Spaces:
Configuration error
Configuration error
| #!/usr/bin/env python | |
| # -*- coding: utf-8 -*- | |
| """Utilities for spectral processing""" | |
| import warnings | |
| import numpy as np | |
| import scipy | |
| import scipy.ndimage | |
| import scipy.signal | |
| import scipy.interpolate | |
| from numba import jit | |
| from . import convert | |
| from .fft import get_fftlib | |
| from .audio import resample | |
| from .._cache import cache | |
| from .. import util | |
| from ..util.exceptions import ParameterError | |
| from ..filters import get_window, semitone_filterbank | |
| from ..filters import window_sumsquare | |
| from numpy.typing import DTypeLike | |
| from typing import Any, Callable, Optional, Tuple, List, Union, overload | |
| from typing_extensions import Literal | |
| from .._typing import _WindowSpec, _PadMode, _PadModeSTFT | |
| __all__ = [ | |
| "stft", | |
| "istft", | |
| "magphase", | |
| "iirt", | |
| "reassigned_spectrogram", | |
| "phase_vocoder", | |
| "perceptual_weighting", | |
| "power_to_db", | |
| "db_to_power", | |
| "amplitude_to_db", | |
| "db_to_amplitude", | |
| "fmt", | |
| "pcen", | |
| "griffinlim", | |
| ] | |
| def stft( | |
| y: np.ndarray, | |
| *, | |
| n_fft: int = 2048, | |
| hop_length: Optional[int] = None, | |
| win_length: Optional[int] = None, | |
| window: _WindowSpec = "hann", | |
| center: bool = True, | |
| dtype: Optional[DTypeLike] = None, | |
| pad_mode: _PadModeSTFT = "constant", | |
| out: Optional[np.ndarray] = None, | |
| ) -> np.ndarray: | |
| """Short-time Fourier transform (STFT). | |
| The STFT represents a signal in the time-frequency domain by | |
| computing discrete Fourier transforms (DFT) over short overlapping | |
| windows. | |
| This function returns a complex-valued matrix D such that | |
| - ``np.abs(D[..., f, t])`` is the magnitude of frequency bin ``f`` | |
| at frame ``t``, and | |
| - ``np.angle(D[..., f, t])`` is the phase of frequency bin ``f`` | |
| at frame ``t``. | |
| The integers ``t`` and ``f`` can be converted to physical units by means | |
| of the utility functions `frames_to_samples` and `fft_frequencies`. | |
| Parameters | |
| ---------- | |
| y : np.ndarray [shape=(..., n)], real-valued | |
| input signal. Multi-channel is supported. | |
| n_fft : int > 0 [scalar] | |
| length of the windowed signal after padding with zeros. | |
| The number of rows in the STFT matrix ``D`` is ``(1 + n_fft/2)``. | |
| The default value, ``n_fft=2048`` samples, corresponds to a physical | |
| duration of 93 milliseconds at a sample rate of 22050 Hz, i.e. the | |
| default sample rate in librosa. This value is well adapted for music | |
| signals. However, in speech processing, the recommended value is 512, | |
| corresponding to 23 milliseconds at a sample rate of 22050 Hz. | |
| In any case, we recommend setting ``n_fft`` to a power of two for | |
| optimizing the speed of the fast Fourier transform (FFT) algorithm. | |
| hop_length : int > 0 [scalar] | |
| number of audio samples between adjacent STFT columns. | |
| Smaller values increase the number of columns in ``D`` without | |
| affecting the frequency resolution of the STFT. | |
| If unspecified, defaults to ``win_length // 4`` (see below). | |
| win_length : int <= n_fft [scalar] | |
| Each frame of audio is windowed by ``window`` of length ``win_length`` | |
| and then padded with zeros to match ``n_fft``. | |
| Smaller values improve the temporal resolution of the STFT (i.e. the | |
| ability to discriminate impulses that are closely spaced in time) | |
| at the expense of frequency resolution (i.e. the ability to discriminate | |
| pure tones that are closely spaced in frequency). This effect is known | |
| as the time-frequency localization trade-off and needs to be adjusted | |
| according to the properties of the input signal ``y``. | |
| If unspecified, defaults to ``win_length = n_fft``. | |
| window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] | |
| Either: | |
| - a window specification (string, tuple, or number); | |
| see `scipy.signal.get_window` | |
| - a window function, such as `scipy.signal.windows.hann` | |
| - a vector or array of length ``n_fft`` | |
| Defaults to a raised cosine window (`'hann'`), which is adequate for | |
| most applications in audio signal processing. | |
| .. see also:: `filters.get_window` | |
| center : boolean | |
| If ``True``, the signal ``y`` is padded so that frame | |
| ``D[:, t]`` is centered at ``y[t * hop_length]``. | |
| If ``False``, then ``D[:, t]`` begins at ``y[t * hop_length]``. | |
| Defaults to ``True``, which simplifies the alignment of ``D`` onto a | |
| time grid by means of `librosa.frames_to_samples`. | |
| Note, however, that ``center`` must be set to `False` when analyzing | |
| signals with `librosa.stream`. | |
| .. see also:: `librosa.stream` | |
| dtype : np.dtype, optional | |
| Complex numeric type for ``D``. Default is inferred to match the | |
| precision of the input signal. | |
| pad_mode : string or function | |
| If ``center=True``, this argument is passed to `np.pad` for padding | |
| the edges of the signal ``y``. By default (``pad_mode="constant"``), | |
| ``y`` is padded on both sides with zeros. | |
| .. note:: Not all padding modes supported by `numpy.pad` are supported here. | |
| `wrap`, `mean`, `maximum`, `median`, and `minimum` are not supported. | |
| Other modes that depend at most on input values at the edges of the | |
| signal (e.g., `constant`, `edge`, `linear_ramp`) are supported. | |
| If ``center=False``, this argument is ignored. | |
| .. see also:: `numpy.pad` | |
| out : np.ndarray or None | |
| A pre-allocated, complex-valued array to store the STFT results. | |
| This must be of compatible shape and dtype for the given input parameters. | |
| If `out` is larger than necessary for the provided input signal, then only | |
| a prefix slice of `out` will be used. | |
| If not provided, a new array is allocated and returned. | |
| Returns | |
| ------- | |
| D : np.ndarray [shape=(..., 1 + n_fft/2, n_frames), dtype=dtype] | |
| Complex-valued matrix of short-term Fourier transform | |
| coefficients. | |
| If a pre-allocated `out` array is provided, then `D` will be | |
| a reference to `out`. | |
| If `out` is larger than necessary, then `D` will be a sliced | |
| view: `D = out[..., :n_frames]`. | |
| See Also | |
| -------- | |
| istft : Inverse STFT | |
| reassigned_spectrogram : Time-frequency reassigned spectrogram | |
| Notes | |
| ----- | |
| This function caches at level 20. | |
| Examples | |
| -------- | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> S = np.abs(librosa.stft(y)) | |
| >>> S | |
| array([[5.395e-03, 3.332e-03, ..., 9.862e-07, 1.201e-05], | |
| [3.244e-03, 2.690e-03, ..., 9.536e-07, 1.201e-05], | |
| ..., | |
| [7.523e-05, 3.722e-05, ..., 1.188e-04, 1.031e-03], | |
| [7.640e-05, 3.944e-05, ..., 5.180e-04, 1.346e-03]], | |
| dtype=float32) | |
| Use left-aligned frames, instead of centered frames | |
| >>> S_left = librosa.stft(y, center=False) | |
| Use a shorter hop length | |
| >>> D_short = librosa.stft(y, hop_length=64) | |
| Display a spectrogram | |
| >>> import matplotlib.pyplot as plt | |
| >>> fig, ax = plt.subplots() | |
| >>> img = librosa.display.specshow(librosa.amplitude_to_db(S, | |
| ... ref=np.max), | |
| ... y_axis='log', x_axis='time', ax=ax) | |
| >>> ax.set_title('Power spectrogram') | |
| >>> fig.colorbar(img, ax=ax, format="%+2.0f dB") | |
| """ | |
| # By default, use the entire frame | |
| if win_length is None: | |
| win_length = n_fft | |
| # Set the default hop, if it's not already specified | |
| if hop_length is None: | |
| hop_length = int(win_length // 4) | |
| elif not util.is_positive_int(hop_length): | |
| raise ParameterError(f"hop_length={hop_length} must be a positive integer") | |
| # Check audio is valid | |
| util.valid_audio(y, mono=False) | |
| fft_window = get_window(window, win_length, fftbins=True) | |
| # Pad the window out to n_fft size | |
| fft_window = util.pad_center(fft_window, size=n_fft) | |
| # Reshape so that the window can be broadcast | |
| fft_window = util.expand_to(fft_window, ndim=1 + y.ndim, axes=-2) | |
| # Pad the time series so that frames are centered | |
| if center: | |
| if pad_mode in ("wrap", "maximum", "mean", "median", "minimum"): | |
| # Note: padding with a user-provided function "works", but | |
| # use at your own risk. | |
| # Since we don't pass-through kwargs here, any arguments | |
| # to a user-provided pad function should be encapsulated | |
| # by using functools.partial: | |
| # | |
| # >>> my_pad_func = functools.partial(pad_func, foo=x, bar=y) | |
| # >>> librosa.stft(..., pad_mode=my_pad_func) | |
| raise ParameterError( | |
| f"pad_mode='{pad_mode}' is not supported by librosa.stft" | |
| ) | |
| if n_fft > y.shape[-1]: | |
| warnings.warn( | |
| f"n_fft={n_fft} is too large for input signal of length={y.shape[-1]}" | |
| ) | |
| # Set up the padding array to be empty, and we'll fix the target dimension later | |
| padding = [(0, 0) for _ in range(y.ndim)] | |
| # How many frames depend on left padding? | |
| start_k = int(np.ceil(n_fft // 2 / hop_length)) | |
| # What's the first frame that depends on extra right-padding? | |
| tail_k = (y.shape[-1] + n_fft // 2 - n_fft) // hop_length + 1 | |
| if tail_k <= start_k: | |
| # If tail and head overlap, then just copy-pad the signal and carry on | |
| start = 0 | |
| extra = 0 | |
| padding[-1] = (n_fft // 2, n_fft // 2) | |
| y = np.pad(y, padding, mode=pad_mode) | |
| else: | |
| # If tail and head do not overlap, then we can implement padding on each part separately | |
| # and avoid a full copy-pad | |
| # "Middle" of the signal starts here, and does not depend on head padding | |
| start = start_k * hop_length - n_fft // 2 | |
| padding[-1] = (n_fft // 2, 0) | |
| # +1 here is to ensure enough samples to fill the window | |
| # fixes bug #1567 | |
| y_pre = np.pad( | |
| y[..., : (start_k - 1) * hop_length - n_fft // 2 + n_fft + 1], | |
| padding, | |
| mode=pad_mode, | |
| ) | |
| y_frames_pre = util.frame(y_pre, frame_length=n_fft, hop_length=hop_length) | |
| # Trim this down to the exact number of frames we should have | |
| y_frames_pre = y_frames_pre[..., :start_k] | |
| # How many extra frames do we have from the head? | |
| extra = y_frames_pre.shape[-1] | |
| # Determine if we have any frames that will fit inside the tail pad | |
| if tail_k * hop_length - n_fft // 2 + n_fft <= y.shape[-1] + n_fft // 2: | |
| padding[-1] = (0, n_fft // 2) | |
| y_post = np.pad( | |
| y[..., (tail_k) * hop_length - n_fft // 2 :], padding, mode=pad_mode | |
| ) | |
| y_frames_post = util.frame( | |
| y_post, frame_length=n_fft, hop_length=hop_length | |
| ) | |
| # How many extra frames do we have from the tail? | |
| extra += y_frames_post.shape[-1] | |
| else: | |
| # In this event, the first frame that touches tail padding would run off | |
| # the end of the padded array | |
| # We'll circumvent this by allocating an empty frame buffer for the tail | |
| # this keeps the subsequent logic simple | |
| post_shape = list(y_frames_pre.shape) | |
| post_shape[-1] = 0 | |
| y_frames_post = np.empty_like(y_frames_pre, shape=post_shape) | |
| else: | |
| if n_fft > y.shape[-1]: | |
| raise ParameterError( | |
| f"n_fft={n_fft} is too large for uncentered analysis of input signal of length={y.shape[-1]}" | |
| ) | |
| # "Middle" of the signal starts at sample 0 | |
| start = 0 | |
| # We have no extra frames | |
| extra = 0 | |
| fft = get_fftlib() | |
| if dtype is None: | |
| dtype = util.dtype_r2c(y.dtype) | |
| # Window the time series. | |
| y_frames = util.frame(y[..., start:], frame_length=n_fft, hop_length=hop_length) | |
| # Pre-allocate the STFT matrix | |
| shape = list(y_frames.shape) | |
| # This is our frequency dimension | |
| shape[-2] = 1 + n_fft // 2 | |
| # If there's padding, there will be extra head and tail frames | |
| shape[-1] += extra | |
| if out is None: | |
| stft_matrix = np.zeros(shape, dtype=dtype, order="F") | |
| elif not (np.allclose(out.shape[:-1], shape[:-1]) and out.shape[-1] >= shape[-1]): | |
| raise ParameterError( | |
| f"Shape mismatch for provided output array out.shape={out.shape} and target shape={shape}" | |
| ) | |
| elif not np.iscomplexobj(out): | |
| raise ParameterError(f"output with dtype={out.dtype} is not of complex type") | |
| else: | |
| if np.allclose(shape, out.shape): | |
| stft_matrix = out | |
| else: | |
| stft_matrix = out[..., : shape[-1]] | |
| # Fill in the warm-up | |
| if center and extra > 0: | |
| off_start = y_frames_pre.shape[-1] | |
| stft_matrix[..., :off_start] = fft.rfft(fft_window * y_frames_pre, axis=-2) | |
| off_end = y_frames_post.shape[-1] | |
| if off_end > 0: | |
| stft_matrix[..., -off_end:] = fft.rfft(fft_window * y_frames_post, axis=-2) | |
| else: | |
| off_start = 0 | |
| n_columns = int( | |
| util.MAX_MEM_BLOCK // (np.prod(y_frames.shape[:-1]) * y_frames.itemsize) | |
| ) | |
| n_columns = max(n_columns, 1) | |
| for bl_s in range(0, y_frames.shape[-1], n_columns): | |
| bl_t = min(bl_s + n_columns, y_frames.shape[-1]) | |
| stft_matrix[..., bl_s + off_start : bl_t + off_start] = fft.rfft( | |
| fft_window * y_frames[..., bl_s:bl_t], axis=-2 | |
| ) | |
| return stft_matrix | |
| def istft( | |
| stft_matrix: np.ndarray, | |
| *, | |
| hop_length: Optional[int] = None, | |
| win_length: Optional[int] = None, | |
| n_fft: Optional[int] = None, | |
| window: _WindowSpec = "hann", | |
| center: bool = True, | |
| dtype: Optional[DTypeLike] = None, | |
| length: Optional[int] = None, | |
| out: Optional[np.ndarray] = None, | |
| ) -> np.ndarray: | |
| """ | |
| Inverse short-time Fourier transform (ISTFT). | |
| Converts a complex-valued spectrogram ``stft_matrix`` to time-series ``y`` | |
| by minimizing the mean squared error between ``stft_matrix`` and STFT of | |
| ``y`` as described in [#]_ up to Section 2 (reconstruction from MSTFT). | |
| In general, window function, hop length and other parameters should be same | |
| as in stft, which mostly leads to perfect reconstruction of a signal from | |
| unmodified ``stft_matrix``. | |
| .. [#] D. W. Griffin and J. S. Lim, | |
| "Signal estimation from modified short-time Fourier transform," | |
| IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984. | |
| Parameters | |
| ---------- | |
| stft_matrix : np.ndarray [shape=(..., 1 + n_fft//2, t)] | |
| STFT matrix from ``stft`` | |
| hop_length : int > 0 [scalar] | |
| Number of frames between STFT columns. | |
| If unspecified, defaults to ``win_length // 4``. | |
| win_length : int <= n_fft = 2 * (stft_matrix.shape[0] - 1) | |
| When reconstructing the time series, each frame is windowed | |
| and each sample is normalized by the sum of squared window | |
| according to the ``window`` function (see below). | |
| If unspecified, defaults to ``n_fft``. | |
| n_fft : int > 0 or None | |
| The number of samples per frame in the input spectrogram. | |
| By default, this will be inferred from the shape of ``stft_matrix``. | |
| However, if an odd frame length was used, you can specify the correct | |
| length by setting ``n_fft``. | |
| window : string, tuple, number, function, np.ndarray [shape=(n_fft,)] | |
| - a window specification (string, tuple, or number); | |
| see `scipy.signal.get_window` | |
| - a window function, such as `scipy.signal.windows.hann` | |
| - a user-specified window vector of length ``n_fft`` | |
| .. see also:: `filters.get_window` | |
| center : boolean | |
| - If ``True``, ``D`` is assumed to have centered frames. | |
| - If ``False``, ``D`` is assumed to have left-aligned frames. | |
| dtype : numeric type | |
| Real numeric type for ``y``. Default is to match the numerical | |
| precision of the input spectrogram. | |
| length : int > 0, optional | |
| If provided, the output ``y`` is zero-padded or clipped to exactly | |
| ``length`` samples. | |
| out : np.ndarray or None | |
| A pre-allocated, complex-valued array to store the reconstructed signal | |
| ``y``. This must be of the correct shape for the given input parameters. | |
| If not provided, a new array is allocated and returned. | |
| Returns | |
| ------- | |
| y : np.ndarray [shape=(..., n)] | |
| time domain signal reconstructed from ``stft_matrix``. | |
| If ``stft_matrix`` contains more than two axes | |
| (e.g., from a stereo input signal), then ``y`` will match shape on the leading dimensions. | |
| See Also | |
| -------- | |
| stft : Short-time Fourier Transform | |
| Notes | |
| ----- | |
| This function caches at level 30. | |
| Examples | |
| -------- | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> D = librosa.stft(y) | |
| >>> y_hat = librosa.istft(D) | |
| >>> y_hat | |
| array([-1.407e-03, -4.461e-04, ..., 5.131e-06, -1.417e-05], | |
| dtype=float32) | |
| Exactly preserving length of the input signal requires explicit padding. | |
| Otherwise, a partial frame at the end of ``y`` will not be represented. | |
| >>> n = len(y) | |
| >>> n_fft = 2048 | |
| >>> y_pad = librosa.util.fix_length(y, size=n + n_fft // 2) | |
| >>> D = librosa.stft(y_pad, n_fft=n_fft) | |
| >>> y_out = librosa.istft(D, length=n) | |
| >>> np.max(np.abs(y - y_out)) | |
| 8.940697e-08 | |
| """ | |
| if n_fft is None: | |
| n_fft = 2 * (stft_matrix.shape[-2] - 1) | |
| # By default, use the entire frame | |
| if win_length is None: | |
| win_length = n_fft | |
| # Set the default hop, if it's not already specified | |
| if hop_length is None: | |
| hop_length = int(win_length // 4) | |
| ifft_window = get_window(window, win_length, fftbins=True) | |
| # Pad out to match n_fft, and add broadcasting axes | |
| ifft_window = util.pad_center(ifft_window, size=n_fft) | |
| ifft_window = util.expand_to(ifft_window, ndim=stft_matrix.ndim, axes=-2) | |
| # For efficiency, trim STFT frames according to signal length if available | |
| if length: | |
| if center: | |
| padded_length = length + 2 * (n_fft // 2) | |
| else: | |
| padded_length = length | |
| n_frames = min(stft_matrix.shape[-1], int(np.ceil(padded_length / hop_length))) | |
| else: | |
| n_frames = stft_matrix.shape[-1] | |
| if dtype is None: | |
| dtype = util.dtype_c2r(stft_matrix.dtype) | |
| shape = list(stft_matrix.shape[:-2]) | |
| expected_signal_len = n_fft + hop_length * (n_frames - 1) | |
| if length: | |
| expected_signal_len = length | |
| elif center: | |
| expected_signal_len -= 2 * (n_fft // 2) | |
| shape.append(expected_signal_len) | |
| if out is None: | |
| y = np.zeros(shape, dtype=dtype) | |
| elif not np.allclose(out.shape, shape): | |
| raise ParameterError( | |
| f"Shape mismatch for provided output array out.shape={out.shape} != {shape}" | |
| ) | |
| else: | |
| y = out | |
| # Since we'll be doing overlap-add here, this needs to be initialized to zero. | |
| y.fill(0.0) | |
| fft = get_fftlib() | |
| if center: | |
| # First frame that does not depend on padding | |
| # k * hop_length - n_fft//2 >= 0 | |
| # k * hop_length >= n_fft // 2 | |
| # k >= (n_fft//2 / hop_length) | |
| start_frame = int(np.ceil((n_fft // 2) / hop_length)) | |
| # Do overlap-add on the head block | |
| ytmp = ifft_window * fft.irfft(stft_matrix[..., :start_frame], n=n_fft, axis=-2) | |
| shape[-1] = n_fft + hop_length * (start_frame - 1) | |
| head_buffer = np.zeros(shape, dtype=dtype) | |
| __overlap_add(head_buffer, ytmp, hop_length) | |
| # If y is smaller than the head buffer, take everything | |
| if y.shape[-1] < shape[-1] - n_fft // 2: | |
| y[..., :] = head_buffer[..., n_fft // 2 : y.shape[-1] + n_fft // 2] | |
| else: | |
| # Trim off the first n_fft//2 samples from the head and copy into target buffer | |
| y[..., : shape[-1] - n_fft // 2] = head_buffer[..., n_fft // 2 :] | |
| # This offset compensates for any differences between frame alignment | |
| # and padding truncation | |
| offset = start_frame * hop_length - n_fft // 2 | |
| else: | |
| start_frame = 0 | |
| offset = 0 | |
| n_columns = int( | |
| util.MAX_MEM_BLOCK // (np.prod(stft_matrix.shape[:-1]) * stft_matrix.itemsize) | |
| ) | |
| n_columns = max(n_columns, 1) | |
| frame = 0 | |
| for bl_s in range(start_frame, n_frames, n_columns): | |
| bl_t = min(bl_s + n_columns, n_frames) | |
| # invert the block and apply the window function | |
| ytmp = ifft_window * fft.irfft(stft_matrix[..., bl_s:bl_t], n=n_fft, axis=-2) | |
| # Overlap-add the istft block starting at the i'th frame | |
| __overlap_add(y[..., frame * hop_length + offset :], ytmp, hop_length) | |
| frame += bl_t - bl_s | |
| # Normalize by sum of squared window | |
| ifft_window_sum = window_sumsquare( | |
| window=window, | |
| n_frames=n_frames, | |
| win_length=win_length, | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| dtype=dtype, | |
| ) | |
| if center: | |
| start = n_fft // 2 | |
| else: | |
| start = 0 | |
| ifft_window_sum = util.fix_length(ifft_window_sum[..., start:], size=y.shape[-1]) | |
| approx_nonzero_indices = ifft_window_sum > util.tiny(ifft_window_sum) | |
| y[..., approx_nonzero_indices] /= ifft_window_sum[approx_nonzero_indices] | |
| return y | |
| def __overlap_add(y, ytmp, hop_length): | |
| # numba-accelerated overlap add for inverse stft | |
| # y is the pre-allocated output buffer | |
| # ytmp is the windowed inverse-stft frames | |
| # hop_length is the hop-length of the STFT analysis | |
| n_fft = ytmp.shape[-2] | |
| N = n_fft | |
| for frame in range(ytmp.shape[-1]): | |
| sample = frame * hop_length | |
| if N > y.shape[-1] - sample: | |
| N = y.shape[-1] - sample | |
| y[..., sample : (sample + N)] += ytmp[..., :N, frame] | |
| def __reassign_frequencies( | |
| y: np.ndarray, | |
| sr: float = 22050, | |
| S: Optional[np.ndarray] = None, | |
| n_fft: int = 2048, | |
| hop_length: Optional[int] = None, | |
| win_length: Optional[int] = None, | |
| window: _WindowSpec = "hann", | |
| center: bool = True, | |
| dtype: Optional[DTypeLike] = None, | |
| pad_mode: _PadModeSTFT = "constant", | |
| ) -> Tuple[np.ndarray, np.ndarray]: | |
| """Instantaneous frequencies based on a spectrogram representation. | |
| The reassignment vector is calculated using equation 5.20 in Flandrin, | |
| Auger, & Chassande-Mottin 2002:: | |
| omega_reassigned = omega - np.imag(S_dh/S_h) | |
| where ``S_h`` is the complex STFT calculated using the original window, and | |
| ``S_dh`` is the complex STFT calculated using the derivative of the original | |
| window. | |
| See `reassigned_spectrogram` for references. | |
| It is recommended to use ``pad_mode="wrap"`` or else ``center=False``, rather | |
| than the defaults. Frequency reassignment assumes that the energy in each | |
| FFT bin is associated with exactly one signal component. Reflection padding | |
| at the edges of the signal may invalidate the reassigned estimates in the | |
| boundary frames. | |
| Parameters | |
| ---------- | |
| y : np.ndarray [shape=(..., n,)], real-valued | |
| audio time series. Multi-channel is supported. | |
| sr : number > 0 [scalar] | |
| sampling rate of ``y`` | |
| S : np.ndarray [shape=(..., d, t)] or None | |
| (optional) complex STFT calculated using the other arguments provided | |
| to `__reassign_frequencies` | |
| n_fft : int > 0 [scalar] | |
| FFT window size. Defaults to 2048. | |
| hop_length : int > 0 [scalar] | |
| hop length, number samples between subsequent frames. | |
| If not supplied, defaults to ``win_length // 4``. | |
| win_length : int > 0, <= n_fft | |
| Window length. Defaults to ``n_fft``. | |
| See ``stft`` for details. | |
| window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] | |
| - a window specification (string, tuple, number); | |
| see `scipy.signal.get_window` | |
| - a window function, such as `scipy.signal.windows.hann` | |
| - a user-specified window vector of length ``n_fft`` | |
| See `stft` for details. | |
| .. see also:: `filters.get_window` | |
| center : boolean | |
| - If ``True``, the signal ``y`` is padded so that frame | |
| ``S[:, t]`` is centered at ``y[t * hop_length]``. | |
| - If ``False``, then ``S[:, t]`` begins at ``y[t * hop_length]``. | |
| dtype : numeric type | |
| Complex numeric type for ``S``. Default is inferred to match | |
| the numerical precision of the input signal. | |
| pad_mode : string | |
| If ``center=True``, the padding mode to use at the edges of the signal. | |
| By default, STFT uses zero padding. | |
| Returns | |
| ------- | |
| freqs : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=real] | |
| Instantaneous frequencies: | |
| ``freqs[f, t]`` is the frequency for bin ``f``, frame ``t``. | |
| S : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=complex] | |
| Short-time Fourier transform | |
| Warns | |
| ----- | |
| RuntimeWarning | |
| Frequencies with zero support will produce a divide-by-zero warning and | |
| will be returned as `np.nan`. | |
| See Also | |
| -------- | |
| stft : Short-time Fourier Transform | |
| reassigned_spectrogram : Time-frequency reassigned spectrogram | |
| Examples | |
| -------- | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> frequencies, S = librosa.core.spectrum.__reassign_frequencies(y, sr=sr) | |
| >>> frequencies | |
| array([[0.000e+00, 0.000e+00, ..., 0.000e+00, 0.000e+00], | |
| [3.628e+00, 4.698e+00, ..., 1.239e+01, 1.072e+01], | |
| ..., | |
| [1.101e+04, 1.102e+04, ..., 1.105e+04, 1.102e+04], | |
| [1.102e+04, 1.102e+04, ..., 1.102e+04, 1.102e+04]]) | |
| """ | |
| # retrieve window samples if needed so that the window derivative can be | |
| # calculated | |
| if win_length is None: | |
| win_length = n_fft | |
| window = get_window(window, win_length, fftbins=True) | |
| window = util.pad_center(window, size=n_fft) | |
| if S is None: | |
| if dtype is None: | |
| dtype = util.dtype_r2c(y.dtype) | |
| S_h = stft( | |
| y=y, | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| window=window, | |
| center=center, | |
| dtype=dtype, | |
| pad_mode=pad_mode, | |
| ) | |
| else: | |
| if dtype is None: | |
| dtype = S.dtype | |
| S_h = S | |
| # cyclic gradient to correctly handle edges of a periodic window | |
| window_derivative = util.cyclic_gradient(window) | |
| S_dh = stft( | |
| y=y, | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| window=window_derivative, | |
| center=center, | |
| dtype=dtype, | |
| pad_mode=pad_mode, | |
| ) | |
| # equation 5.20 of Flandrin, Auger, & Chassande-Mottin 2002 | |
| # the sign of the correction is reversed in some papers - see Plante, | |
| # Meyer, & Ainsworth 1998 pp. 283-284 | |
| correction = -np.imag(S_dh / S_h) | |
| freqs = convert.fft_frequencies(sr=sr, n_fft=n_fft) | |
| freqs = util.expand_to(freqs, ndim=correction.ndim, axes=-2) + correction * ( | |
| 0.5 * sr / np.pi | |
| ) | |
| return freqs, S_h | |
| def __reassign_times( | |
| y: np.ndarray, | |
| sr: float = 22050, | |
| S: Optional[np.ndarray] = None, | |
| n_fft: int = 2048, | |
| hop_length: Optional[int] = None, | |
| win_length: Optional[int] = None, | |
| window: _WindowSpec = "hann", | |
| center: bool = True, | |
| dtype: Optional[DTypeLike] = None, | |
| pad_mode: _PadModeSTFT = "constant", | |
| ) -> Tuple[np.ndarray, np.ndarray]: | |
| """Time reassignments based on a spectrogram representation. | |
| The reassignment vector is calculated using equation 5.23 in Flandrin, | |
| Auger, & Chassande-Mottin 2002:: | |
| t_reassigned = t + np.real(S_th/S_h) | |
| where ``S_h`` is the complex STFT calculated using the original window, and | |
| ``S_th`` is the complex STFT calculated using the original window multiplied | |
| by the time offset from the window center. | |
| See `reassigned_spectrogram` for references. | |
| It is recommended to use ``pad_mode="constant"`` (zero padding) or else | |
| ``center=False``, rather than the defaults. Time reassignment assumes that | |
| the energy in each FFT bin is associated with exactly one impulse event. | |
| Reflection padding at the edges of the signal may invalidate the reassigned | |
| estimates in the boundary frames. | |
| Parameters | |
| ---------- | |
| y : np.ndarray [shape=(..., n,)], real-valued | |
| audio time series. Multi-channel is supported. | |
| sr : number > 0 [scalar] | |
| sampling rate of ``y`` | |
| S : np.ndarray [shape=(..., d, t)] or None | |
| (optional) complex STFT calculated using the other arguments provided | |
| to `__reassign_times` | |
| n_fft : int > 0 [scalar] | |
| FFT window size. Defaults to 2048. | |
| hop_length : int > 0 [scalar] | |
| hop length, number samples between subsequent frames. | |
| If not supplied, defaults to ``win_length // 4``. | |
| win_length : int > 0, <= n_fft | |
| Window length. Defaults to ``n_fft``. | |
| See `stft` for details. | |
| window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] | |
| - a window specification (string, tuple, number); | |
| see `scipy.signal.get_window` | |
| - a window function, such as `scipy.signal.windows.hann` | |
| - a user-specified window vector of length ``n_fft`` | |
| See `stft` for details. | |
| .. see also:: `filters.get_window` | |
| center : boolean | |
| - If ``True``, the signal ``y`` is padded so that frame | |
| ``S[:, t]`` is centered at ``y[t * hop_length]``. | |
| - If ``False``, then ``S[:, t]`` begins at ``y[t * hop_length]``. | |
| dtype : numeric type | |
| Complex numeric type for ``S``. Default is inferred to match | |
| the precision of the input signal. | |
| pad_mode : string | |
| If ``center=True``, the padding mode to use at the edges of the signal. | |
| By default, STFT uses zero padding. | |
| Returns | |
| ------- | |
| times : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=real] | |
| Reassigned times: | |
| ``times[f, t]`` is the time for bin ``f``, frame ``t``. | |
| S : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=complex] | |
| Short-time Fourier transform | |
| Warns | |
| ----- | |
| RuntimeWarning | |
| Time estimates with zero support will produce a divide-by-zero warning | |
| and will be returned as `np.nan`. | |
| See Also | |
| -------- | |
| stft : Short-time Fourier Transform | |
| reassigned_spectrogram : Time-frequency reassigned spectrogram | |
| Examples | |
| -------- | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> times, S = librosa.core.spectrum.__reassign_times(y, sr=sr) | |
| >>> times | |
| array([[ 2.268e-05, 1.144e-02, ..., 5.332e+00, 5.333e+00], | |
| [ 2.268e-05, 1.451e-02, ..., 5.334e+00, 5.333e+00], | |
| ..., | |
| [ 2.268e-05, -6.177e-04, ..., 5.368e+00, 5.327e+00], | |
| [ 2.268e-05, 1.420e-03, ..., 5.307e+00, 5.328e+00]]) | |
| """ | |
| # retrieve window samples if needed so that the time-weighted window can be | |
| # calculated | |
| if win_length is None: | |
| win_length = n_fft | |
| window = get_window(window, win_length, fftbins=True) | |
| window = util.pad_center(window, size=n_fft) | |
| # retrieve hop length if needed so that the frame times can be calculated | |
| if hop_length is None: | |
| hop_length = int(win_length // 4) | |
| if S is None: | |
| if dtype is None: | |
| dtype = util.dtype_r2c(y.dtype) | |
| S_h = stft( | |
| y=y, | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| window=window, | |
| center=center, | |
| dtype=dtype, | |
| pad_mode=pad_mode, | |
| ) | |
| else: | |
| if dtype is None: | |
| dtype = S.dtype | |
| S_h = S | |
| # calculate window weighted by time | |
| half_width = n_fft // 2 | |
| window_times: np.ndarray | |
| if n_fft % 2: | |
| window_times = np.arange(-half_width, half_width + 1) | |
| else: | |
| window_times = np.arange(0.5 - half_width, half_width) | |
| window_time_weighted = window * window_times | |
| S_th = stft( | |
| y=y, | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| window=window_time_weighted, | |
| center=center, | |
| dtype=dtype, | |
| pad_mode=pad_mode, | |
| ) | |
| # equation 5.23 of Flandrin, Auger, & Chassande-Mottin 2002 | |
| # the sign of the correction is reversed in some papers - see Plante, | |
| # Meyer, & Ainsworth 1998 pp. 283-284 | |
| correction = np.real(S_th / S_h) | |
| if center: | |
| pad_length = None | |
| else: | |
| pad_length = n_fft | |
| times = convert.frames_to_time( | |
| np.arange(S_h.shape[-1]), sr=sr, hop_length=hop_length, n_fft=pad_length | |
| ) | |
| times = util.expand_to(times, ndim=correction.ndim, axes=-1) + correction / sr | |
| return times, S_h | |
| def reassigned_spectrogram( | |
| y: np.ndarray, | |
| *, | |
| sr: float = 22050, | |
| S: Optional[np.ndarray] = None, | |
| n_fft: int = 2048, | |
| hop_length: Optional[int] = None, | |
| win_length: Optional[int] = None, | |
| window: _WindowSpec = "hann", | |
| center: bool = True, | |
| reassign_frequencies: bool = True, | |
| reassign_times: bool = True, | |
| ref_power: Union[float, Callable] = 1e-6, | |
| fill_nan: bool = False, | |
| clip: bool = True, | |
| dtype: Optional[DTypeLike] = None, | |
| pad_mode: _PadModeSTFT = "constant", | |
| ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | |
| r"""Time-frequency reassigned spectrogram. | |
| The reassignment vectors are calculated using equations 5.20 and 5.23 in | |
| [#]_:: | |
| t_reassigned = t + np.real(S_th/S_h) | |
| omega_reassigned = omega - np.imag(S_dh/S_h) | |
| where ``S_h`` is the complex STFT calculated using the original window, | |
| ``S_dh`` is the complex STFT calculated using the derivative of the original | |
| window, and ``S_th`` is the complex STFT calculated using the original window | |
| multiplied by the time offset from the window center. See [#]_ for | |
| additional algorithms, and [#]_ and [#]_ for history and discussion of the | |
| method. | |
| .. [#] Flandrin, P., Auger, F., & Chassande-Mottin, E. (2002). | |
| Time-Frequency reassignment: From principles to algorithms. In | |
| Applications in Time-Frequency Signal Processing (Vol. 10, pp. | |
| 179-204). CRC Press. | |
| .. [#] Fulop, S. A., & Fitz, K. (2006). Algorithms for computing the | |
| time-corrected instantaneous frequency (reassigned) spectrogram, with | |
| applications. The Journal of the Acoustical Society of America, 119(1), | |
| 360. doi:10.1121/1.2133000 | |
| .. [#] Auger, F., Flandrin, P., Lin, Y.-T., McLaughlin, S., Meignen, S., | |
| Oberlin, T., & Wu, H.-T. (2013). Time-Frequency Reassignment and | |
| Synchrosqueezing: An Overview. IEEE Signal Processing Magazine, 30(6), | |
| 32-41. doi:10.1109/MSP.2013.2265316 | |
| .. [#] Hainsworth, S., Macleod, M. (2003). Time-frequency reassignment: a | |
| review and analysis. Tech. Rep. CUED/FINFENG/TR.459, Cambridge | |
| University Engineering Department | |
| Parameters | |
| ---------- | |
| y : np.ndarray [shape=(..., n)], real-valued | |
| audio time series. Multi-channel is supported. | |
| sr : number > 0 [scalar] | |
| sampling rate of ``y`` | |
| S : np.ndarray [shape=(..., d, t)] or None | |
| (optional) complex STFT calculated using the other arguments provided | |
| to ``reassigned_spectrogram`` | |
| n_fft : int > 0 [scalar] | |
| FFT window size. Defaults to 2048. | |
| hop_length : int > 0 [scalar] | |
| hop length, number samples between subsequent frames. | |
| If not supplied, defaults to ``win_length // 4``. | |
| win_length : int > 0, <= n_fft | |
| Window length. Defaults to ``n_fft``. | |
| See `stft` for details. | |
| window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] | |
| - a window specification (string, tuple, number); | |
| see `scipy.signal.get_window` | |
| - a window function, such as `scipy.signal.windows.hann` | |
| - a user-specified window vector of length ``n_fft`` | |
| See `stft` for details. | |
| .. see also:: `filters.get_window` | |
| center : boolean | |
| - If ``True`` (default), the signal ``y`` is padded so that frame | |
| ``S[:, t]`` is centered at ``y[t * hop_length]``. See `Notes` for | |
| recommended usage in this function. | |
| - If ``False``, then ``S[:, t]`` begins at ``y[t * hop_length]``. | |
| reassign_frequencies : boolean | |
| - If ``True`` (default), the returned frequencies will be instantaneous | |
| frequency estimates. | |
| - If ``False``, the returned frequencies will be a read-only view of the | |
| STFT bin frequencies for all frames. | |
| reassign_times : boolean | |
| - If ``True`` (default), the returned times will be corrected | |
| (reassigned) time estimates for each bin. | |
| - If ``False``, the returned times will be a read-only view of the STFT | |
| frame times for all bins. | |
| ref_power : float >= 0 or callable | |
| Minimum power threshold for estimating time-frequency reassignments. | |
| Any bin with ``np.abs(S[f, t])**2 < ref_power`` will be returned as | |
| `np.nan` in both frequency and time, unless ``fill_nan`` is ``True``. If 0 | |
| is provided, then only bins with zero power will be returned as | |
| `np.nan` (unless ``fill_nan=True``). | |
| fill_nan : boolean | |
| - If ``False`` (default), the frequency and time reassignments for bins | |
| below the power threshold provided in ``ref_power`` will be returned as | |
| `np.nan`. | |
| - If ``True``, the frequency and time reassignments for these bins will | |
| be returned as the bin center frequencies and frame times. | |
| clip : boolean | |
| - If ``True`` (default), estimated frequencies outside the range | |
| `[0, 0.5 * sr]` or times outside the range `[0, len(y) / sr]` will be | |
| clipped to those ranges. | |
| - If ``False``, estimated frequencies and times beyond the bounds of the | |
| spectrogram may be returned. | |
| dtype : numeric type | |
| Complex numeric type for STFT calculation. Default is inferred to match | |
| the precision of the input signal. | |
| pad_mode : string | |
| If ``center=True``, the padding mode to use at the edges of the signal. | |
| By default, STFT uses zero padding. | |
| Returns | |
| ------- | |
| freqs, times, mags : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=real] | |
| Instantaneous frequencies: | |
| ``freqs[..., f, t]`` is the frequency for bin ``f``, frame ``t``. | |
| If ``reassign_frequencies=False``, this will instead be a read-only array | |
| of the same shape containing the bin center frequencies for all frames. | |
| Reassigned times: | |
| ``times[..., f, t]`` is the time for bin ``f``, frame ``t``. | |
| If ``reassign_times=False``, this will instead be a read-only array of | |
| the same shape containing the frame times for all bins. | |
| Magnitudes from short-time Fourier transform: | |
| ``mags[..., f, t]`` is the magnitude for bin ``f``, frame ``t``. | |
| Warns | |
| ----- | |
| RuntimeWarning | |
| Frequency or time estimates with zero support will produce a | |
| divide-by-zero warning, and will be returned as `np.nan` unless | |
| ``fill_nan=True``. | |
| See Also | |
| -------- | |
| stft : Short-time Fourier Transform | |
| Notes | |
| ----- | |
| It is recommended to use ``center=False`` with this function rather than the | |
| librosa default ``True``. Unlike ``stft``, reassigned times are not aligned to | |
| the left or center of each frame, so padding the signal does not affect the | |
| meaning of the reassigned times. However, reassignment assumes that the | |
| energy in each FFT bin is associated with exactly one signal component and | |
| impulse event. | |
| If ``reassign_times`` is ``False``, the frame times that are returned will be | |
| aligned to the left or center of the frame, depending on the value of | |
| ``center``. In this case, if ``center`` is ``True``, then ``pad_mode="wrap"`` is | |
| recommended for valid estimation of the instantaneous frequencies in the | |
| boundary frames. | |
| Examples | |
| -------- | |
| >>> import matplotlib.pyplot as plt | |
| >>> amin = 1e-10 | |
| >>> n_fft = 64 | |
| >>> sr = 4000 | |
| >>> y = 1e-3 * librosa.clicks(times=[0.3], sr=sr, click_duration=1.0, | |
| ... click_freq=1200.0, length=8000) +\ | |
| ... 1e-3 * librosa.clicks(times=[1.5], sr=sr, click_duration=0.5, | |
| ... click_freq=400.0, length=8000) +\ | |
| ... 1e-3 * librosa.chirp(fmin=200, fmax=1600, sr=sr, duration=2.0) +\ | |
| ... 1e-6 * np.random.randn(2*sr) | |
| >>> freqs, times, mags = librosa.reassigned_spectrogram(y=y, sr=sr, | |
| ... n_fft=n_fft) | |
| >>> mags_db = librosa.amplitude_to_db(mags, ref=np.max) | |
| >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) | |
| >>> img = librosa.display.specshow(mags_db, x_axis="s", y_axis="linear", sr=sr, | |
| ... hop_length=n_fft//4, ax=ax[0]) | |
| >>> ax[0].set(title="Spectrogram", xlabel=None) | |
| >>> ax[0].label_outer() | |
| >>> ax[1].scatter(times, freqs, c=mags_db, cmap="magma", alpha=0.1, s=5) | |
| >>> ax[1].set_title("Reassigned spectrogram") | |
| >>> fig.colorbar(img, ax=ax, format="%+2.f dB") | |
| """ | |
| if not callable(ref_power) and ref_power < 0: | |
| raise ParameterError("ref_power must be non-negative or callable.") | |
| if not reassign_frequencies and not reassign_times: | |
| raise ParameterError("reassign_frequencies or reassign_times must be True.") | |
| if win_length is None: | |
| win_length = n_fft | |
| if hop_length is None: | |
| hop_length = int(win_length // 4) | |
| # frequency and time reassignment if requested | |
| if reassign_frequencies: | |
| freqs, S = __reassign_frequencies( | |
| y=y, | |
| sr=sr, | |
| S=S, | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| win_length=win_length, | |
| window=window, | |
| center=center, | |
| dtype=dtype, | |
| pad_mode=pad_mode, | |
| ) | |
| if reassign_times: | |
| times, S = __reassign_times( | |
| y=y, | |
| sr=sr, | |
| S=S, | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| win_length=win_length, | |
| window=window, | |
| center=center, | |
| dtype=dtype, | |
| pad_mode=pad_mode, | |
| ) | |
| assert S is not None | |
| mags: np.ndarray = np.abs(S) | |
| # clean up reassignment issues: divide-by-zero, bins with near-zero power, | |
| # and estimates outside the spectrogram bounds | |
| # retrieve bin frequencies and frame times to replace missing estimates | |
| if fill_nan or not reassign_frequencies or not reassign_times: | |
| if center: | |
| pad_length = None | |
| else: | |
| pad_length = n_fft | |
| bin_freqs = convert.fft_frequencies(sr=sr, n_fft=n_fft) | |
| frame_times = convert.frames_to_time( | |
| frames=np.arange(S.shape[-1]), | |
| sr=sr, | |
| hop_length=hop_length, | |
| n_fft=pad_length, | |
| ) | |
| # find bins below the power threshold | |
| # reassigned bins with zero power will already be NaN | |
| if callable(ref_power): | |
| ref_p = ref_power(mags**2) | |
| else: | |
| ref_p = ref_power | |
| mags_low = np.less(mags, ref_p**0.5, where=~np.isnan(mags)) | |
| # for reassigned estimates, optionally set thresholded bins to NaN, return | |
| # bin frequencies and frame times in place of NaN generated by | |
| # divide-by-zero and power threshold, and clip to spectrogram bounds | |
| if reassign_frequencies: | |
| if ref_p > 0: | |
| freqs[mags_low] = np.nan | |
| if fill_nan: | |
| freqs = np.where(np.isnan(freqs), bin_freqs[:, np.newaxis], freqs) | |
| if clip: | |
| np.clip(freqs, 0, sr / 2.0, out=freqs) | |
| # or if reassignment was not requested, return bin frequencies and frame | |
| # times for every cell is the spectrogram | |
| else: | |
| freqs = np.broadcast_to(bin_freqs[:, np.newaxis], S.shape) | |
| if reassign_times: | |
| if ref_p > 0: | |
| times[mags_low] = np.nan | |
| if fill_nan: | |
| times = np.where(np.isnan(times), frame_times[np.newaxis, :], times) | |
| if clip: | |
| np.clip(times, 0, y.shape[-1] / float(sr), out=times) | |
| else: | |
| times = np.broadcast_to(frame_times[np.newaxis, :], S.shape) | |
| return freqs, times, mags | |
| def magphase(D: np.ndarray, *, power: float = 1) -> Tuple[np.ndarray, np.ndarray]: | |
| """Separate a complex-valued spectrogram D into its magnitude (S) | |
| and phase (P) components, so that ``D = S * P``. | |
| Parameters | |
| ---------- | |
| D : np.ndarray [shape=(..., d, t), dtype=complex] | |
| complex-valued spectrogram | |
| power : float > 0 | |
| Exponent for the magnitude spectrogram, | |
| e.g., 1 for energy, 2 for power, etc. | |
| Returns | |
| ------- | |
| D_mag : np.ndarray [shape=(..., d, t), dtype=real] | |
| magnitude of ``D``, raised to ``power`` | |
| D_phase : np.ndarray [shape=(..., d, t), dtype=complex] | |
| ``exp(1.j * phi)`` where ``phi`` is the phase of ``D`` | |
| Examples | |
| -------- | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> D = librosa.stft(y) | |
| >>> magnitude, phase = librosa.magphase(D) | |
| >>> magnitude | |
| array([[5.395e-03, 3.332e-03, ..., 9.862e-07, 1.201e-05], | |
| [3.244e-03, 2.690e-03, ..., 9.536e-07, 1.201e-05], | |
| ..., | |
| [7.523e-05, 3.722e-05, ..., 1.188e-04, 1.031e-03], | |
| [7.640e-05, 3.944e-05, ..., 5.180e-04, 1.346e-03]], | |
| dtype=float32) | |
| >>> phase | |
| array([[ 1. +0.000e+00j, 1. +0.000e+00j, ..., | |
| -1. -8.742e-08j, -1. -8.742e-08j], | |
| [-1. -8.742e-08j, -0.775-6.317e-01j, ..., | |
| -0.885-4.648e-01j, 0.472-8.815e-01j], | |
| ..., | |
| [ 1. -4.342e-12j, 0.028-9.996e-01j, ..., | |
| -0.222-9.751e-01j, -0.75 -6.610e-01j], | |
| [-1. -8.742e-08j, -1. -8.742e-08j, ..., | |
| 1. +0.000e+00j, 1. +0.000e+00j]], dtype=complex64) | |
| Or get the phase angle (in radians) | |
| >>> np.angle(phase) | |
| array([[ 0.000e+00, 0.000e+00, ..., -3.142e+00, -3.142e+00], | |
| [-3.142e+00, -2.458e+00, ..., -2.658e+00, -1.079e+00], | |
| ..., | |
| [-4.342e-12, -1.543e+00, ..., -1.794e+00, -2.419e+00], | |
| [-3.142e+00, -3.142e+00, ..., 0.000e+00, 0.000e+00]], | |
| dtype=float32) | |
| """ | |
| mag = np.abs(D) | |
| # Prevent NaNs and return magnitude 0, phase 1+0j for zero | |
| zeros_to_ones = mag == 0 | |
| mag_nonzero = mag + zeros_to_ones | |
| # Compute real and imaginary separately, because complex division can | |
| # produce NaNs when denormalized numbers are involved (< ~2e-39 for | |
| # complex64, ~5e-309 for complex128) | |
| phase = np.empty_like(D, dtype=util.dtype_r2c(D.dtype)) | |
| phase.real = D.real / mag_nonzero + zeros_to_ones | |
| phase.imag = D.imag / mag_nonzero | |
| mag **= power | |
| return mag, phase | |
| def phase_vocoder( | |
| D: np.ndarray, | |
| *, | |
| rate: float, | |
| hop_length: Optional[int] = None, | |
| n_fft: Optional[int] = None, | |
| ) -> np.ndarray: | |
| """Phase vocoder. Given an STFT matrix D, speed up by a factor of ``rate`` | |
| Based on the implementation provided by [#]_. | |
| This is a simplified implementation, intended primarily for | |
| reference and pedagogical purposes. It makes no attempt to | |
| handle transients, and is likely to produce many audible | |
| artifacts. For a higher quality implementation, we recommend | |
| the RubberBand library [#]_ and its Python wrapper `pyrubberband`. | |
| .. [#] Ellis, D. P. W. "A phase vocoder in Matlab." | |
| Columbia University, 2002. | |
| http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/ | |
| .. [#] https://breakfastquay.com/rubberband/ | |
| Examples | |
| -------- | |
| >>> # Play at double speed | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> D = librosa.stft(y, n_fft=2048, hop_length=512) | |
| >>> D_fast = librosa.phase_vocoder(D, rate=2.0, hop_length=512) | |
| >>> y_fast = librosa.istft(D_fast, hop_length=512) | |
| >>> # Or play at 1/3 speed | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> D = librosa.stft(y, n_fft=2048, hop_length=512) | |
| >>> D_slow = librosa.phase_vocoder(D, rate=1./3, hop_length=512) | |
| >>> y_slow = librosa.istft(D_slow, hop_length=512) | |
| Parameters | |
| ---------- | |
| D : np.ndarray [shape=(..., d, t), dtype=complex] | |
| STFT matrix | |
| rate : float > 0 [scalar] | |
| Speed-up factor: ``rate > 1`` is faster, ``rate < 1`` is slower. | |
| hop_length : int > 0 [scalar] or None | |
| The number of samples between successive columns of ``D``. | |
| If None, defaults to ``n_fft//4 = (D.shape[0]-1)//2`` | |
| n_fft : int > 0 or None | |
| The number of samples per frame in D. | |
| By default (None), this will be inferred from the shape of D. | |
| However, if D was constructed using an odd-length window, the correct | |
| frame length can be specified here. | |
| Returns | |
| ------- | |
| D_stretched : np.ndarray [shape=(..., d, t / rate), dtype=complex] | |
| time-stretched STFT | |
| See Also | |
| -------- | |
| pyrubberband | |
| """ | |
| if n_fft is None: | |
| n_fft = 2 * (D.shape[-2] - 1) | |
| if hop_length is None: | |
| hop_length = int(n_fft // 4) | |
| time_steps = np.arange(0, D.shape[-1], rate, dtype=np.float64) | |
| # Create an empty output array | |
| shape = list(D.shape) | |
| shape[-1] = len(time_steps) | |
| d_stretch = np.zeros_like(D, shape=shape) | |
| # Expected phase advance in each bin | |
| phi_advance = np.linspace(0, np.pi * hop_length, D.shape[-2]) | |
| # Phase accumulator; initialize to the first sample | |
| phase_acc = np.angle(D[..., 0]) | |
| # Pad 0 columns to simplify boundary logic | |
| padding = [(0, 0) for _ in D.shape] | |
| padding[-1] = (0, 2) | |
| D = np.pad(D, padding, mode="constant") | |
| for t, step in enumerate(time_steps): | |
| columns = D[..., int(step) : int(step + 2)] | |
| # Weighting for linear magnitude interpolation | |
| alpha = np.mod(step, 1.0) | |
| mag = (1.0 - alpha) * np.abs(columns[..., 0]) + alpha * np.abs(columns[..., 1]) | |
| # Store to output array | |
| d_stretch[..., t] = util.phasor(phase_acc, mag=mag) | |
| # Compute phase advance | |
| dphase = np.angle(columns[..., 1]) - np.angle(columns[..., 0]) - phi_advance | |
| # Wrap to -pi:pi range | |
| dphase = dphase - 2.0 * np.pi * np.round(dphase / (2.0 * np.pi)) | |
| # Accumulate phase | |
| phase_acc += phi_advance + dphase | |
| return d_stretch | |
| def iirt( | |
| y: np.ndarray, | |
| *, | |
| sr: float = 22050, | |
| win_length: int = 2048, | |
| hop_length: Optional[int] = None, | |
| center: bool = True, | |
| tuning: float = 0.0, | |
| pad_mode: _PadMode = "constant", | |
| flayout: str = "sos", | |
| res_type: str = "soxr_hq", | |
| **kwargs: Any, | |
| ) -> np.ndarray: | |
| r"""Time-frequency representation using IIR filters | |
| This function will return a time-frequency representation | |
| using a multirate filter bank consisting of IIR filters. [#]_ | |
| First, ``y`` is resampled as needed according to the provided ``sample_rates``. | |
| Then, a filterbank with with ``n`` band-pass filters is designed. | |
| The resampled input signals are processed by the filterbank as a whole. | |
| (`scipy.signal.filtfilt` resp. `sosfiltfilt` is used to make the phase linear.) | |
| The output of the filterbank is cut into frames. | |
| For each band, the short-time mean-square power (STMSP) is calculated by | |
| summing ``win_length`` subsequent filtered time samples. | |
| When called with the default set of parameters, it will generate the TF-representation | |
| (pitch filterbank): | |
| * 85 filters with MIDI pitches [24, 108] as ``center_freqs``. | |
| * each filter having a bandwidth of one semitone. | |
| .. [#] Müller, Meinard. | |
| "Information Retrieval for Music and Motion." | |
| Springer Verlag. 2007. | |
| Parameters | |
| ---------- | |
| y : np.ndarray [shape=(..., n)] | |
| audio time series. Multi-channel is supported. | |
| sr : number > 0 [scalar] | |
| sampling rate of ``y`` | |
| win_length : int > 0, <= n_fft | |
| Window length. | |
| hop_length : int > 0 [scalar] | |
| Hop length, number samples between subsequent frames. | |
| If not supplied, defaults to ``win_length // 4``. | |
| center : boolean | |
| - If ``True``, the signal ``y`` is padded so that frame | |
| ``D[..., :, t]`` is centered at ``y[t * hop_length]``. | |
| - If ``False``, then `D[..., :, t]`` begins at ``y[t * hop_length]`` | |
| tuning : float [scalar] | |
| Tuning deviation from A440 in fractions of a bin. | |
| pad_mode : string | |
| If ``center=True``, the padding mode to use at the edges of the signal. | |
| By default, this function uses zero padding. | |
| flayout : string | |
| - If `sos` (default), a series of second-order filters is used for filtering with `scipy.signal.sosfiltfilt`. | |
| Minimizes numerical precision errors for high-order filters, but is slower. | |
| - If `ba`, the standard difference equation is used for filtering with `scipy.signal.filtfilt`. | |
| Can be unstable for high-order filters. | |
| res_type : string | |
| The resampling mode. See `librosa.resample` for details. | |
| **kwargs : additional keyword arguments | |
| Additional arguments for `librosa.filters.semitone_filterbank` | |
| (e.g., could be used to provide another set of ``center_freqs`` and ``sample_rates``). | |
| Returns | |
| ------- | |
| bands_power : np.ndarray [shape=(..., n, t), dtype=dtype] | |
| Short-time mean-square power for the input signal. | |
| Raises | |
| ------ | |
| ParameterError | |
| If ``flayout`` is not None, `ba`, or `sos`. | |
| See Also | |
| -------- | |
| librosa.filters.semitone_filterbank | |
| librosa.filters.mr_frequencies | |
| librosa.cqt | |
| scipy.signal.filtfilt | |
| scipy.signal.sosfiltfilt | |
| Examples | |
| -------- | |
| >>> import matplotlib.pyplot as plt | |
| >>> y, sr = librosa.load(librosa.ex('trumpet'), duration=3) | |
| >>> D = np.abs(librosa.iirt(y)) | |
| >>> C = np.abs(librosa.cqt(y=y, sr=sr)) | |
| >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) | |
| >>> img = librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max), | |
| ... y_axis='cqt_hz', x_axis='time', ax=ax[0]) | |
| >>> ax[0].set(title='Constant-Q transform') | |
| >>> ax[0].label_outer() | |
| >>> img = librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), | |
| ... y_axis='cqt_hz', x_axis='time', ax=ax[1]) | |
| >>> ax[1].set_title('Semitone spectrogram (iirt)') | |
| >>> fig.colorbar(img, ax=ax, format="%+2.0f dB") | |
| """ | |
| if flayout not in ("ba", "sos"): | |
| raise ParameterError(f"Unsupported flayout={flayout}") | |
| # check audio input | |
| util.valid_audio(y, mono=False) | |
| # Set the default hop, if it's not already specified | |
| if hop_length is None: | |
| hop_length = win_length // 4 | |
| # Pad the time series so that frames are centered | |
| if center: | |
| padding = [(0, 0) for _ in y.shape] | |
| padding[-1] = (win_length // 2, win_length // 2) | |
| y = np.pad(y, padding, mode=pad_mode) | |
| # get the semitone filterbank | |
| filterbank_ct, sample_rates = semitone_filterbank( | |
| tuning=tuning, flayout=flayout, **kwargs | |
| ) | |
| # create three downsampled versions of the audio signal | |
| y_resampled = [] | |
| y_srs = np.unique(sample_rates) | |
| for cur_sr in y_srs: | |
| y_resampled.append(resample(y, orig_sr=sr, target_sr=cur_sr, res_type=res_type)) | |
| # Compute the number of frames that will fit. The end may get truncated. | |
| n_frames = int(1 + (y.shape[-1] - win_length) // hop_length) | |
| # Pre-allocate the output array | |
| shape = list(y.shape) | |
| # Time dimension reduces to n_frames | |
| shape[-1] = n_frames | |
| # Insert a new axis at position -2 for filter response | |
| shape.insert(-1, len(filterbank_ct)) | |
| bands_power = np.empty_like(y, shape=shape) | |
| slices: List[Union[int, slice]] = [slice(None) for _ in bands_power.shape] | |
| for i, (cur_sr, cur_filter) in enumerate(zip(sample_rates, filterbank_ct)): | |
| slices[-2] = i | |
| # filter the signal | |
| cur_sr_idx = np.flatnonzero(y_srs == cur_sr)[0] | |
| if flayout == "ba": | |
| cur_filter_output = scipy.signal.filtfilt( | |
| cur_filter[0], cur_filter[1], y_resampled[cur_sr_idx], axis=-1 | |
| ) | |
| elif flayout == "sos": | |
| cur_filter_output = scipy.signal.sosfiltfilt( | |
| cur_filter, y_resampled[cur_sr_idx], axis=-1 | |
| ) | |
| factor = sr / cur_sr | |
| hop_length_STMSP = hop_length / factor | |
| win_length_STMSP_round = int(round(win_length / factor)) | |
| # hop_length_STMSP is used here as a floating-point number. | |
| # The discretization happens at the end to avoid accumulated rounding errors. | |
| start_idx = np.arange( | |
| 0, cur_filter_output.shape[-1] - win_length_STMSP_round, hop_length_STMSP | |
| ) | |
| if len(start_idx) < n_frames: | |
| min_length = ( | |
| int(np.ceil(n_frames * hop_length_STMSP)) + win_length_STMSP_round | |
| ) | |
| cur_filter_output = util.fix_length(cur_filter_output, size=min_length) | |
| start_idx = np.arange( | |
| 0, | |
| cur_filter_output.shape[-1] - win_length_STMSP_round, | |
| hop_length_STMSP, | |
| ) | |
| start_idx = np.round(start_idx).astype(int)[:n_frames] | |
| idx = np.add.outer(start_idx, np.arange(win_length_STMSP_round)) | |
| bands_power[tuple(slices)] = factor * np.sum( | |
| cur_filter_output[..., idx] ** 2, axis=-1 | |
| ) | |
| return bands_power | |
| def power_to_db( | |
| S: np.ndarray, | |
| *, | |
| ref: Union[float, Callable] = 1.0, | |
| amin: float = 1e-10, | |
| top_db: Optional[float] = 80.0, | |
| ) -> np.ndarray: | |
| """Convert a power spectrogram (amplitude squared) to decibel (dB) units | |
| This computes the scaling ``10 * log10(S / ref)`` in a numerically | |
| stable way. | |
| Parameters | |
| ---------- | |
| S : np.ndarray | |
| input power | |
| ref : scalar or callable | |
| If scalar, the amplitude ``abs(S)`` is scaled relative to ``ref``:: | |
| 10 * log10(S / ref) | |
| Zeros in the output correspond to positions where ``S == ref``. | |
| If callable, the reference value is computed as ``ref(S)``. | |
| amin : float > 0 [scalar] | |
| minimum threshold for ``abs(S)`` and ``ref`` | |
| top_db : float >= 0 [scalar] | |
| threshold the output at ``top_db`` below the peak: | |
| ``max(10 * log10(S/ref)) - top_db`` | |
| Returns | |
| ------- | |
| S_db : np.ndarray | |
| ``S_db ~= 10 * log10(S) - 10 * log10(ref)`` | |
| See Also | |
| -------- | |
| perceptual_weighting | |
| db_to_power | |
| amplitude_to_db | |
| db_to_amplitude | |
| Notes | |
| ----- | |
| This function caches at level 30. | |
| Examples | |
| -------- | |
| Get a power spectrogram from a waveform ``y`` | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> S = np.abs(librosa.stft(y)) | |
| >>> librosa.power_to_db(S**2) | |
| array([[-41.809, -41.809, ..., -41.809, -41.809], | |
| [-41.809, -41.809, ..., -41.809, -41.809], | |
| ..., | |
| [-41.809, -41.809, ..., -41.809, -41.809], | |
| [-41.809, -41.809, ..., -41.809, -41.809]], dtype=float32) | |
| Compute dB relative to peak power | |
| >>> librosa.power_to_db(S**2, ref=np.max) | |
| array([[-80., -80., ..., -80., -80.], | |
| [-80., -80., ..., -80., -80.], | |
| ..., | |
| [-80., -80., ..., -80., -80.], | |
| [-80., -80., ..., -80., -80.]], dtype=float32) | |
| Or compare to median power | |
| >>> librosa.power_to_db(S**2, ref=np.median) | |
| array([[16.578, 16.578, ..., 16.578, 16.578], | |
| [16.578, 16.578, ..., 16.578, 16.578], | |
| ..., | |
| [16.578, 16.578, ..., 16.578, 16.578], | |
| [16.578, 16.578, ..., 16.578, 16.578]], dtype=float32) | |
| And plot the results | |
| >>> import matplotlib.pyplot as plt | |
| >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) | |
| >>> imgpow = librosa.display.specshow(S**2, sr=sr, y_axis='log', x_axis='time', | |
| ... ax=ax[0]) | |
| >>> ax[0].set(title='Power spectrogram') | |
| >>> ax[0].label_outer() | |
| >>> imgdb = librosa.display.specshow(librosa.power_to_db(S**2, ref=np.max), | |
| ... sr=sr, y_axis='log', x_axis='time', ax=ax[1]) | |
| >>> ax[1].set(title='Log-Power spectrogram') | |
| >>> fig.colorbar(imgpow, ax=ax[0]) | |
| >>> fig.colorbar(imgdb, ax=ax[1], format="%+2.0f dB") | |
| """ | |
| S = np.asarray(S) | |
| if amin <= 0: | |
| raise ParameterError("amin must be strictly positive") | |
| if np.issubdtype(S.dtype, np.complexfloating): | |
| warnings.warn( | |
| "power_to_db was called on complex input so phase " | |
| "information will be discarded. To suppress this warning, " | |
| "call power_to_db(np.abs(D)**2) instead.", | |
| stacklevel=2, | |
| ) | |
| magnitude = np.abs(S) | |
| else: | |
| magnitude = S | |
| if callable(ref): | |
| # User supplied a function to calculate reference power | |
| ref_value = ref(magnitude) | |
| else: | |
| ref_value = np.abs(ref) | |
| log_spec: np.ndarray = 10.0 * np.log10(np.maximum(amin, magnitude)) | |
| log_spec -= 10.0 * np.log10(np.maximum(amin, ref_value)) | |
| if top_db is not None: | |
| if top_db < 0: | |
| raise ParameterError("top_db must be non-negative") | |
| log_spec = np.maximum(log_spec, log_spec.max() - top_db) | |
| return log_spec | |
| def db_to_power(S_db: np.ndarray, *, ref: float = 1.0) -> np.ndarray: | |
| """Convert a dB-scale spectrogram to a power spectrogram. | |
| This effectively inverts ``power_to_db``:: | |
| db_to_power(S_db) ~= ref * 10.0**(S_db / 10) | |
| Parameters | |
| ---------- | |
| S_db : np.ndarray | |
| dB-scaled spectrogram | |
| ref : number > 0 | |
| Reference power: output will be scaled by this value | |
| Returns | |
| ------- | |
| S : np.ndarray | |
| Power spectrogram | |
| Notes | |
| ----- | |
| This function caches at level 30. | |
| """ | |
| return ref * np.power(10.0, 0.1 * S_db) | |
| def amplitude_to_db( | |
| S: np.ndarray, | |
| *, | |
| ref: Union[float, Callable] = 1.0, | |
| amin: float = 1e-5, | |
| top_db: Optional[float] = 80.0, | |
| ) -> np.ndarray: | |
| """Convert an amplitude spectrogram to dB-scaled spectrogram. | |
| This is equivalent to ``power_to_db(S**2, ref=ref**2, amin=amin**2, top_db=top_db)``, | |
| but is provided for convenience. | |
| Parameters | |
| ---------- | |
| S : np.ndarray | |
| input amplitude | |
| ref : scalar or callable | |
| If scalar, the amplitude ``abs(S)`` is scaled relative to ``ref``: | |
| ``20 * log10(S / ref)``. | |
| Zeros in the output correspond to positions where ``S == ref``. | |
| If callable, the reference value is computed as ``ref(S)``. | |
| amin : float > 0 [scalar] | |
| minimum threshold for ``S`` and ``ref`` | |
| top_db : float >= 0 [scalar] | |
| threshold the output at ``top_db`` below the peak: | |
| ``max(20 * log10(S/ref)) - top_db`` | |
| Returns | |
| ------- | |
| S_db : np.ndarray | |
| ``S`` measured in dB | |
| See Also | |
| -------- | |
| power_to_db, db_to_amplitude | |
| Notes | |
| ----- | |
| This function caches at level 30. | |
| """ | |
| S = np.asarray(S) | |
| if np.issubdtype(S.dtype, np.complexfloating): | |
| warnings.warn( | |
| "amplitude_to_db was called on complex input so phase " | |
| "information will be discarded. To suppress this warning, " | |
| "call amplitude_to_db(np.abs(S)) instead.", | |
| stacklevel=2, | |
| ) | |
| magnitude = np.abs(S) | |
| if callable(ref): | |
| # User supplied a function to calculate reference power | |
| ref_value = ref(magnitude) | |
| else: | |
| ref_value = np.abs(ref) | |
| power = np.square(magnitude, out=magnitude) | |
| return power_to_db(power, ref=ref_value**2, amin=amin**2, top_db=top_db) | |
| def db_to_amplitude(S_db: np.ndarray, *, ref: float = 1.0) -> np.ndarray: | |
| """Convert a dB-scaled spectrogram to an amplitude spectrogram. | |
| This effectively inverts `amplitude_to_db`:: | |
| db_to_amplitude(S_db) ~= 10.0**(0.5 * S_db/10 + log10(ref)) | |
| Parameters | |
| ---------- | |
| S_db : np.ndarray | |
| dB-scaled spectrogram | |
| ref : number > 0 | |
| Optional reference power. | |
| Returns | |
| ------- | |
| S : np.ndarray | |
| Linear magnitude spectrogram | |
| Notes | |
| ----- | |
| This function caches at level 30. | |
| """ | |
| return db_to_power(S_db, ref=ref**2) ** 0.5 | |
| def perceptual_weighting( | |
| S: np.ndarray, frequencies: np.ndarray, *, kind: str = "A", **kwargs: Any | |
| ) -> np.ndarray: | |
| """Perceptual weighting of a power spectrogram:: | |
| S_p[..., f, :] = frequency_weighting(f, 'A') + 10*log(S[..., f, :] / ref) | |
| Parameters | |
| ---------- | |
| S : np.ndarray [shape=(..., d, t)] | |
| Power spectrogram | |
| frequencies : np.ndarray [shape=(d,)] | |
| Center frequency for each row of` `S`` | |
| kind : str | |
| The frequency weighting curve to use. | |
| e.g. `'A'`, `'B'`, `'C'`, `'D'`, `None or 'Z'` | |
| **kwargs : additional keyword arguments | |
| Additional keyword arguments to `power_to_db`. | |
| Returns | |
| ------- | |
| S_p : np.ndarray [shape=(..., d, t)] | |
| perceptually weighted version of ``S`` | |
| See Also | |
| -------- | |
| power_to_db | |
| Notes | |
| ----- | |
| This function caches at level 30. | |
| Examples | |
| -------- | |
| Re-weight a CQT power spectrum, using peak power as reference | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('A1'))) | |
| >>> freqs = librosa.cqt_frequencies(C.shape[0], | |
| ... fmin=librosa.note_to_hz('A1')) | |
| >>> perceptual_CQT = librosa.perceptual_weighting(C**2, | |
| ... freqs, | |
| ... ref=np.max) | |
| >>> perceptual_CQT | |
| array([[ -96.528, -97.101, ..., -108.561, -108.561], | |
| [ -95.88 , -96.479, ..., -107.551, -107.551], | |
| ..., | |
| [ -65.142, -53.256, ..., -80.098, -80.098], | |
| [ -71.542, -53.197, ..., -80.311, -80.311]]) | |
| >>> import matplotlib.pyplot as plt | |
| >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) | |
| >>> img = librosa.display.specshow(librosa.amplitude_to_db(C, | |
| ... ref=np.max), | |
| ... fmin=librosa.note_to_hz('A1'), | |
| ... y_axis='cqt_hz', x_axis='time', | |
| ... ax=ax[0]) | |
| >>> ax[0].set(title='Log CQT power') | |
| >>> ax[0].label_outer() | |
| >>> imgp = librosa.display.specshow(perceptual_CQT, y_axis='cqt_hz', | |
| ... fmin=librosa.note_to_hz('A1'), | |
| ... x_axis='time', ax=ax[1]) | |
| >>> ax[1].set(title='Perceptually weighted log CQT') | |
| >>> fig.colorbar(img, ax=ax[0], format="%+2.0f dB") | |
| >>> fig.colorbar(imgp, ax=ax[1], format="%+2.0f dB") | |
| """ | |
| offset = convert.frequency_weighting(frequencies, kind=kind).reshape((-1, 1)) | |
| result: np.ndarray = offset + power_to_db(S, **kwargs) | |
| return result | |
| def fmt( | |
| y: np.ndarray, | |
| *, | |
| t_min: float = 0.5, | |
| n_fmt: Optional[int] = None, | |
| kind: str = "cubic", | |
| beta: float = 0.5, | |
| over_sample: float = 1, | |
| axis: int = -1, | |
| ) -> np.ndarray: | |
| """The fast Mellin transform (FMT) | |
| The Mellin of a signal `y` is performed by interpolating `y` on an exponential time | |
| axis, applying a polynomial window, and then taking the discrete Fourier transform. | |
| When the Mellin parameter (beta) is 1/2, it is also known as the scale transform. [#]_ | |
| The scale transform can be useful for audio analysis because its magnitude is invariant | |
| to scaling of the domain (e.g., time stretching or compression). This is analogous | |
| to the magnitude of the Fourier transform being invariant to shifts in the input domain. | |
| .. [#] De Sena, Antonio, and Davide Rocchesso. | |
| "A fast Mellin and scale transform." | |
| EURASIP Journal on Applied Signal Processing 2007.1 (2007): 75-75. | |
| .. [#] Cohen, L. | |
| "The scale representation." | |
| IEEE Transactions on Signal Processing 41, no. 12 (1993): 3275-3292. | |
| Parameters | |
| ---------- | |
| y : np.ndarray, real-valued | |
| The input signal(s). Can be multidimensional. | |
| The target axis must contain at least 3 samples. | |
| t_min : float > 0 | |
| The minimum time spacing (in samples). | |
| This value should generally be less than 1 to preserve as much information as | |
| possible. | |
| n_fmt : int > 2 or None | |
| The number of scale transform bins to use. | |
| If None, then ``n_bins = over_sample * ceil(n * log((n-1)/t_min))`` is taken, | |
| where ``n = y.shape[axis]`` | |
| kind : str | |
| The type of interpolation to use when re-sampling the input. | |
| See `scipy.interpolate.interp1d` for possible values. | |
| Note that the default is to use high-precision (cubic) interpolation. | |
| This can be slow in practice; if speed is preferred over accuracy, | |
| then consider using ``kind='linear'``. | |
| beta : float | |
| The Mellin parameter. ``beta=0.5`` provides the scale transform. | |
| over_sample : float >= 1 | |
| Over-sampling factor for exponential resampling. | |
| axis : int | |
| The axis along which to transform ``y`` | |
| Returns | |
| ------- | |
| x_scale : np.ndarray [dtype=complex] | |
| The scale transform of ``y`` along the ``axis`` dimension. | |
| Raises | |
| ------ | |
| ParameterError | |
| if ``n_fmt < 2`` or ``t_min <= 0`` | |
| or if ``y`` is not finite | |
| or if ``y.shape[axis] < 3``. | |
| Notes | |
| ----- | |
| This function caches at level 30. | |
| Examples | |
| -------- | |
| >>> # Generate a signal and time-stretch it (with energy normalization) | |
| >>> scale = 1.25 | |
| >>> freq = 3.0 | |
| >>> x1 = np.linspace(0, 1, num=1024, endpoint=False) | |
| >>> x2 = np.linspace(0, 1, num=int(scale * len(x1)), endpoint=False) | |
| >>> y1 = np.sin(2 * np.pi * freq * x1) | |
| >>> y2 = np.sin(2 * np.pi * freq * x2) / np.sqrt(scale) | |
| >>> # Verify that the two signals have the same energy | |
| >>> np.sum(np.abs(y1)**2), np.sum(np.abs(y2)**2) | |
| (255.99999999999997, 255.99999999999969) | |
| >>> scale1 = librosa.fmt(y1, n_fmt=512) | |
| >>> scale2 = librosa.fmt(y2, n_fmt=512) | |
| >>> # And plot the results | |
| >>> import matplotlib.pyplot as plt | |
| >>> fig, ax = plt.subplots(nrows=2) | |
| >>> ax[0].plot(y1, label='Original') | |
| >>> ax[0].plot(y2, linestyle='--', label='Stretched') | |
| >>> ax[0].set(xlabel='time (samples)', title='Input signals') | |
| >>> ax[0].legend() | |
| >>> ax[1].semilogy(np.abs(scale1), label='Original') | |
| >>> ax[1].semilogy(np.abs(scale2), linestyle='--', label='Stretched') | |
| >>> ax[1].set(xlabel='scale coefficients', title='Scale transform magnitude') | |
| >>> ax[1].legend() | |
| >>> # Plot the scale transform of an onset strength autocorrelation | |
| >>> y, sr = librosa.load(librosa.ex('choice')) | |
| >>> odf = librosa.onset.onset_strength(y=y, sr=sr) | |
| >>> # Auto-correlate with up to 10 seconds lag | |
| >>> odf_ac = librosa.autocorrelate(odf, max_size=10 * sr // 512) | |
| >>> # Normalize | |
| >>> odf_ac = librosa.util.normalize(odf_ac, norm=np.inf) | |
| >>> # Compute the scale transform | |
| >>> odf_ac_scale = librosa.fmt(librosa.util.normalize(odf_ac), n_fmt=512) | |
| >>> # Plot the results | |
| >>> fig, ax = plt.subplots(nrows=3) | |
| >>> ax[0].plot(odf, label='Onset strength') | |
| >>> ax[0].set(xlabel='Time (frames)', title='Onset strength') | |
| >>> ax[1].plot(odf_ac, label='Onset autocorrelation') | |
| >>> ax[1].set(xlabel='Lag (frames)', title='Onset autocorrelation') | |
| >>> ax[2].semilogy(np.abs(odf_ac_scale), label='Scale transform magnitude') | |
| >>> ax[2].set(xlabel='scale coefficients') | |
| """ | |
| n = y.shape[axis] | |
| if n < 3: | |
| raise ParameterError(f"y.shape[{axis}]=={n} < 3") | |
| if t_min <= 0: | |
| raise ParameterError(f"t_min={t_min} must be a positive number") | |
| if n_fmt is None: | |
| if over_sample < 1: | |
| raise ParameterError(f"over_sample={over_sample} must be >= 1") | |
| # The base is the maximum ratio between adjacent samples | |
| # Since the sample spacing is increasing, this is simply the | |
| # ratio between the positions of the last two samples: (n-1)/(n-2) | |
| log_base = np.log(n - 1) - np.log(n - 2) | |
| n_fmt = int(np.ceil(over_sample * (np.log(n - 1) - np.log(t_min)) / log_base)) | |
| elif n_fmt < 3: | |
| raise ParameterError(f"n_fmt=={n_fmt} < 3") | |
| else: | |
| log_base = (np.log(n_fmt - 1) - np.log(n_fmt - 2)) / over_sample | |
| if not np.all(np.isfinite(y)): | |
| raise ParameterError("y must be finite everywhere") | |
| base = np.exp(log_base) | |
| # original grid: signal covers [0, 1). This range is arbitrary, but convenient. | |
| # The final sample is positioned at (n-1)/n, so we omit the endpoint | |
| x = np.linspace(0, 1, num=n, endpoint=False) | |
| # build the interpolator | |
| f_interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=axis) | |
| # build the new sampling grid | |
| # exponentially spaced between t_min/n and 1 (exclusive) | |
| # we'll go one past where we need, and drop the last sample | |
| # When over-sampling, the last input sample contributions n_over samples. | |
| # To keep the spacing consistent, we over-sample by n_over, and then | |
| # trim the final samples. | |
| n_over = int(np.ceil(over_sample)) | |
| x_exp = np.logspace( | |
| (np.log(t_min) - np.log(n)) / log_base, | |
| 0, | |
| num=n_fmt + n_over, | |
| endpoint=False, | |
| base=base, | |
| )[:-n_over] | |
| # Clean up any rounding errors at the boundaries of the interpolation | |
| # The interpolator gets angry if we try to extrapolate, so clipping is necessary here. | |
| if x_exp[0] < t_min or x_exp[-1] > float(n - 1.0) / n: | |
| x_exp = np.clip(x_exp, float(t_min) / n, x[-1]) | |
| # Make sure that all sample points are unique | |
| # This should never happen! | |
| if len(np.unique(x_exp)) != len(x_exp): | |
| raise ParameterError("Redundant sample positions in Mellin transform") | |
| # Resample the signal | |
| y_res = f_interp(x_exp) | |
| # Broadcast the window correctly | |
| shape = [1] * y_res.ndim | |
| shape[axis] = -1 | |
| # Apply the window and fft | |
| # Normalization is absorbed into the window here for expedience | |
| fft = get_fftlib() | |
| result: np.ndarray = fft.rfft( | |
| y_res * ((x_exp**beta).reshape(shape) * np.sqrt(n) / n_fmt), axis=axis | |
| ) | |
| return result | |
| def pcen( | |
| S: np.ndarray, | |
| *, | |
| sr: float = ..., | |
| hop_length: int = ..., | |
| gain: float = ..., | |
| bias: float = ..., | |
| power: float = ..., | |
| time_constant: float = ..., | |
| eps: float = ..., | |
| b: Optional[float] = ..., | |
| max_size: int = ..., | |
| ref: Optional[np.ndarray] = ..., | |
| axis: int = ..., | |
| max_axis: Optional[int] = ..., | |
| zi: Optional[np.ndarray] = ..., | |
| return_zf: Literal[False] = ..., | |
| ) -> np.ndarray: | |
| ... | |
| def pcen( | |
| S: np.ndarray, | |
| *, | |
| sr: float = ..., | |
| hop_length: int = ..., | |
| gain: float = ..., | |
| bias: float = ..., | |
| power: float = ..., | |
| time_constant: float = ..., | |
| eps: float = ..., | |
| b: Optional[float] = ..., | |
| max_size: int = ..., | |
| ref: Optional[np.ndarray] = ..., | |
| axis: int = ..., | |
| max_axis: Optional[int] = ..., | |
| zi: Optional[np.ndarray] = ..., | |
| return_zf: Literal[True], | |
| ) -> Tuple[np.ndarray, np.ndarray]: | |
| ... | |
| def pcen( | |
| S: np.ndarray, | |
| *, | |
| sr: float = ..., | |
| hop_length: int = ..., | |
| gain: float = ..., | |
| bias: float = ..., | |
| power: float = ..., | |
| time_constant: float = ..., | |
| eps: float = ..., | |
| b: Optional[float] = ..., | |
| max_size: int = ..., | |
| ref: Optional[np.ndarray] = ..., | |
| axis: int = ..., | |
| max_axis: Optional[int] = ..., | |
| zi: Optional[np.ndarray] = ..., | |
| return_zf: bool = ..., | |
| ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: | |
| ... | |
| def pcen( | |
| S: np.ndarray, | |
| *, | |
| sr: float = 22050, | |
| hop_length: int = 512, | |
| gain: float = 0.98, | |
| bias: float = 2, | |
| power: float = 0.5, | |
| time_constant: float = 0.400, | |
| eps: float = 1e-6, | |
| b: Optional[float] = None, | |
| max_size: int = 1, | |
| ref: Optional[np.ndarray] = None, | |
| axis: int = -1, | |
| max_axis: Optional[int] = None, | |
| zi: Optional[np.ndarray] = None, | |
| return_zf: bool = False, | |
| ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: | |
| """Per-channel energy normalization (PCEN) | |
| This function normalizes a time-frequency representation ``S`` by | |
| performing automatic gain control, followed by nonlinear compression [#]_ :: | |
| P[f, t] = (S / (eps + M[f, t])**gain + bias)**power - bias**power | |
| IMPORTANT: the default values of eps, gain, bias, and power match the | |
| original publication, in which ``S`` is a 40-band mel-frequency | |
| spectrogram with 25 ms windowing, 10 ms frame shift, and raw audio values | |
| in the interval [-2**31; 2**31-1[. If you use these default values, we | |
| recommend to make sure that the raw audio is properly scaled to this | |
| interval, and not to [-1, 1[ as is most often the case. | |
| The matrix ``M`` is the result of applying a low-pass, temporal IIR filter | |
| to ``S``:: | |
| M[f, t] = (1 - b) * M[f, t - 1] + b * S[f, t] | |
| If ``b`` is not provided, it is calculated as:: | |
| b = (sqrt(1 + 4* T**2) - 1) / (2 * T**2) | |
| where ``T = time_constant * sr / hop_length``. [#]_ | |
| This normalization is designed to suppress background noise and | |
| emphasize foreground signals, and can be used as an alternative to | |
| decibel scaling (`amplitude_to_db`). | |
| This implementation also supports smoothing across frequency bins | |
| by specifying ``max_size > 1``. If this option is used, the filtered | |
| spectrogram ``M`` is computed as:: | |
| M[f, t] = (1 - b) * M[f, t - 1] + b * R[f, t] | |
| where ``R`` has been max-filtered along the frequency axis, similar to | |
| the SuperFlux algorithm implemented in `onset.onset_strength`:: | |
| R[f, t] = max(S[f - max_size//2: f + max_size//2, t]) | |
| This can be used to perform automatic gain control on signals that cross | |
| or span multiple frequency bans, which may be desirable for spectrograms | |
| with high frequency resolution. | |
| .. [#] Wang, Y., Getreuer, P., Hughes, T., Lyon, R. F., & Saurous, R. A. | |
| (2017, March). Trainable frontend for robust and far-field keyword spotting. | |
| In Acoustics, Speech and Signal Processing (ICASSP), 2017 | |
| IEEE International Conference on (pp. 5670-5674). IEEE. | |
| .. [#] Lostanlen, V., Salamon, J., McFee, B., Cartwright, M., Farnsworth, A., | |
| Kelling, S., and Bello, J. P. Per-Channel Energy Normalization: Why and How. | |
| IEEE Signal Processing Letters, 26(1), 39-43. | |
| Parameters | |
| ---------- | |
| S : np.ndarray (non-negative) | |
| The input (magnitude) spectrogram | |
| sr : number > 0 [scalar] | |
| The audio sampling rate | |
| hop_length : int > 0 [scalar] | |
| The hop length of ``S``, expressed in samples | |
| gain : number >= 0 [scalar] | |
| The gain factor. Typical values should be slightly less than 1. | |
| bias : number >= 0 [scalar] | |
| The bias point of the nonlinear compression (default: 2) | |
| power : number >= 0 [scalar] | |
| The compression exponent. Typical values should be between 0 and 0.5. | |
| Smaller values of ``power`` result in stronger compression. | |
| At the limit ``power=0``, polynomial compression becomes logarithmic. | |
| time_constant : number > 0 [scalar] | |
| The time constant for IIR filtering, measured in seconds. | |
| eps : number > 0 [scalar] | |
| A small constant used to ensure numerical stability of the filter. | |
| b : number in [0, 1] [scalar] | |
| The filter coefficient for the low-pass filter. | |
| If not provided, it will be inferred from ``time_constant``. | |
| max_size : int > 0 [scalar] | |
| The width of the max filter applied to the frequency axis. | |
| If left as `1`, no filtering is performed. | |
| ref : None or np.ndarray (shape=S.shape) | |
| An optional pre-computed reference spectrum (``R`` in the above). | |
| If not provided it will be computed from ``S``. | |
| axis : int [scalar] | |
| The (time) axis of the input spectrogram. | |
| max_axis : None or int [scalar] | |
| The frequency axis of the input spectrogram. | |
| If `None`, and ``S`` is two-dimensional, it will be inferred | |
| as the opposite from ``axis``. | |
| If ``S`` is not two-dimensional, and ``max_size > 1``, an error | |
| will be raised. | |
| zi : np.ndarray | |
| The initial filter delay values. | |
| This may be the ``zf`` (final delay values) of a previous call to ``pcen``, or | |
| computed by `scipy.signal.lfilter_zi`. | |
| return_zf : bool | |
| If ``True``, return the final filter delay values along with the PCEN output ``P``. | |
| This is primarily useful in streaming contexts, where the final state of one | |
| block of processing should be used to initialize the next block. | |
| If ``False`` (default) only the PCEN values ``P`` are returned. | |
| Returns | |
| ------- | |
| P : np.ndarray, non-negative [shape=(n, m)] | |
| The per-channel energy normalized version of ``S``. | |
| zf : np.ndarray (optional) | |
| The final filter delay values. Only returned if ``return_zf=True``. | |
| See Also | |
| -------- | |
| amplitude_to_db | |
| librosa.onset.onset_strength | |
| Examples | |
| -------- | |
| Compare PCEN to log amplitude (dB) scaling on Mel spectra | |
| >>> import matplotlib.pyplot as plt | |
| >>> y, sr = librosa.load(librosa.ex('robin')) | |
| >>> # We recommend scaling y to the range [-2**31, 2**31[ before applying | |
| >>> # PCEN's default parameters. Furthermore, we use power=1 to get a | |
| >>> # magnitude spectrum instead of a power spectrum. | |
| >>> S = librosa.feature.melspectrogram(y=y, sr=sr, power=1) | |
| >>> log_S = librosa.amplitude_to_db(S, ref=np.max) | |
| >>> pcen_S = librosa.pcen(S * (2**31)) | |
| >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) | |
| >>> img = librosa.display.specshow(log_S, x_axis='time', y_axis='mel', ax=ax[0]) | |
| >>> ax[0].set(title='log amplitude (dB)', xlabel=None) | |
| >>> ax[0].label_outer() | |
| >>> imgpcen = librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel', ax=ax[1]) | |
| >>> ax[1].set(title='Per-channel energy normalization') | |
| >>> fig.colorbar(img, ax=ax[0], format="%+2.0f dB") | |
| >>> fig.colorbar(imgpcen, ax=ax[1]) | |
| Compare PCEN with and without max-filtering | |
| >>> pcen_max = librosa.pcen(S * (2**31), max_size=3) | |
| >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) | |
| >>> librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel', ax=ax[0]) | |
| >>> ax[0].set(title='Per-channel energy normalization (no max-filter)') | |
| >>> ax[0].label_outer() | |
| >>> img = librosa.display.specshow(pcen_max, x_axis='time', y_axis='mel', ax=ax[1]) | |
| >>> ax[1].set(title='Per-channel energy normalization (max_size=3)') | |
| >>> fig.colorbar(img, ax=ax) | |
| """ | |
| if power < 0: | |
| raise ParameterError(f"power={power} must be nonnegative") | |
| if gain < 0: | |
| raise ParameterError(f"gain={gain} must be non-negative") | |
| if bias < 0: | |
| raise ParameterError(f"bias={bias} must be non-negative") | |
| if eps <= 0: | |
| raise ParameterError(f"eps={eps} must be strictly positive") | |
| if time_constant <= 0: | |
| raise ParameterError(f"time_constant={time_constant} must be strictly positive") | |
| if not util.is_positive_int(max_size): | |
| raise ParameterError(f"max_size={max_size} must be a positive integer") | |
| if b is None: | |
| t_frames = time_constant * sr / float(hop_length) | |
| # By default, this solves the equation for b: | |
| # b**2 + (1 - b) / t_frames - 2 = 0 | |
| # which approximates the full-width half-max of the | |
| # squared frequency response of the IIR low-pass filter | |
| b = (np.sqrt(1 + 4 * t_frames**2) - 1) / (2 * t_frames**2) | |
| if not 0 <= b <= 1: | |
| raise ParameterError(f"b={b} must be between 0 and 1") | |
| if np.issubdtype(S.dtype, np.complexfloating): | |
| warnings.warn( | |
| "pcen was called on complex input so phase " | |
| "information will be discarded. To suppress this warning, " | |
| "call pcen(np.abs(D)) instead.", | |
| stacklevel=2, | |
| ) | |
| S = np.abs(S) | |
| if ref is None: | |
| if max_size == 1: | |
| ref = S | |
| elif S.ndim == 1: | |
| raise ParameterError( | |
| "Max-filtering cannot be applied to 1-dimensional input" | |
| ) | |
| else: | |
| if max_axis is None: | |
| if S.ndim != 2: | |
| raise ParameterError( | |
| f"Max-filtering a {S.ndim:d}-dimensional spectrogram " | |
| "requires you to specify max_axis" | |
| ) | |
| # if axis = 0, max_axis=1 | |
| # if axis = +- 1, max_axis = 0 | |
| max_axis = np.mod(1 - axis, 2) | |
| ref = scipy.ndimage.maximum_filter1d(S, max_size, axis=max_axis) | |
| if zi is None: | |
| # Make sure zi matches dimension to input | |
| shape = tuple([1] * ref.ndim) | |
| zi = np.empty(shape) | |
| zi[:] = scipy.signal.lfilter_zi([b], [1, b - 1])[:] | |
| # Temporal integration | |
| S_smooth: np.ndarray | |
| zf: np.ndarray | |
| S_smooth, zf = scipy.signal.lfilter([b], [1, b - 1], ref, zi=zi, axis=axis) | |
| # Adaptive gain control | |
| # Working in log-space gives us some stability, and a slight speedup | |
| smooth = np.exp(-gain * (np.log(eps) + np.log1p(S_smooth / eps))) | |
| # Dynamic range compression | |
| S_out: np.ndarray | |
| if power == 0: | |
| S_out = np.log1p(S * smooth) | |
| elif bias == 0: | |
| S_out = np.exp(power * (np.log(S) + np.log(smooth))) | |
| else: | |
| S_out = (bias**power) * np.expm1(power * np.log1p(S * smooth / bias)) | |
| if return_zf: | |
| return S_out, zf | |
| else: | |
| return S_out | |
| def griffinlim( | |
| S: np.ndarray, | |
| *, | |
| n_iter: int = 32, | |
| hop_length: Optional[int] = None, | |
| win_length: Optional[int] = None, | |
| n_fft: Optional[int] = None, | |
| window: _WindowSpec = "hann", | |
| center: bool = True, | |
| dtype: Optional[DTypeLike] = None, | |
| length: Optional[int] = None, | |
| pad_mode: _PadModeSTFT = "constant", | |
| momentum: float = 0.99, | |
| init: Optional[str] = "random", | |
| random_state: Optional[ | |
| Union[int, np.random.RandomState, np.random.Generator] | |
| ] = None, | |
| ) -> np.ndarray: | |
| """Approximate magnitude spectrogram inversion using the "fast" Griffin-Lim algorithm. | |
| Given a short-time Fourier transform magnitude matrix (``S``), the algorithm randomly | |
| initializes phase estimates, and then alternates forward- and inverse-STFT | |
| operations. [#]_ | |
| Note that this assumes reconstruction of a real-valued time-domain signal, and | |
| that ``S`` contains only the non-negative frequencies (as computed by | |
| `stft`). | |
| The "fast" GL method [#]_ uses a momentum parameter to accelerate convergence. | |
| .. [#] D. W. Griffin and J. S. Lim, | |
| "Signal estimation from modified short-time Fourier transform," | |
| IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984. | |
| .. [#] Perraudin, N., Balazs, P., & Søndergaard, P. L. | |
| "A fast Griffin-Lim algorithm," | |
| IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4), | |
| Oct. 2013. | |
| Parameters | |
| ---------- | |
| S : np.ndarray [shape=(..., n_fft // 2 + 1, t), non-negative] | |
| An array of short-time Fourier transform magnitudes as produced by | |
| `stft`. | |
| n_iter : int > 0 | |
| The number of iterations to run | |
| hop_length : None or int > 0 | |
| The hop length of the STFT. If not provided, it will default to ``n_fft // 4`` | |
| win_length : None or int > 0 | |
| The window length of the STFT. By default, it will equal ``n_fft`` | |
| n_fft : None or int > 0 | |
| The number of samples per frame. | |
| By default, this will be inferred from the shape of ``S`` as an even number. | |
| However, if an odd frame length was used, you can explicitly set ``n_fft``. | |
| window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] | |
| A window specification as supported by `stft` or `istft` | |
| center : boolean | |
| If ``True``, the STFT is assumed to use centered frames. | |
| If ``False``, the STFT is assumed to use left-aligned frames. | |
| dtype : np.dtype | |
| Real numeric type for the time-domain signal. Default is inferred | |
| to match the precision of the input spectrogram. | |
| length : None or int > 0 | |
| If provided, the output ``y`` is zero-padded or clipped to exactly ``length`` | |
| samples. | |
| pad_mode : string | |
| If ``center=True``, the padding mode to use at the edges of the signal. | |
| By default, STFT uses zero padding. | |
| momentum : number >= 0 | |
| The momentum parameter for fast Griffin-Lim. | |
| Setting this to 0 recovers the original Griffin-Lim method [1]_. | |
| Values near 1 can lead to faster convergence, but above 1 may not converge. | |
| init : None or 'random' [default] | |
| If 'random' (the default), then phase values are initialized randomly | |
| according to ``random_state``. This is recommended when the input ``S`` is | |
| a magnitude spectrogram with no initial phase estimates. | |
| If `None`, then the phase is initialized from ``S``. This is useful when | |
| an initial guess for phase can be provided, or when you want to resume | |
| Griffin-Lim from a previous output. | |
| random_state : None, int, np.random.RandomState, or np.random.Generator | |
| If int, random_state is the seed used by the random number generator | |
| for phase initialization. | |
| If `np.random.RandomState` or `np.random.Generator` instance, the random number | |
| generator itself. | |
| If `None`, defaults to the `np.random.default_rng()` object. | |
| Returns | |
| ------- | |
| y : np.ndarray [shape=(..., n)] | |
| time-domain signal reconstructed from ``S`` | |
| See Also | |
| -------- | |
| stft | |
| istft | |
| magphase | |
| filters.get_window | |
| Examples | |
| -------- | |
| A basic STFT inverse example | |
| >>> y, sr = librosa.load(librosa.ex('trumpet')) | |
| >>> # Get the magnitude spectrogram | |
| >>> S = np.abs(librosa.stft(y)) | |
| >>> # Invert using Griffin-Lim | |
| >>> y_inv = librosa.griffinlim(S) | |
| >>> # Invert without estimating phase | |
| >>> y_istft = librosa.istft(S) | |
| Wave-plot the results | |
| >>> import matplotlib.pyplot as plt | |
| >>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True) | |
| >>> librosa.display.waveshow(y, sr=sr, color='b', ax=ax[0]) | |
| >>> ax[0].set(title='Original', xlabel=None) | |
| >>> ax[0].label_outer() | |
| >>> librosa.display.waveshow(y_inv, sr=sr, color='g', ax=ax[1]) | |
| >>> ax[1].set(title='Griffin-Lim reconstruction', xlabel=None) | |
| >>> ax[1].label_outer() | |
| >>> librosa.display.waveshow(y_istft, sr=sr, color='r', ax=ax[2]) | |
| >>> ax[2].set_title('Magnitude-only istft reconstruction') | |
| """ | |
| if random_state is None: | |
| rng = np.random.default_rng() | |
| elif isinstance(random_state, int): | |
| rng = np.random.RandomState(seed=random_state) # type: ignore | |
| elif isinstance(random_state, (np.random.RandomState, np.random.Generator)): | |
| rng = random_state # type: ignore | |
| else: | |
| raise ParameterError(f"Unsupported random_state={random_state!r}") | |
| if momentum > 1: | |
| warnings.warn( | |
| f"Griffin-Lim with momentum={momentum} > 1 can be unstable. " | |
| "Proceed with caution!", | |
| stacklevel=2, | |
| ) | |
| elif momentum < 0: | |
| raise ParameterError(f"griffinlim() called with momentum={momentum} < 0") | |
| # Infer n_fft from the spectrogram shape | |
| if n_fft is None: | |
| n_fft = 2 * (S.shape[-2] - 1) | |
| # Infer the dtype from S | |
| angles = np.empty(S.shape, dtype=util.dtype_r2c(S.dtype)) | |
| eps = util.tiny(angles) | |
| if init == "random": | |
| # randomly initialize the phase | |
| angles[:] = util.phasor((2 * np.pi * rng.random(size=S.shape))) | |
| elif init is None: | |
| # Initialize an all ones complex matrix | |
| angles[:] = 1.0 | |
| else: | |
| raise ParameterError(f"init={init} must either None or 'random'") | |
| # Place-holders for temporary data and reconstructed buffer | |
| rebuilt = None | |
| tprev = None | |
| inverse = None | |
| # Absorb magnitudes into angles | |
| angles *= S | |
| for _ in range(n_iter): | |
| # Invert with our current estimate of the phases | |
| inverse = istft( | |
| angles, | |
| hop_length=hop_length, | |
| win_length=win_length, | |
| n_fft=n_fft, | |
| window=window, | |
| center=center, | |
| dtype=dtype, | |
| length=length, | |
| out=inverse, | |
| ) | |
| # Rebuild the spectrogram | |
| rebuilt = stft( | |
| inverse, | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| win_length=win_length, | |
| window=window, | |
| center=center, | |
| pad_mode=pad_mode, | |
| out=rebuilt, | |
| ) | |
| # Update our phase estimates | |
| angles[:] = rebuilt | |
| if tprev is not None: | |
| angles -= (momentum / (1 + momentum)) * tprev | |
| angles /= np.abs(angles) + eps | |
| angles *= S | |
| # Store | |
| rebuilt, tprev = tprev, rebuilt | |
| # Return the final phase estimates | |
| return istft( | |
| angles, | |
| hop_length=hop_length, | |
| win_length=win_length, | |
| n_fft=n_fft, | |
| window=window, | |
| center=center, | |
| dtype=dtype, | |
| length=length, | |
| out=inverse, | |
| ) | |
| def _spectrogram( | |
| *, | |
| y: Optional[np.ndarray] = None, | |
| S: Optional[np.ndarray] = None, | |
| n_fft: Optional[int] = 2048, | |
| hop_length: Optional[int] = 512, | |
| power: float = 1, | |
| win_length: Optional[int] = None, | |
| window: _WindowSpec = "hann", | |
| center: bool = True, | |
| pad_mode: _PadModeSTFT = "constant", | |
| ) -> Tuple[np.ndarray, int]: | |
| """Helper function to retrieve a magnitude spectrogram. | |
| This is primarily used in feature extraction functions that can operate on | |
| either audio time-series or spectrogram input. | |
| Parameters | |
| ---------- | |
| y : None or np.ndarray | |
| If provided, an audio time series | |
| S : None or np.ndarray | |
| Spectrogram input, optional | |
| n_fft : int > 0 | |
| STFT window size | |
| hop_length : int > 0 | |
| STFT hop length | |
| power : float > 0 | |
| Exponent for the magnitude spectrogram, | |
| e.g., 1 for energy, 2 for power, etc. | |
| win_length : int <= n_fft [scalar] | |
| Each frame of audio is windowed by ``window``. | |
| The window will be of length ``win_length`` and then padded | |
| with zeros to match ``n_fft``. | |
| If unspecified, defaults to ``win_length = n_fft``. | |
| window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] | |
| - a window specification (string, tuple, or number); | |
| see `scipy.signal.get_window` | |
| - a window function, such as `scipy.signal.windows.hann` | |
| - a vector or array of length ``n_fft`` | |
| .. see also:: `filters.get_window` | |
| center : boolean | |
| - If ``True``, the signal ``y`` is padded so that frame | |
| ``t`` is centered at ``y[t * hop_length]``. | |
| - If ``False``, then frame ``t`` begins at ``y[t * hop_length]`` | |
| pad_mode : string | |
| If ``center=True``, the padding mode to use at the edges of the signal. | |
| By default, STFT uses zero padding. | |
| Returns | |
| ------- | |
| S_out : np.ndarray [dtype=np.float] | |
| - If ``S`` is provided as input, then ``S_out == S`` | |
| - Else, ``S_out = |stft(y, ...)|**power`` | |
| n_fft : int > 0 | |
| - If ``S`` is provided, then ``n_fft`` is inferred from ``S`` | |
| - Else, copied from input | |
| """ | |
| if S is not None: | |
| # Infer n_fft from spectrogram shape, but only if it mismatches | |
| if n_fft is None or n_fft // 2 + 1 != S.shape[-2]: | |
| n_fft = 2 * (S.shape[-2] - 1) | |
| else: | |
| # Otherwise, compute a magnitude spectrogram from input | |
| if n_fft is None: | |
| raise ParameterError(f"Unable to compute spectrogram with n_fft={n_fft}") | |
| if y is None: | |
| raise ParameterError( | |
| "Input signal must be provided to compute a spectrogram" | |
| ) | |
| S = ( | |
| np.abs( | |
| stft( | |
| y, | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| win_length=win_length, | |
| center=center, | |
| window=window, | |
| pad_mode=pad_mode, | |
| ) | |
| ) | |
| ** power | |
| ) | |
| return S, n_fft | |