,18 +818,17 @@ def distributed_shampoo(
|
|
| 694 |
num_devices_for_pjit: Number of devices to parallelize over when using pjit.
|
| 695 |
shard_optimizer_states: Shard optimizer states to save memory in model
|
| 696 |
parallel training.
|
| 697 |
-
best_effort_memory_usage_reduction: Best effort memory usage reduction.
|
| 698 |
-
diagonal_statistics -> jnp.bfloat16
|
| 699 |
-
momentum buffers (2x) -> jnp.int8
|
| 700 |
statistics, preconditioners -> jnp.int16 + diagonals
|
| 701 |
inverse_failure_threshold: numerics are hard and inverses fail sometimes; we
|
| 702 |
determine that using this threshold.
|
| 703 |
moving_average_for_momentum: Whether to use moving average for momentum
|
| 704 |
instead of exponential moving average.
|
| 705 |
skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is
|
| 706 |
-
|
| 707 |
-
clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful
|
| 708 |
-
|
| 709 |
precision: precision XLA related flag, the available options are: a)
|
| 710 |
lax.Precision.DEFAULT (better step time, but not precise) b)
|
| 711 |
lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
|
|
@@ -1167,7 +1290,7 @@ def distributed_shampoo(
|
|
| 1167 |
new_padded_statistics = []
|
| 1168 |
for stat in new_stats_flat:
|
| 1169 |
new_padded_statistics.extend(
|
| 1170 |
-
[
|
| 1171 |
)
|
| 1172 |
|
| 1173 |
# Create global stats
|
|
@@ -1388,7 +1511,7 @@ def distributed_shampoo(
|
|
| 1388 |
num_devices = lax.psum(1, batch_axis_name)
|
| 1389 |
num_statistics = len(statistics)
|
| 1390 |
# Pad statistics and exponents to next multiple of num_devices.
|
| 1391 |
-
packed_statistics = [
|
| 1392 |
to_pad = -num_statistics % num_devices
|
| 1393 |
packed_statistics.extend(
|
| 1394 |
[jnp.eye(max_size, dtype=packed_statistics[0].dtype) for _ in range(to_pad)]
|
|
@@ -1540,7 +1663,7 @@ def distributed_shampoo(
|
|
| 1540 |
# diagonals [d] f32
|
| 1541 |
# bucket_sizes [d] f32
|
| 1542 |
packed_quantized_statistics = [
|
| 1543 |
-
|
| 1544 |
]
|
| 1545 |
packed_quantized_diagonals = [
|
| 1546 |
pad_vector(stat.diagonal, max_size) for stat in statistics
|
|
@@ -1772,7 +1895,7 @@ def distributed_shampoo(
|
|
| 1772 |
"""
|
| 1773 |
num_statistics = len(statistics)
|
| 1774 |
to_pad = -num_statistics % num_devices_for_pjit
|
| 1775 |
-
padded_statistics = [
|
| 1776 |
padded_statistics.extend(
|
| 1777 |
[jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
|
| 1778 |
)
|
|
|
|
| 25 |
# Authors: Rohan Anil (rohananil at google dot com)
|
| 26 |
# & Vineet Gupta (vineet at google dot com)
|
| 27 |
#
|
|
|
|
| 28 |
"""Distributed Shampoo Implementation."""
|
| 29 |
|
| 30 |
import enum
|
| 31 |
import functools
|
| 32 |
import itertools
|
| 33 |
+
from typing import Any, List, NamedTuple, Tuple
|
| 34 |
|
| 35 |
import chex
|
| 36 |
import jax
|
|
|
|
| 42 |
from jax import lax
|
| 43 |
|
| 44 |
from .quantization_utils import QuantizedValue
|
| 45 |
+
from .symmetric_matrices import symmetric_matrices
|
| 46 |
|
| 47 |
# Dtype for inverse-pth root routine
|
| 48 |
# Switch to f64 if you have hardware that supports it. Enable the jax flag
|
|
|
|
| 141 |
|
| 142 |
|
| 143 |
def power_iteration(
|
| 144 |
+
matrix,
|
| 145 |
+
num_iters=100,
|
| 146 |
+
error_tolerance=1e-6,
|
| 147 |
+
precision=lax.Precision.HIGHEST,
|
| 148 |
):
|
| 149 |
r"""Power iteration algorithm.
|
| 150 |
|
|
|
|
| 159 |
matrix: the symmetric PSD matrix.
|
| 160 |
num_iters: Number of iterations.
|
| 161 |
error_tolerance: Iterative exit condition.
|
| 162 |
+
precision: precision XLA related flag, the available options are: a)
|
| 163 |
+
lax.Precision.DEFAULT (better step time, but not precise) b)
|
| 164 |
+
lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
|
| 165 |
+
(best possible precision, slowest)
|
| 166 |
|
| 167 |
Returns:
|
| 168 |
eigen vector, eigen value
|
|
|
|
| 199 |
return v_out, s_out
|
| 200 |
|
| 201 |
|
| 202 |
+
def mat_power(
|
| 203 |
+
mat_m,
|
| 204 |
+
p,
|
| 205 |
+
precision=lax.Precision.HIGHEST,
|
| 206 |
+
):
|
| 207 |
"""A simple matrix power method. M^p where p can be TracedValue."""
|
| 208 |
power = jnp.eye(mat_m.shape[0], dtype=_MAT_INV_PTH_ROOT_DTYPE)
|
| 209 |
|
|
|
|
| 252 |
num_iters: Maximum number of iterations.
|
| 253 |
ridge_epsilon: Ridge epsilon added to make the matrix positive definite.
|
| 254 |
error_tolerance: Error indicator, useful for early termination.
|
| 255 |
+
precision: precision XLA related flag, the available options are: a)
|
| 256 |
+
lax.Precision.DEFAULT (better step time, but not precise) b)
|
| 257 |
+
lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
|
| 258 |
+
(best possible precision, slowest)
|
| 259 |
|
| 260 |
Returns:
|
| 261 |
matrix^(-1/p)
|
| 262 |
"""
|
| 263 |
|
| 264 |
+
# If the input is not square, materialize it from the concatenated form.
|
| 265 |
+
if matrix.shape[0] != matrix.shape[1]:
|
| 266 |
+
matrix = symmetric_matrices.materialize_matrix_from_concat(matrix)
|
| 267 |
+
|
| 268 |
assert matrix.shape[0] == matrix.shape[1]
|
| 269 |
|
| 270 |
# We use _MAT_INV_PTH_ROOT_DTYPE for the matrix inverse pth root.
|
|
|
|
| 347 |
return resulting_shape
|
| 348 |
|
| 349 |
|
| 350 |
+
def pad_square_matrix(mat, max_size):
|
| 351 |
+
"""Pad a square matrix up to max_size.
|
| 352 |
|
| 353 |
Args:
|
| 354 |
mat: a matrix to pad.
|
|
|
|
| 357 |
Returns:
|
| 358 |
Given M returns [[M, 0], [0, I]]
|
| 359 |
"""
|
| 360 |
+
rows, cols = mat.shape
|
| 361 |
+
if rows != cols:
|
| 362 |
+
raise ValueError(
|
| 363 |
+
"Must have rows == cols, instead got " f"rows={rows}, cols={cols}"
|
| 364 |
+
)
|
| 365 |
+
if cols > max_size:
|
| 366 |
+
raise ValueError(
|
| 367 |
+
"Must have cols <= max_size. Instead got "
|
| 368 |
+
f"cols={cols}, max_size={max_size}."
|
| 369 |
+
)
|
| 370 |
+
if rows == max_size:
|
| 371 |
return mat
|
| 372 |
+
pad_size = max_size - rows
|
| 373 |
+
|
| 374 |
+
zs1 = jnp.zeros([rows, pad_size], dtype=mat.dtype)
|
| 375 |
+
zs2 = jnp.zeros([pad_size, rows], dtype=mat.dtype)
|
| 376 |
eye = jnp.eye(pad_size, dtype=mat.dtype)
|
| 377 |
mat = jnp.concatenate([mat, zs1], 1)
|
| 378 |
mat = jnp.concatenate([mat, jnp.concatenate([zs2, eye], 1)], 0)
|
| 379 |
return mat
|
| 380 |
|
| 381 |
|
| 382 |
+
def make_sliced_padding(
|
| 383 |
+
symmetric_block_size,
|
| 384 |
+
num_blocks,
|
| 385 |
+
starting_block,
|
| 386 |
+
dtype,
|
| 387 |
+
):
|
| 388 |
+
"""Returns padding for symmetric block matrix.
|
| 389 |
+
|
| 390 |
+
Specifically, the padding is given concatenated rectangular matrices
|
| 391 |
+
representing the lower-triangular rows below the starting block. For example,
|
| 392 |
+
if we want to pad the symmetric matrix
|
| 393 |
+
|
| 394 |
+
M = [[A, B^T]
|
| 395 |
+
[B, C]],
|
| 396 |
+
|
| 397 |
+
the desired output (in terms of the full matrix) with num_blocks = 4 is
|
| 398 |
+
|
| 399 |
+
M_padded = [[A, B^T, 0, 0]
|
| 400 |
+
[B, C, 0, 0]
|
| 401 |
+
[0, 0, I, 0]
|
| 402 |
+
0, 0, 0, I].
|
| 403 |
+
|
| 404 |
+
We would represent M as the block matrix mat = [A, B, C]. In this form, the
|
| 405 |
+
additional padding to provide has form [0, 0, I, 0, 0, 0, I] (only the lower
|
| 406 |
+
triangular parts in the third and fourth rows).
|
| 407 |
+
|
| 408 |
+
Args:
|
| 409 |
+
symmetric_block_size: The size of each block.
|
| 410 |
+
num_blocks: The total number of blocks.
|
| 411 |
+
starting_block: The block where to start the padding.
|
| 412 |
+
dtype: The type to use for the blocks.
|
| 413 |
+
"""
|
| 414 |
+
if starting_block == num_blocks:
|
| 415 |
+
return jnp.zeros(shape=(symmetric_block_size, 0), dtype=dtype)
|
| 416 |
+
|
| 417 |
+
blocks = []
|
| 418 |
+
for i in range(starting_block, num_blocks):
|
| 419 |
+
blocks.append(
|
| 420 |
+
jnp.zeros(
|
| 421 |
+
shape=(symmetric_block_size, symmetric_block_size * i), dtype=dtype
|
| 422 |
+
)
|
| 423 |
+
)
|
| 424 |
+
blocks.append(jnp.eye(symmetric_block_size, dtype=dtype))
|
| 425 |
+
return jnp.concatenate(blocks, axis=-1)
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
def pad_block_symmetric_matrix(
|
| 429 |
+
mat,
|
| 430 |
+
symmetric_block_size,
|
| 431 |
+
max_num_blocks,
|
| 432 |
+
):
|
| 433 |
+
"""Returns the padded blocked symmetric matrix.
|
| 434 |
+
|
| 435 |
+
The size of the padded matrix will be:
|
| 436 |
+
[symmetric_block_size, symmetric_block_size * max_num_blocks]
|
| 437 |
+
|
| 438 |
+
The input matrix can either:
|
| 439 |
+
- Be square with size less or equal to symmetric_block_size. In this case,
|
| 440 |
+
mat will first be padded to a square matrix of size symmetric_block_size,
|
| 441 |
+
and then be padded again up to the full size of the blocked matrix.
|
| 442 |
+
- Be a rectangle with number of rows equal to block size.
|
| 443 |
+
In this case, number of columns must be a multiple of number of rows, and
|
| 444 |
+
the ratio must correspond to a block representation of a symmetric matrix.
|
| 445 |
+
That is, the ratio must have form x * (x + 1) / 2. Here, x represents the
|
| 446 |
+
number of block rows represented by the matrix.
|
| 447 |
+
|
| 448 |
+
Args:
|
| 449 |
+
mat: The input block matrix.
|
| 450 |
+
symmetric_block_size: The size of blocks.
|
| 451 |
+
max_num_blocks: The largest number of blocks to pad to.
|
| 452 |
+
"""
|
| 453 |
+
rows, cols = mat.shape
|
| 454 |
+
if rows > symmetric_block_size:
|
| 455 |
+
raise ValueError(
|
| 456 |
+
"Must have rows <= symmetric_block_size. Instead got "
|
| 457 |
+
f"rows={rows}, symmetric_block_size={symmetric_block_size}."
|
| 458 |
+
)
|
| 459 |
+
if rows > cols:
|
| 460 |
+
raise ValueError(
|
| 461 |
+
"Must have rows <= cols, instead got " f"rows={rows}, cols={cols}."
|
| 462 |
+
)
|
| 463 |
+
if cols > symmetric_block_size * max_num_blocks:
|
| 464 |
+
raise ValueError(
|
| 465 |
+
"Must have cols <= symmetric_block_size * max_num_blocks "
|
| 466 |
+
f"Instead got cols={cols}, "
|
| 467 |
+
f"symmetric_block_size={symmetric_block_size}, "
|
| 468 |
+
f"max_num_blocks={max_num_blocks}."
|
| 469 |
+
)
|
| 470 |
+
if rows < symmetric_block_size:
|
| 471 |
+
mat = pad_square_matrix(mat, max_size=symmetric_block_size)
|
| 472 |
+
# Update rows and cols after possibly padding in pad_square_matrix.
|
| 473 |
+
rows, cols = mat.shape
|
| 474 |
+
assert rows == symmetric_block_size
|
| 475 |
+
assert cols % rows == 0
|
| 476 |
+
filled_blocks = cols // rows
|
| 477 |
+
padding_blocks = make_sliced_padding(
|
| 478 |
+
symmetric_block_size=symmetric_block_size,
|
| 479 |
+
num_blocks=symmetric_matrices.num_blocks_from_total_blocks(max_num_blocks),
|
| 480 |
+
starting_block=symmetric_matrices.num_blocks_from_total_blocks(filled_blocks),
|
| 481 |
+
dtype=mat.dtype,
|
| 482 |
+
)
|
| 483 |
+
return jnp.concatenate([mat, padding_blocks], axis=-1)
|
| 484 |
+
|
| 485 |
+
|
| 486 |
def pad_vector(vec, max_size):
|
| 487 |
"""Pad a vector to a max_size.
|
| 488 |
|
|
|
|
| 818 |
num_devices_for_pjit: Number of devices to parallelize over when using pjit.
|
| 819 |
shard_optimizer_states: Shard optimizer states to save memory in model
|
| 820 |
parallel training.
|
| 821 |
+
best_effort_memory_usage_reduction: Best effort memory usage reduction. -
|
| 822 |
+
diagonal_statistics -> jnp.bfloat16 - momentum buffers (2x) -> jnp.int8 -
|
|
|
|
| 823 |
statistics, preconditioners -> jnp.int16 + diagonals
|
| 824 |
inverse_failure_threshold: numerics are hard and inverses fail sometimes; we
|
| 825 |
determine that using this threshold.
|
| 826 |
moving_average_for_momentum: Whether to use moving average for momentum
|
| 827 |
instead of exponential moving average.
|
| 828 |
skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is
|
| 829 |
+
greater than this value.
|
| 830 |
+
clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful when
|
| 831 |
+
using RMSProp Grafting).
|
| 832 |
precision: precision XLA related flag, the available options are: a)
|
| 833 |
lax.Precision.DEFAULT (better step time, but not precise) b)
|
| 834 |
lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
|
|
|
|
| 1290 |
new_padded_statistics = []
|
| 1291 |
for stat in new_stats_flat:
|
| 1292 |
new_padded_statistics.extend(
|
| 1293 |
+
[pad_square_matrix(stat, max_size) for stat in stat.statistics]
|
| 1294 |
)
|
| 1295 |
|
| 1296 |
# Create global stats
|
|
|
|
| 1511 |
num_devices = lax.psum(1, batch_axis_name)
|
| 1512 |
num_statistics = len(statistics)
|
| 1513 |
# Pad statistics and exponents to next multiple of num_devices.
|
| 1514 |
+
packed_statistics = [pad_square_matrix(stat, max_size) for stat in statistics]
|
| 1515 |
to_pad = -num_statistics % num_devices
|
| 1516 |
packed_statistics.extend(
|
| 1517 |
[jnp.eye(max_size, dtype=packed_statistics[0].dtype) for _ in range(to_pad)]
|
|
|
|
| 1663 |
# diagonals [d] f32
|
| 1664 |
# bucket_sizes [d] f32
|
| 1665 |
packed_quantized_statistics = [
|
| 1666 |
+
pad_square_matrix(stat.quantized, max_size) for stat in statistics
|
| 1667 |
]
|
| 1668 |
packed_quantized_diagonals = [
|
| 1669 |
pad_vector(stat.diagonal, max_size) for stat in statistics
|
|
|
|
| 1895 |
"""
|
| 1896 |
num_statistics = len(statistics)
|
| 1897 |
to_pad = -num_statistics % num_devices_for_pjit
|
| 1898 |
+
padded_statistics = [pad_square_matrix(stat, max_size) for stat in statistics]
|
| 1899 |
padded_statistics.extend(
|
| 1900 |
[jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
|
| 1901 |
)
|
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
CHANGED
|
@@ -16,7 +16,7 @@
|
|
| 16 |
"""JAX Ops for symmetric matrices used by the Shampoo optimizer."""
|
| 17 |
|
| 18 |
import functools
|
| 19 |
-
from typing import Any, List, Sequence, Union
|
| 20 |
|
| 21 |
import jax
|
| 22 |
import jax.numpy as jnp
|
|
@@ -192,7 +192,7 @@ def materialize_matrix(symmetric_matrix):
|
|
| 192 |
@functools.partial(jax.jit, static_argnames=("num_blocks"))
|
| 193 |
def materialize_matrix_from_concat(
|
| 194 |
block_rows_concat,
|
| 195 |
-
num_blocks,
|
| 196 |
):
|
| 197 |
"""Returns a materialized symmetric matrix from concatenated slices.
|
| 198 |
|
|
@@ -200,7 +200,11 @@ def materialize_matrix_from_concat(
|
|
| 200 |
block_rows_concat: The matrix represented as the concatenated
|
| 201 |
lower-triangular blocks.
|
| 202 |
num_blocks: The number of block-rows used to represent the symmetric matrix.
|
|
|
|
| 203 |
"""
|
|
|
|
|
|
|
|
|
|
| 204 |
block_size = block_rows_concat.shape[-2]
|
| 205 |
|
| 206 |
block_rows = [
|
|
@@ -251,6 +255,28 @@ def update_sliced_rows(
|
|
| 251 |
)
|
| 252 |
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
def find_num_blocks(block_rows_concat):
|
| 255 |
"""Returns the number of (row) blocks representing the concatenated matrix.
|
| 256 |
|
|
@@ -270,11 +296,147 @@ def find_num_blocks(block_rows_concat):
|
|
| 270 |
# Compute the number of square blocks used to represent the matrix.
|
| 271 |
total_blocks = block_rows_concat.shape[-1] / block_rows_concat.shape[-2]
|
| 272 |
# Determine the number of block rows by inverting y = x*(x+1)/2.
|
| 273 |
-
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
raise ValueError(
|
| 276 |
-
"
|
| 277 |
-
"
|
| 278 |
)
|
| 279 |
-
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"""JAX Ops for symmetric matrices used by the Shampoo optimizer."""
|
| 17 |
|
| 18 |
import functools
|
| 19 |
+
from typing import Any, List, Optional, Sequence, Union
|
| 20 |
|
| 21 |
import jax
|
| 22 |
import jax.numpy as jnp
|
|
|
|
| 192 |
@functools.partial(jax.jit, static_argnames=("num_blocks"))
|
| 193 |
def materialize_matrix_from_concat(
|
| 194 |
block_rows_concat,
|
| 195 |
+
num_blocks=None,
|
| 196 |
):
|
| 197 |
"""Returns a materialized symmetric matrix from concatenated slices.
|
| 198 |
|
|
|
|
| 200 |
block_rows_concat: The matrix represented as the concatenated
|
| 201 |
lower-triangular blocks.
|
| 202 |
num_blocks: The number of block-rows used to represent the symmetric matrix.
|
| 203 |
+
If not specified, it is inferred from the shape of block_rows_concat.
|
| 204 |
"""
|
| 205 |
+
if num_blocks is None:
|
| 206 |
+
num_blocks = find_num_blocks(block_rows_concat)
|
| 207 |
+
|
| 208 |
block_size = block_rows_concat.shape[-2]
|
| 209 |
|
| 210 |
block_rows = [
|
|
|
|
| 255 |
)
|
| 256 |
|
| 257 |
|
| 258 |
+
def num_blocks_from_total_blocks(total_blocks):
|
| 259 |
+
"""Returns the number of blocks (i.e.
|
| 260 |
+
|
| 261 |
+
block rows) from the total blocks.
|
| 262 |
+
|
| 263 |
+
This is the inverse of the function x -> x*(x+1)/2.
|
| 264 |
+
|
| 265 |
+
For example, the matrix M = [[A, B^T], [B, C]] may be represented using a
|
| 266 |
+
total of 3 blocks ([A, B, C]). The number of corresponding block rows is 2.
|
| 267 |
+
|
| 268 |
+
Args:
|
| 269 |
+
total_blocks: The total blocks used to represent the matrix.
|
| 270 |
+
"""
|
| 271 |
+
num_blocks = np.round((np.sqrt(8 * total_blocks + 1) - 1) / 2).astype(np.int32)
|
| 272 |
+
if (num_blocks * (num_blocks + 1)) / 2 != total_blocks:
|
| 273 |
+
raise ValueError(
|
| 274 |
+
f"total_blocks={total_blocks} does not correspond to "
|
| 275 |
+
"a symmetric matrix. It must have the form total_blocks = x*(x+1)/2."
|
| 276 |
+
)
|
| 277 |
+
return num_blocks
|
| 278 |
+
|
| 279 |
+
|
| 280 |
def find_num_blocks(block_rows_concat):
|
| 281 |
"""Returns the number of (row) blocks representing the concatenated matrix.
|
| 282 |
|
|
|
|
| 296 |
# Compute the number of square blocks used to represent the matrix.
|
| 297 |
total_blocks = block_rows_concat.shape[-1] / block_rows_concat.shape[-2]
|
| 298 |
# Determine the number of block rows by inverting y = x*(x+1)/2.
|
| 299 |
+
return num_blocks_from_total_blocks(total_blocks)
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
@functools.partial(jax.jit, static_argnames=("block_size"))
|
| 303 |
+
def slice_symmetric_matrix(
|
| 304 |
+
mat,
|
| 305 |
+
block_size,
|
| 306 |
+
):
|
| 307 |
+
"""Returns sliced row blocks.
|
| 308 |
+
|
| 309 |
+
Args:
|
| 310 |
+
mat: A symmetric matrix.
|
| 311 |
+
block_size: The size of the row slices.
|
| 312 |
+
"""
|
| 313 |
+
num_rows = mat.shape[-2]
|
| 314 |
+
num_cols = mat.shape[-1]
|
| 315 |
+
if num_rows != num_cols:
|
| 316 |
+
raise ValueError("mat is not square.")
|
| 317 |
+
if num_rows % block_size != 0:
|
| 318 |
raise ValueError(
|
| 319 |
+
"block size does not evenly divide rows. "
|
| 320 |
+
f"num_rows={num_rows}, block_size={block_size}"
|
| 321 |
)
|
| 322 |
+
return SlicedSymmetricMatrix(
|
| 323 |
+
block_rows=[
|
| 324 |
+
mat[
|
| 325 |
+
Ellipsis,
|
| 326 |
+
i * block_size : (i + 1) * block_size,
|
| 327 |
+
0 : (i + 1) * block_size,
|
| 328 |
+
]
|
| 329 |
+
for i in range(num_rows // block_size)
|
| 330 |
+
]
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
@functools.partial(jax.jit, static_argnames=("block_size"))
|
| 335 |
+
def slice_symmetric_matrix_concat(
|
| 336 |
+
mat,
|
| 337 |
+
block_size,
|
| 338 |
+
):
|
| 339 |
+
"""Returns the concatenated sliced row blocks.
|
| 340 |
+
|
| 341 |
+
Args:
|
| 342 |
+
mat: A symmetric matrix.
|
| 343 |
+
block_size: The size of the row slices.
|
| 344 |
+
"""
|
| 345 |
+
sliced_symmetric_matrix = slice_symmetric_matrix(mat=mat, block_size=block_size)
|
| 346 |
+
return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1)
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def sliced_matrix_diag(mat):
|
| 350 |
+
"""Returns the diagonal of the symmetric matrix.
|
| 351 |
+
|
| 352 |
+
Args:
|
| 353 |
+
mat: The symmetric matrix represented in concatenated block form.
|
| 354 |
+
"""
|
| 355 |
+
rows, cols = mat.shape
|
| 356 |
+
total_blocks = cols // rows
|
| 357 |
+
num_blocks = num_blocks_from_total_blocks(total_blocks)
|
| 358 |
+
diags = []
|
| 359 |
+
for i in range(num_blocks):
|
| 360 |
+
last_index = rows * ((i + 2) * (i + 1)) // 2
|
| 361 |
+
first_index = last_index - rows
|
| 362 |
+
diags.append(jnp.diag(mat[Ellipsis, first_index:last_index]))
|
| 363 |
+
return jnp.concatenate(diags, axis=-1)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
def diag_as_concat(diag, block_size):
|
| 367 |
+
"""Returns the representation of a diagonal matrix in symmetric block form.
|
| 368 |
+
|
| 369 |
+
Args:
|
| 370 |
+
diag: The 1D array for the diagonals.
|
| 371 |
+
block_size: The size of blocks to use. Must divide the length of diag.
|
| 372 |
+
"""
|
| 373 |
+
assert len(diag.shape) == 1 # diag must be 1D.
|
| 374 |
+
assert len(diag) % block_size == 0
|
| 375 |
+
num_diag_blocks = len(diag) // block_size
|
| 376 |
+
blocks = []
|
| 377 |
+
for i in range(num_diag_blocks):
|
| 378 |
+
blocks.append(jnp.zeros(shape=(block_size, block_size * i), dtype=diag.dtype))
|
| 379 |
+
blocks.append(jnp.diag(diag[i * block_size : (i + 1) * block_size]))
|
| 380 |
+
return jnp.concatenate(blocks, axis=-1)
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def row_abs_maxes(mat):
|
| 384 |
+
"""Returns the max of the absolute values of the rows of the full matrix.
|
| 385 |
+
|
| 386 |
+
For example the symmetric matrix M = [[1, 6], [6, 2]] is represented using
|
| 387 |
+
mat = [1, 6, 2] with block_size = 1. In this case the function returns the
|
| 388 |
+
aboslute row maxes of the original symmetric matrix, [6, 6].
|
| 389 |
+
|
| 390 |
+
Args:
|
| 391 |
+
mat: The symmetric matrix represented as the concatenated blocks.
|
| 392 |
+
"""
|
| 393 |
+
rows, cols = mat.shape
|
| 394 |
+
|
| 395 |
+
# Find col and row max for each block.
|
| 396 |
+
col_maxes = []
|
| 397 |
+
row_maxes = []
|
| 398 |
+
for i in range(cols // rows):
|
| 399 |
+
block = jnp.abs(mat[Ellipsis, i * rows : (i + 1) * rows])
|
| 400 |
+
col_maxes.append(jnp.max(block, axis=1))
|
| 401 |
+
row_maxes.append(jnp.max(block, axis=0))
|
| 402 |
+
|
| 403 |
+
# global row max from block maxes.
|
| 404 |
+
num_blocks = num_blocks_from_total_blocks(cols // rows)
|
| 405 |
+
maxes = []
|
| 406 |
+
for i in range(num_blocks):
|
| 407 |
+
maxes.append(
|
| 408 |
+
jnp.concatenate(
|
| 409 |
+
row_maxes[(i * (i + 1) // 2) : ((i + 2) * (i + 1) // 2)]
|
| 410 |
+
+ [
|
| 411 |
+
col_maxes[((j + 1) * (j + 2)) // 2 - (j - i + 1)]
|
| 412 |
+
for j in range(i + 1, num_blocks)
|
| 413 |
+
],
|
| 414 |
+
axis=-1,
|
| 415 |
+
)
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
return jnp.max(jnp.stack(maxes), axis=0)
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
def times_vector(mat, vec):
|
| 422 |
+
"""Returns the symmetric block-concatenated matrix multiplied by a vector.
|
| 423 |
+
|
| 424 |
+
Specifically, each value in the vector is multiplied by a row of the full
|
| 425 |
+
matrix. That is, the vector is broadcast and multiplied element-wise. Note
|
| 426 |
+
this would be the transpose of full_mat * vec if full_mat represented the full
|
| 427 |
+
symmetric matrix.
|
| 428 |
+
|
| 429 |
+
Args:
|
| 430 |
+
mat: The symmetric matrix represented as the concatenated blocks.
|
| 431 |
+
vec: The vector, having the same dimension as the materialized matrix.
|
| 432 |
+
"""
|
| 433 |
+
rows, cols = mat.shape
|
| 434 |
+
num_blocks = num_blocks_from_total_blocks(cols // rows)
|
| 435 |
+
multiplied = []
|
| 436 |
+
for i in range(num_blocks):
|
| 437 |
+
mat_block = mat[
|
| 438 |
+
Ellipsis, rows * ((i + 1) * i) // 2 : rows * ((i + 1) * (i + 2)) // 2
|
| 439 |
+
]
|
| 440 |
+
vec_block = vec[Ellipsis, rows * i : rows * (i + 1)]
|
| 441 |
+
multiplied.append(jnp.einsum("...ij,...i->ij", mat_block, vec_block))
|
| 442 |
+
return jnp.concatenate(multiplied, axis=-1)
|