Spaces:
Paused
Paused
| # | |
| # ElGamal.py : ElGamal encryption/decryption and signatures | |
| # | |
| # Part of the Python Cryptography Toolkit | |
| # | |
| # Originally written by: A.M. Kuchling | |
| # | |
| # =================================================================== | |
| # The contents of this file are dedicated to the public domain. To | |
| # the extent that dedication to the public domain is not available, | |
| # everyone is granted a worldwide, perpetual, royalty-free, | |
| # non-exclusive license to exercise all rights associated with the | |
| # contents of this file for any purpose whatsoever. | |
| # No rights are reserved. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
| # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
| # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
| # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |
| # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |
| # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
| # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| # SOFTWARE. | |
| # =================================================================== | |
| __all__ = ['generate', 'construct', 'ElGamalKey'] | |
| from Crypto import Random | |
| from Crypto.Math.Primality import ( generate_probable_safe_prime, | |
| test_probable_prime, COMPOSITE ) | |
| from Crypto.Math.Numbers import Integer | |
| # Generate an ElGamal key with N bits | |
| def generate(bits, randfunc): | |
| """Randomly generate a fresh, new ElGamal key. | |
| The key will be safe for use for both encryption and signature | |
| (although it should be used for **only one** purpose). | |
| Args: | |
| bits (int): | |
| Key length, or size (in bits) of the modulus *p*. | |
| The recommended value is 2048. | |
| randfunc (callable): | |
| Random number generation function; it should accept | |
| a single integer *N* and return a string of random | |
| *N* random bytes. | |
| Return: | |
| an :class:`ElGamalKey` object | |
| """ | |
| obj=ElGamalKey() | |
| # Generate a safe prime p | |
| # See Algorithm 4.86 in Handbook of Applied Cryptography | |
| obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc) | |
| q = (obj.p - 1) >> 1 | |
| # Generate generator g | |
| while 1: | |
| # Choose a square residue; it will generate a cyclic group of order q. | |
| obj.g = pow(Integer.random_range(min_inclusive=2, | |
| max_exclusive=obj.p, | |
| randfunc=randfunc), 2, obj.p) | |
| # We must avoid g=2 because of Bleichenbacher's attack described | |
| # in "Generating ElGamal signatures without knowning the secret key", | |
| # 1996 | |
| if obj.g in (1, 2): | |
| continue | |
| # Discard g if it divides p-1 because of the attack described | |
| # in Note 11.67 (iii) in HAC | |
| if (obj.p - 1) % obj.g == 0: | |
| continue | |
| # g^{-1} must not divide p-1 because of Khadir's attack | |
| # described in "Conditions of the generator for forging ElGamal | |
| # signature", 2011 | |
| ginv = obj.g.inverse(obj.p) | |
| if (obj.p - 1) % ginv == 0: | |
| continue | |
| # Found | |
| break | |
| # Generate private key x | |
| obj.x = Integer.random_range(min_inclusive=2, | |
| max_exclusive=obj.p-1, | |
| randfunc=randfunc) | |
| # Generate public key y | |
| obj.y = pow(obj.g, obj.x, obj.p) | |
| return obj | |
| def construct(tup): | |
| r"""Construct an ElGamal key from a tuple of valid ElGamal components. | |
| The modulus *p* must be a prime. | |
| The following conditions must apply: | |
| .. math:: | |
| \begin{align} | |
| &1 < g < p-1 \\ | |
| &g^{p-1} = 1 \text{ mod } 1 \\ | |
| &1 < x < p-1 \\ | |
| &g^x = y \text{ mod } p | |
| \end{align} | |
| Args: | |
| tup (tuple): | |
| A tuple with either 3 or 4 integers, | |
| in the following order: | |
| 1. Modulus (*p*). | |
| 2. Generator (*g*). | |
| 3. Public key (*y*). | |
| 4. Private key (*x*). Optional. | |
| Raises: | |
| ValueError: when the key being imported fails the most basic ElGamal validity checks. | |
| Returns: | |
| an :class:`ElGamalKey` object | |
| """ | |
| obj=ElGamalKey() | |
| if len(tup) not in [3,4]: | |
| raise ValueError('argument for construct() wrong length') | |
| for i in range(len(tup)): | |
| field = obj._keydata[i] | |
| setattr(obj, field, Integer(tup[i])) | |
| fmt_error = test_probable_prime(obj.p) == COMPOSITE | |
| fmt_error |= obj.g<=1 or obj.g>=obj.p | |
| fmt_error |= pow(obj.g, obj.p-1, obj.p)!=1 | |
| fmt_error |= obj.y<1 or obj.y>=obj.p | |
| if len(tup)==4: | |
| fmt_error |= obj.x<=1 or obj.x>=obj.p | |
| fmt_error |= pow(obj.g, obj.x, obj.p)!=obj.y | |
| if fmt_error: | |
| raise ValueError("Invalid ElGamal key components") | |
| return obj | |
| class ElGamalKey(object): | |
| r"""Class defining an ElGamal key. | |
| Do not instantiate directly. | |
| Use :func:`generate` or :func:`construct` instead. | |
| :ivar p: Modulus | |
| :vartype d: integer | |
| :ivar g: Generator | |
| :vartype e: integer | |
| :ivar y: Public key component | |
| :vartype y: integer | |
| :ivar x: Private key component | |
| :vartype x: integer | |
| """ | |
| #: Dictionary of ElGamal parameters. | |
| #: | |
| #: A public key will only have the following entries: | |
| #: | |
| #: - **y**, the public key. | |
| #: - **g**, the generator. | |
| #: - **p**, the modulus. | |
| #: | |
| #: A private key will also have: | |
| #: | |
| #: - **x**, the private key. | |
| _keydata=['p', 'g', 'y', 'x'] | |
| def __init__(self, randfunc=None): | |
| if randfunc is None: | |
| randfunc = Random.new().read | |
| self._randfunc = randfunc | |
| def _encrypt(self, M, K): | |
| a=pow(self.g, K, self.p) | |
| b=( pow(self.y, K, self.p)*M ) % self.p | |
| return [int(a), int(b)] | |
| def _decrypt(self, M): | |
| if (not hasattr(self, 'x')): | |
| raise TypeError('Private key not available in this object') | |
| r = Integer.random_range(min_inclusive=2, | |
| max_exclusive=self.p-1, | |
| randfunc=self._randfunc) | |
| a_blind = (pow(self.g, r, self.p) * M[0]) % self.p | |
| ax=pow(a_blind, self.x, self.p) | |
| plaintext_blind = (ax.inverse(self.p) * M[1] ) % self.p | |
| plaintext = (plaintext_blind * pow(self.y, r, self.p)) % self.p | |
| return int(plaintext) | |
| def _sign(self, M, K): | |
| if (not hasattr(self, 'x')): | |
| raise TypeError('Private key not available in this object') | |
| p1=self.p-1 | |
| K = Integer(K) | |
| if (K.gcd(p1)!=1): | |
| raise ValueError('Bad K value: GCD(K,p-1)!=1') | |
| a=pow(self.g, K, self.p) | |
| t=(Integer(M)-self.x*a) % p1 | |
| while t<0: t=t+p1 | |
| b=(t*K.inverse(p1)) % p1 | |
| return [int(a), int(b)] | |
| def _verify(self, M, sig): | |
| sig = [Integer(x) for x in sig] | |
| if sig[0]<1 or sig[0]>self.p-1: | |
| return 0 | |
| v1=pow(self.y, sig[0], self.p) | |
| v1=(v1*pow(sig[0], sig[1], self.p)) % self.p | |
| v2=pow(self.g, M, self.p) | |
| if v1==v2: | |
| return 1 | |
| return 0 | |
| def has_private(self): | |
| """Whether this is an ElGamal private key""" | |
| if hasattr(self, 'x'): | |
| return 1 | |
| else: | |
| return 0 | |
| def can_encrypt(self): | |
| return True | |
| def can_sign(self): | |
| return True | |
| def publickey(self): | |
| """A matching ElGamal public key. | |
| Returns: | |
| a new :class:`ElGamalKey` object | |
| """ | |
| return construct((self.p, self.g, self.y)) | |
| def __eq__(self, other): | |
| if bool(self.has_private()) != bool(other.has_private()): | |
| return False | |
| result = True | |
| for comp in self._keydata: | |
| result = result and (getattr(self.key, comp, None) == | |
| getattr(other.key, comp, None)) | |
| return result | |
| def __ne__(self, other): | |
| return not self.__eq__(other) | |
| def __getstate__(self): | |
| # ElGamal key is not pickable | |
| from pickle import PicklingError | |
| raise PicklingError | |
| # Methods defined in PyCrypto that we don't support anymore | |
| def sign(self, M, K): | |
| raise NotImplementedError | |
| def verify(self, M, signature): | |
| raise NotImplementedError | |
| def encrypt(self, plaintext, K): | |
| raise NotImplementedError | |
| def decrypt(self, ciphertext): | |
| raise NotImplementedError | |
| def blind(self, M, B): | |
| raise NotImplementedError | |
| def unblind(self, M, B): | |
| raise NotImplementedError | |
| def size(self): | |
| raise NotImplementedError | |