File size: 17,187 Bytes
5c0c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
"""

Neural Network for AlphaZero-style training.



This module provides a simple neural network architecture for policy and value

prediction. For a production system, you would use a more sophisticated

architecture (e.g., ResNet with attention) and train on GPU with PyTorch/TensorFlow.

"""

from dataclasses import dataclass
from typing import Tuple

import numpy as np


@dataclass
class NetworkConfig:
    """Configuration for AlphaZero Network"""

    input_size: int = 800  # Feature-based encoding (32 floats per card slot)
    # Size of observation vector (Matches GameState.get_observation)
    hidden_size: int = 256
    num_hidden_layers: int = 3
    action_size: int = 1000  # Size of action space (Matches GameState.get_legal_actions)
    learning_rate: float = 0.001
    l2_reg: float = 0.0001


def sigmoid(x: np.ndarray) -> np.ndarray:
    return 1 / (1 + np.exp(-np.clip(x, -500, 500)))


def relu(x: np.ndarray) -> np.ndarray:
    return np.maximum(0, x)


def softmax(x: np.ndarray) -> np.ndarray:
    exp_x = np.exp(x - np.max(x))
    return exp_x / exp_x.sum()


def tanh(x: np.ndarray) -> np.ndarray:
    return np.tanh(x)


class SimpleNetwork:
    """

    Simple feedforward neural network for policy and value prediction.



    Architecture:

    - Input layer (observation)

    - Hidden layers with ReLU

    - Policy head (softmax over actions)

    - Value head (tanh for [-1, 1])

    """

    def __init__(self, config: NetworkConfig = None):
        self.config = config or NetworkConfig()
        self._init_weights()

    def _init_weights(self) -> None:
        """Initialize weights using He initialization"""
        config = self.config

        # Shared layers
        self.hidden_weights = []
        self.hidden_biases = []

        in_size = config.input_size
        for _ in range(config.num_hidden_layers):
            std = np.sqrt(2.0 / in_size)
            w = np.random.randn(in_size, config.hidden_size) * std
            b = np.zeros(config.hidden_size)
            self.hidden_weights.append(w)
            self.hidden_biases.append(b)
            in_size = config.hidden_size

        # Policy head
        std = np.sqrt(2.0 / config.hidden_size)
        self.policy_weight = np.random.randn(config.hidden_size, config.action_size) * std
        self.policy_bias = np.zeros(config.action_size)

        # Value head
        self.value_weight = np.random.randn(config.hidden_size, 1) * std
        self.value_bias = np.zeros(1)

    def forward(self, observation: np.ndarray) -> Tuple[np.ndarray, float]:
        """

        Forward pass.



        Args:

            observation: Input features



        Returns:

            (policy probabilities, value)

        """
        # Store activations for backward pass
        self.activations = [observation]

        x = observation
        for w, b in zip(self.hidden_weights, self.hidden_biases, strict=False):
            x = relu(x @ w + b)
            self.activations.append(x)

        # Policy head
        policy_logits = x @ self.policy_weight + self.policy_bias
        policy = softmax(policy_logits)

        # Value head
        value = tanh(x @ self.value_weight + self.value_bias)[0]

        self.last_policy_logits = policy_logits
        self.last_value = value

        return policy, value

    def predict(self, state) -> Tuple[np.ndarray, float]:
        """Get policy and value for a game state"""
        obs = state.get_observation()
        policy, value = self.forward(obs)

        # Mask illegal actions
        legal = state.get_legal_actions()
        masked_policy = policy * legal
        if masked_policy.sum() > 0:
            masked_policy /= masked_policy.sum()
        else:
            # Fall back to uniform over legal
            masked_policy = legal.astype(np.float32)
            masked_policy /= masked_policy.sum()

        return masked_policy, value

    def predict_batch(self, states) -> list:
        """Get policy and value for a batch of game states"""
        if not states:
            return []

        obs = np.array([s.get_observation() for s in states])
        policies, values = self.forward(obs)

        results = []
        for i, (policy, value) in enumerate(zip(policies, values)):
            legal = states[i].get_legal_actions()
            masked_policy = policy * legal
            if masked_policy.sum() > 0:
                masked_policy /= masked_policy.sum()
            else:
                # Fall back to uniform over legal
                masked_policy = legal.astype(np.float32)
                masked_policy /= masked_policy.sum()
            results.append((masked_policy, value))

        return results

    def train_step(

        self, observations: np.ndarray, target_policies: np.ndarray, target_values: np.ndarray

    ) -> Tuple[float, float, float]:
        """

        One training step (Vectorized).



        Args:

            observations: Batch of observations (batch_size, input_size)

            target_policies: Target policy distributions (batch_size, action_size)

            target_values: Target values (batch_size,)



        Returns:

            (total_loss, policy_loss, value_loss)

        """
        batch_size = len(observations)
        config = self.config

        # 1. Forward Pass (Batch)
        pred_policy, pred_value = self.forward(observations)
        # pred_policy: (B, action_size)
        # pred_value: (B,)

        # 2. Loss Calculation
        # Policy loss: Cross-entropy
        # Mean over batch
        policy_loss = -np.mean(np.sum(target_policies * np.log(pred_policy + 1e-8), axis=1))

        # Value loss: MSE
        value_loss = np.mean((pred_value - target_values) ** 2)

        total_loss = policy_loss + value_loss

        # 3. Backward Pass (Gradients)
        # d_policy = (pred - target) / batch_size  (Gradient of Mean Cross Entropy)
        # However, we treat the sum of gradients and then average manually update,
        # so let's stick to the convention: dL/dLogits = (pred - target) / B
        d_policy_logits = (pred_policy - target_policies) / batch_size

        # d_value = 2 * (pred - target) * tanh'(pre_tanh) /  batch_size
        # tanh' = 1 - tanh^2 = 1 - pred_value^2
        d_value_out = 2 * (pred_value - target_values) / batch_size
        d_value_pre_tanh = d_value_out * (1 - pred_value**2)

        # Gradients for heads
        # hidden_out: (B, hidden_size)  (Last activation)
        hidden_out = self.activations[-1]

        # d_Weights = Input.T @ Error
        # Policy: (H, B) @ (B, A) -> (H, A)
        grad_policy_w = hidden_out.T @ d_policy_logits
        grad_policy_b = np.sum(d_policy_logits, axis=0)

        # Value: (H, B) @ (B, 1) -> (H, 1)
        # d_value_pre_tanh needs shape (B, 1)
        d_value_pre_tanh = d_value_pre_tanh.reshape(-1, 1)
        grad_value_w = hidden_out.T @ d_value_pre_tanh
        grad_value_b = np.sum(d_value_pre_tanh, axis=0)

        # Backprop through hidden layers
        # d_hidden_last = d_policy @ W_p.T + d_value @ W_v.T
        # (B, A) @ (A, H) + (B, 1) @ (1, H) -> (B, H)
        d_hidden = d_policy_logits @ self.policy_weight.T + d_value_pre_tanh @ self.value_weight.T

        # Store grads to apply later
        grads_w = []
        grads_b = []

        # Iterate backwards through hidden layers
        for layer_idx in range(len(self.hidden_weights) - 1, -1, -1):
            # ReLU derivative: mask where activation > 0
            # self.activations has inputs at [0], layer 1 out at [1], etc.
            # layer_idx maps to weights[layer_idx], which produces activations[layer_idx+1]
            mask = (self.activations[layer_idx + 1] > 0).astype(np.float32)
            d_hidden = d_hidden * mask

            prev_activation = self.activations[layer_idx]

            # Gradients for this layer
            # (In, B) @ (B, Out) -> (In, Out)
            g_w = prev_activation.T @ d_hidden
            g_b = np.sum(d_hidden, axis=0)

            grads_w.insert(0, g_w)
            grads_b.insert(0, g_b)

            if layer_idx > 0:
                # Propagate to previous layer
                d_hidden = d_hidden @ self.hidden_weights[layer_idx].T

        # 4. Apply Gradients (SGD + L2)
        for i in range(len(self.hidden_weights)):
            # L2: w = w - lr * (grad + l2 * w)
            self.hidden_weights[i] -= config.learning_rate * (grads_w[i] + config.l2_reg * self.hidden_weights[i])
            self.hidden_biases[i] -= config.learning_rate * grads_b[i]

        self.policy_weight -= config.learning_rate * (grad_policy_w + config.l2_reg * self.policy_weight)
        self.policy_bias -= config.learning_rate * grad_policy_b

        self.value_weight -= config.learning_rate * (grad_value_w + config.l2_reg * self.value_weight)
        self.value_bias -= config.learning_rate * grad_value_b

        return total_loss, policy_loss, value_loss

    def save(self, filepath: str) -> None:
        """Save network weights to file"""
        # Use allow_pickle and object-array conversion to handle inhomogeneous layer shapes
        np.savez(
            filepath,
            hidden_weights=np.array(self.hidden_weights, dtype=object),
            hidden_biases=np.array(self.hidden_biases, dtype=object),
            policy_weight=self.policy_weight,
            policy_bias=self.policy_bias,
            value_weight=self.value_weight,
            value_bias=self.value_bias,
        )

    def load(self, filepath: str) -> None:
        """Load network weights from file"""
        data = np.load(filepath, allow_pickle=True)
        # Convert object arrays back to lists of arrays
        self.hidden_weights = list(data["hidden_weights"])
        self.hidden_biases = list(data["hidden_biases"])
        self.policy_weight = data["policy_weight"]
        self.policy_bias = data["policy_bias"]
        self.value_weight = data["value_weight"]
        self.value_bias = data["value_bias"]


class NeuralMCTS:
    """MCTS that uses a neural network for policy and value with parallel search"""

    def __init__(

        self, network: SimpleNetwork, num_simulations: int = 100, batch_size: int = 8, virtual_loss: float = 3.0

    ):
        self.network = network
        self.num_simulations = num_simulations
        self.batch_size = batch_size
        self.c_puct = 1.4
        self.virtual_loss = virtual_loss
        self.root = None

    def get_policy_value(self, state) -> Tuple[np.ndarray, float]:
        """Get policy and value from neural network"""
        return self.network.predict(state)

    def search(self, state) -> np.ndarray:
        """Run MCTS with neural network guidance (Parallel)"""
        from ai.mcts import MCTSNode

        # Initial root expansion (always blocking)
        policy, _ = self.get_policy_value(state)
        self.root = MCTSNode()
        self.root.expand(state, policy)

        # We can't batch perfectly if simulations not divisible, but approx is fine
        num_batches = (self.num_simulations + self.batch_size - 1) // self.batch_size

        for _ in range(num_batches):
            self._simulate_batch(state, self.batch_size)

        # Return visit count distribution
        # Note: visits length must match action_size from network config or game state
        # MCTSNode children keys are actions.
        # We need a fixed size array for the policy target.
        action_size = len(state.get_legal_actions())
        visits = np.zeros(action_size, dtype=np.float32)

        for action, child in self.root.children.items():
            visits[action] = child.visit_count

        if visits.sum() > 0:
            visits /= visits.sum()

        return visits

    def _simulate_batch(self, root_state, batch_size) -> None:
        """Run a batch of MCTS simulations parallelized via Virtual Loss"""
        paths = []
        leaf_nodes = []
        request_states = []

        # 1. Selection Phase for K threads
        for _ in range(batch_size):
            node = self.root
            state = root_state.copy()
            path = [node]

            # Selection
            while node.is_expanded() and not state.is_terminal():
                action, child = node.select_child(self.c_puct)

                # Apply Virtual Loss immediately so subsequent selections in this batch diverge
                child.virtual_loss += self.virtual_loss

                state = state.step(action)
                node = child
                path.append(node)

            paths.append((path, state))
            leaf_nodes.append(node)

            if not state.is_terminal():
                request_states.append(state)

        # 2. Evaluation Phase (Batched)
        responses = []
        if request_states:
            if hasattr(self.network, "predict_batch"):
                responses = self.network.predict_batch(request_states)
            else:
                responses = [self.network.predict(s) for s in request_states]

        # 3. Expansion & Backpropagation Phase
        resp_idx = 0
        for i in range(batch_size):
            path, state = paths[i]
            leaf = leaf_nodes[i]

            value = 0.0

            if state.is_terminal():
                value = state.get_reward(root_state.current_player)
            else:
                # Retrieve prediction
                policy, v = responses[resp_idx]
                resp_idx += 1
                value = v

                # Expand
                leaf.expand(state, policy)

            # Backpropagate
            for node in reversed(path):
                node.visit_count += 1
                node.value_sum += value

                # Remove Virtual Loss (except from root which we didn't add to?
                # Wait, select_child returns child, and we added to child.
                # Root is path[0]. path[1] is first child.
                # So we should only subtract from path[1:] if we logic matches.
                # But wait, did we add to root? No.
                # So check: if node != self.root: node.virtual_loss -= ...
                if node != self.root:
                    node.virtual_loss -= self.virtual_loss

                value = -value


def train_network(network: SimpleNetwork, training_data: list, epochs: int = 10, batch_size: int = 32) -> None:
    """

    Train network on self-play data.



    Args:

        network: Network to train

        training_data: List of (states, policies, winner) tuples

        epochs: Number of training epochs

        batch_size: Batch size for training

    """
    print(f"Training on {len(training_data)} games...")

    # Flatten data with rewards
    all_states = []
    all_policies = []
    all_values = []

    for states, policies, winner, r0, r1 in training_data:
        for i, (s, p) in enumerate(zip(states, policies, strict=False)):
            all_states.append(s)
            all_policies.append(p)

            # Value from perspective of player who made the move
            player_idx = i % 2

            # Use actual calculated reward (with score shaping)
            if player_idx == 0:
                all_values.append(r0)
            else:
                all_values.append(r1)

    all_states = np.array(all_states)
    all_policies = np.array(all_policies)
    all_values = np.array(all_values)

    n_samples = len(all_states)

    for epoch in range(epochs):
        # Shuffle data
        indices = np.random.permutation(n_samples)
        total_loss = 0.0

        for i in range(0, n_samples, batch_size):
            batch_idx = indices[i : i + batch_size]
            loss, p_loss, v_loss = network.train_step(
                all_states[batch_idx], all_policies[batch_idx], all_values[batch_idx]
            )
            total_loss += loss

        num_batches = (n_samples + batch_size - 1) // batch_size
        print(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / num_batches:.4f}")


if __name__ == "__main__":
    # Test network
    from engine.game.game_state import initialize_game

    print("Testing neural network...")
    config = NetworkConfig()
    network = SimpleNetwork(config)

    # Test forward pass
    state = initialize_game()
    policy, value = network.predict(state)

    print(f"Policy shape: {policy.shape}")
    print(f"Policy sum: {policy.sum():.4f}")
    print(f"Value: {value:.4f}")

    # Test training step
    obs = state.get_observation()
    target_p = np.zeros(config.action_size)
    target_p[0] = 0.8
    target_p[1] = 0.2
    target_v = 0.5

    loss, p_loss, v_loss = network.train_step(obs.reshape(1, -1), target_p.reshape(1, -1), np.array([target_v]))
    print(f"Training loss: {loss:.4f} (policy: {p_loss:.4f}, value: {v_loss:.4f})")