Spaces:
Running
Running
Upload 2 files
Browse files- bayes.py +392 -0
- requirements.txt +4 -0
bayes.py
ADDED
|
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import seaborn as sns
|
| 5 |
+
import matplotlib.patches as patches
|
| 6 |
+
from matplotlib.gridspec import GridSpec
|
| 7 |
+
import matplotlib.colors as mcolors
|
| 8 |
+
from matplotlib.ticker import PercentFormatter
|
| 9 |
+
|
| 10 |
+
# Set up the styling for better readability
|
| 11 |
+
plt.rcParams.update({
|
| 12 |
+
'font.family': 'sans-serif',
|
| 13 |
+
'font.sans-serif': ['Arial', 'Helvetica', 'DejaVu Sans'],
|
| 14 |
+
'font.size': 12,
|
| 15 |
+
'axes.titlesize': 16,
|
| 16 |
+
'axes.labelsize': 14,
|
| 17 |
+
'xtick.labelsize': 12,
|
| 18 |
+
'ytick.labelsize': 12,
|
| 19 |
+
'legend.fontsize': 12,
|
| 20 |
+
'figure.titlesize': 20
|
| 21 |
+
})
|
| 22 |
+
|
| 23 |
+
def create_bayes_visualization(prior_prob, sensitivity, specificity, population=1000):
|
| 24 |
+
"""Create a clear, readable visualization of Bayes' theorem."""
|
| 25 |
+
|
| 26 |
+
# Calculate values based on Bayes theorem
|
| 27 |
+
true_positive = prior_prob * sensitivity * population
|
| 28 |
+
false_positive = (1 - prior_prob) * (1 - specificity) * population
|
| 29 |
+
true_negative = (1 - prior_prob) * specificity * population
|
| 30 |
+
false_negative = prior_prob * (1 - sensitivity) * population
|
| 31 |
+
|
| 32 |
+
# Calculate posterior probability (positive predictive value)
|
| 33 |
+
posterior_prob = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0
|
| 34 |
+
|
| 35 |
+
# Create a large figure with a clean white background
|
| 36 |
+
fig = plt.figure(figsize=(16, 12), facecolor='white')
|
| 37 |
+
gs = GridSpec(3, 2, height_ratios=[1, 2, 1], width_ratios=[1, 1])
|
| 38 |
+
|
| 39 |
+
# Title for the entire visualization
|
| 40 |
+
fig.suptitle("Bayes' Theorem: Medical Test Visualization", fontsize=22, fontweight='bold', y=0.98)
|
| 41 |
+
|
| 42 |
+
# Add parameter information at the top
|
| 43 |
+
param_ax = fig.add_subplot(gs[0, :])
|
| 44 |
+
param_ax.axis('off')
|
| 45 |
+
param_text = (
|
| 46 |
+
f"Disease Prevalence: {prior_prob:.1%} | "
|
| 47 |
+
f"Test Sensitivity: {sensitivity:.1%} | "
|
| 48 |
+
f"Test Specificity: {specificity:.1%}"
|
| 49 |
+
)
|
| 50 |
+
param_ax.text(0.5, 0.5, param_text, ha='center', va='center', fontsize=16,
|
| 51 |
+
bbox=dict(facecolor='#e6f2ff', edgecolor='#3399ff', boxstyle='round,pad=0.5'))
|
| 52 |
+
|
| 53 |
+
# 1. Population Distribution (Left)
|
| 54 |
+
pop_ax = fig.add_subplot(gs[1, 0])
|
| 55 |
+
pop_ax.set_title("Population Distribution", fontsize=18, pad=15)
|
| 56 |
+
pop_ax.axis('equal')
|
| 57 |
+
pop_ax.set_xlim(0, 100)
|
| 58 |
+
pop_ax.set_ylim(0, 100)
|
| 59 |
+
|
| 60 |
+
# Create a clean, modern look with a light grid
|
| 61 |
+
pop_ax.grid(False)
|
| 62 |
+
pop_ax.set_xticks([])
|
| 63 |
+
pop_ax.set_yticks([])
|
| 64 |
+
pop_ax.spines['top'].set_visible(False)
|
| 65 |
+
pop_ax.spines['right'].set_visible(False)
|
| 66 |
+
pop_ax.spines['bottom'].set_visible(False)
|
| 67 |
+
pop_ax.spines['left'].set_visible(False)
|
| 68 |
+
|
| 69 |
+
# Draw the population rectangle with a light border
|
| 70 |
+
pop_rect = patches.Rectangle((0, 0), 100, 100, linewidth=2, edgecolor='#666666', facecolor='#f0f0f0', alpha=0.3)
|
| 71 |
+
pop_ax.add_patch(pop_rect)
|
| 72 |
+
|
| 73 |
+
# Draw the disease prevalence with a distinct color
|
| 74 |
+
disease_width = prior_prob * 100
|
| 75 |
+
disease_rect = patches.Rectangle((0, 0), disease_width, 100, linewidth=1,
|
| 76 |
+
edgecolor='#cc0000', facecolor='#ff9999', alpha=0.7)
|
| 77 |
+
pop_ax.add_patch(disease_rect)
|
| 78 |
+
|
| 79 |
+
# Add clear labels with contrasting backgrounds
|
| 80 |
+
pop_ax.text(disease_width/2, 50, f"Have disease\n{int(prior_prob*population)} people\n({prior_prob:.1%})",
|
| 81 |
+
ha='center', va='center', fontsize=14, fontweight='bold',
|
| 82 |
+
bbox=dict(facecolor='white', alpha=0.8, edgecolor='#cc0000', boxstyle='round,pad=0.3'))
|
| 83 |
+
|
| 84 |
+
pop_ax.text(disease_width + (100-disease_width)/2, 50,
|
| 85 |
+
f"Don't have disease\n{int((1-prior_prob)*population)} people\n({1-prior_prob:.1%})",
|
| 86 |
+
ha='center', va='center', fontsize=14, fontweight='bold',
|
| 87 |
+
bbox=dict(facecolor='white', alpha=0.8, edgecolor='#666666', boxstyle='round,pad=0.3'))
|
| 88 |
+
|
| 89 |
+
# Add a dividing line
|
| 90 |
+
pop_ax.axvline(x=disease_width, color='#666666', linestyle='--', linewidth=2, alpha=0.7)
|
| 91 |
+
|
| 92 |
+
# 2. Test Results (Right)
|
| 93 |
+
test_ax = fig.add_subplot(gs[1, 1])
|
| 94 |
+
test_ax.set_title("Test Results", fontsize=18, pad=15)
|
| 95 |
+
test_ax.axis('equal')
|
| 96 |
+
test_ax.set_xlim(0, 100)
|
| 97 |
+
test_ax.set_ylim(0, 100)
|
| 98 |
+
|
| 99 |
+
# Clean styling
|
| 100 |
+
test_ax.grid(False)
|
| 101 |
+
test_ax.set_xticks([])
|
| 102 |
+
test_ax.set_yticks([])
|
| 103 |
+
test_ax.spines['top'].set_visible(False)
|
| 104 |
+
test_ax.spines['right'].set_visible(False)
|
| 105 |
+
test_ax.spines['bottom'].set_visible(False)
|
| 106 |
+
test_ax.spines['left'].set_visible(False)
|
| 107 |
+
|
| 108 |
+
# Draw the test results rectangle
|
| 109 |
+
test_rect = patches.Rectangle((0, 0), 100, 100, linewidth=2, edgecolor='#666666', facecolor='#f0f0f0', alpha=0.3)
|
| 110 |
+
test_ax.add_patch(test_rect)
|
| 111 |
+
|
| 112 |
+
# Calculate proportions for visualization
|
| 113 |
+
tp_width = (prior_prob * sensitivity) * 100
|
| 114 |
+
fp_width = ((1 - prior_prob) * (1 - specificity)) * 100
|
| 115 |
+
fn_width = (prior_prob * (1 - sensitivity)) * 100
|
| 116 |
+
tn_width = ((1 - prior_prob) * specificity) * 100
|
| 117 |
+
|
| 118 |
+
# Use a clear, distinct color palette
|
| 119 |
+
tp_rect = patches.Rectangle((0, 0), tp_width, 100, linewidth=1,
|
| 120 |
+
edgecolor='#990000', facecolor='#ff5555', alpha=0.8)
|
| 121 |
+
test_ax.add_patch(tp_rect)
|
| 122 |
+
|
| 123 |
+
fp_rect = patches.Rectangle((tp_width, 0), fp_width, 100, linewidth=1,
|
| 124 |
+
edgecolor='#994400', facecolor='#ffaa77', alpha=0.8)
|
| 125 |
+
test_ax.add_patch(fp_rect)
|
| 126 |
+
|
| 127 |
+
fn_rect = patches.Rectangle((tp_width + fp_width, 0), fn_width, 100, linewidth=1,
|
| 128 |
+
edgecolor='#004499', facecolor='#77aaff', alpha=0.8)
|
| 129 |
+
test_ax.add_patch(fn_rect)
|
| 130 |
+
|
| 131 |
+
tn_rect = patches.Rectangle((tp_width + fp_width + fn_width, 0), tn_width, 100, linewidth=1,
|
| 132 |
+
edgecolor='#000066', facecolor='#5588ff', alpha=0.8)
|
| 133 |
+
test_ax.add_patch(tn_rect)
|
| 134 |
+
|
| 135 |
+
# Add dividing lines
|
| 136 |
+
test_ax.axvline(x=tp_width + fp_width, color='#666666', linestyle='--', linewidth=2, alpha=0.7)
|
| 137 |
+
test_ax.axvline(x=tp_width, color='#666666', linestyle=':', linewidth=1.5, alpha=0.7)
|
| 138 |
+
test_ax.axvline(x=tp_width + fp_width + fn_width, color='#666666', linestyle=':', linewidth=1.5, alpha=0.7)
|
| 139 |
+
|
| 140 |
+
# Improved label placement to avoid overlap
|
| 141 |
+
# Use vertical positioning to separate labels
|
| 142 |
+
|
| 143 |
+
# True Positives - top position
|
| 144 |
+
test_ax.text(tp_width/2, 75, f"True Positives\n{int(true_positive)} people",
|
| 145 |
+
ha='center', va='center', fontsize=14, fontweight='bold',
|
| 146 |
+
bbox=dict(facecolor='white', alpha=0.9, edgecolor='#990000', boxstyle='round,pad=0.3'))
|
| 147 |
+
|
| 148 |
+
# False Positives - bottom position if narrow, otherwise center
|
| 149 |
+
if fp_width < 10: # If the section is narrow
|
| 150 |
+
fp_y_pos = 25 if tp_width > 10 else 50 # Adjust based on TP width
|
| 151 |
+
test_ax.text(tp_width + fp_width/2, fp_y_pos, f"False\nPositives\n{int(false_positive)}",
|
| 152 |
+
ha='center', va='center', fontsize=12, fontweight='bold',
|
| 153 |
+
bbox=dict(facecolor='white', alpha=0.9, edgecolor='#994400', boxstyle='round,pad=0.3'))
|
| 154 |
+
else:
|
| 155 |
+
test_ax.text(tp_width + fp_width/2, 50, f"False Positives\n{int(false_positive)} people",
|
| 156 |
+
ha='center', va='center', fontsize=14, fontweight='bold',
|
| 157 |
+
bbox=dict(facecolor='white', alpha=0.9, edgecolor='#994400', boxstyle='round,pad=0.3'))
|
| 158 |
+
|
| 159 |
+
# False Negatives - top position if narrow, otherwise center
|
| 160 |
+
if fn_width < 10: # If the section is narrow
|
| 161 |
+
fn_y_pos = 75 if tn_width > 10 else 50 # Adjust based on TN width
|
| 162 |
+
test_ax.text(tp_width + fp_width + fn_width/2, fn_y_pos, f"False\nNegatives\n{int(false_negative)}",
|
| 163 |
+
ha='center', va='center', fontsize=12, fontweight='bold',
|
| 164 |
+
bbox=dict(facecolor='white', alpha=0.9, edgecolor='#004499', boxstyle='round,pad=0.3'))
|
| 165 |
+
else:
|
| 166 |
+
test_ax.text(tp_width + fp_width + fn_width/2, 50, f"False Negatives\n{int(false_negative)} people",
|
| 167 |
+
ha='center', va='center', fontsize=14, fontweight='bold',
|
| 168 |
+
bbox=dict(facecolor='white', alpha=0.9, edgecolor='#004499', boxstyle='round,pad=0.3'))
|
| 169 |
+
|
| 170 |
+
# True Negatives - bottom position
|
| 171 |
+
test_ax.text(tp_width + fp_width + fn_width + tn_width/2, 25, f"True Negatives\n{int(true_negative)} people",
|
| 172 |
+
ha='center', va='center', fontsize=14, fontweight='bold',
|
| 173 |
+
bbox=dict(facecolor='white', alpha=0.9, edgecolor='#000066', boxstyle='round,pad=0.3'))
|
| 174 |
+
|
| 175 |
+
# Add test positive/negative regions with clear separation and improved positioning
|
| 176 |
+
test_positive = true_positive + false_positive
|
| 177 |
+
test_negative = false_negative + true_negative
|
| 178 |
+
|
| 179 |
+
# Create a separate area below the main visualization for test result summaries
|
| 180 |
+
test_ax.add_patch(patches.Rectangle((0, -20), tp_width + fp_width, 15,
|
| 181 |
+
facecolor='#ffeeee', alpha=0.7, edgecolor='#cc0000'))
|
| 182 |
+
test_ax.add_patch(patches.Rectangle((tp_width + fp_width, -20), fn_width + tn_width, 15,
|
| 183 |
+
facecolor='#eeeeff', alpha=0.7, edgecolor='#0044cc'))
|
| 184 |
+
|
| 185 |
+
# Add clear labels for test positive/negative
|
| 186 |
+
test_ax.text(tp_width/2 + fp_width/2, -12.5,
|
| 187 |
+
f"Test Positive: {int(test_positive)} people ({test_positive/population:.1%})",
|
| 188 |
+
ha='center', va='center', fontsize=14, fontweight='bold', color='#990000')
|
| 189 |
+
|
| 190 |
+
test_ax.text(tp_width + fp_width + fn_width/2 + tn_width/2, -12.5,
|
| 191 |
+
f"Test Negative: {int(test_negative)} people ({test_negative/population:.1%})",
|
| 192 |
+
ha='center', va='center', fontsize=14, fontweight='bold', color='#000066')
|
| 193 |
+
|
| 194 |
+
# 3. Formula and Conclusion (Bottom)
|
| 195 |
+
formula_ax = fig.add_subplot(gs[2, :])
|
| 196 |
+
formula_ax.axis('off')
|
| 197 |
+
|
| 198 |
+
# Create a box for the formula
|
| 199 |
+
formula_box = patches.FancyBboxPatch((0.1, 0.4), 0.8, 0.5, boxstyle=patches.BoxStyle("Round", pad=0.6),
|
| 200 |
+
facecolor='#f5f5f5', edgecolor='#3399ff', linewidth=2, alpha=0.7,
|
| 201 |
+
transform=formula_ax.transAxes)
|
| 202 |
+
formula_ax.add_patch(formula_box)
|
| 203 |
+
|
| 204 |
+
# Add Bayes formula with clear formatting
|
| 205 |
+
formula_title = "Bayes' Theorem Applied to Medical Testing:"
|
| 206 |
+
formula_ax.text(0.5, 0.8, formula_title, ha='center', va='center', fontsize=16, fontweight='bold',
|
| 207 |
+
transform=formula_ax.transAxes)
|
| 208 |
+
|
| 209 |
+
formula = r"$P(Disease|Positive) = \frac{P(Positive|Disease) \times P(Disease)}{P(Positive)}$"
|
| 210 |
+
formula_ax.text(0.5, 0.65, formula, ha='center', va='center', fontsize=16,
|
| 211 |
+
transform=formula_ax.transAxes)
|
| 212 |
+
|
| 213 |
+
formula_explained = "Posterior Probability = Sensitivity × Prior Probability / Probability of Positive Test"
|
| 214 |
+
formula_ax.text(0.5, 0.5, formula_explained, ha='center', va='center', fontsize=14, color='#555555',
|
| 215 |
+
transform=formula_ax.transAxes)
|
| 216 |
+
|
| 217 |
+
# Add the calculation with the actual values
|
| 218 |
+
test_positive_prob = test_positive/population
|
| 219 |
+
calculation = f"= {sensitivity:.1%} × {prior_prob:.1%} / {test_positive_prob:.1%} = {posterior_prob:.1%}"
|
| 220 |
+
formula_ax.text(0.5, 0.35, calculation, ha='center', va='center', fontsize=16,
|
| 221 |
+
transform=formula_ax.transAxes)
|
| 222 |
+
|
| 223 |
+
# Create a highlighted conclusion box
|
| 224 |
+
conclusion_box = patches.FancyBboxPatch((0.15, 0.05), 0.7, 0.2, boxstyle=patches.BoxStyle("Round", pad=0.6),
|
| 225 |
+
facecolor='#ffffcc', edgecolor='#ffcc00', linewidth=2,
|
| 226 |
+
transform=formula_ax.transAxes)
|
| 227 |
+
formula_ax.add_patch(conclusion_box)
|
| 228 |
+
|
| 229 |
+
# Add the conclusion with emphasis
|
| 230 |
+
conclusion = f"If someone tests positive, they have a {posterior_prob:.1%} chance of having the disease"
|
| 231 |
+
formula_ax.text(0.5, 0.15, conclusion, ha='center', va='center', fontsize=18, fontweight='bold',
|
| 232 |
+
transform=formula_ax.transAxes)
|
| 233 |
+
|
| 234 |
+
plt.tight_layout()
|
| 235 |
+
plt.subplots_adjust(top=0.92, hspace=0.1, wspace=0.1)
|
| 236 |
+
|
| 237 |
+
return fig
|
| 238 |
+
|
| 239 |
+
def explain_bayes(prior_prob, sensitivity, specificity):
|
| 240 |
+
"""Generate the Bayes' theorem explanation and visualization."""
|
| 241 |
+
population = 1000
|
| 242 |
+
|
| 243 |
+
# Calculate values based on Bayes theorem
|
| 244 |
+
true_positive = prior_prob * sensitivity * population
|
| 245 |
+
false_positive = (1 - prior_prob) * (1 - specificity) * population
|
| 246 |
+
true_negative = (1 - prior_prob) * specificity * population
|
| 247 |
+
false_negative = prior_prob * (1 - sensitivity) * population
|
| 248 |
+
|
| 249 |
+
# Calculate posterior probability (positive predictive value)
|
| 250 |
+
test_positive = true_positive + false_positive
|
| 251 |
+
test_positive_prob = test_positive / population
|
| 252 |
+
posterior_prob = true_positive / test_positive if test_positive > 0 else 0
|
| 253 |
+
|
| 254 |
+
# Create the visualization
|
| 255 |
+
fig = create_bayes_visualization(prior_prob, sensitivity, specificity, population)
|
| 256 |
+
|
| 257 |
+
# Generate explanation text with clearer explanations of the percentages
|
| 258 |
+
explanation = f"""
|
| 259 |
+
### Medical Test Example Explained Step-by-Step
|
| 260 |
+
|
| 261 |
+
Imagine a medical test for a disease that affects {prior_prob:.1%} of the population (prior probability).
|
| 262 |
+
|
| 263 |
+
**What the percentages mean:**
|
| 264 |
+
|
| 265 |
+
1. **Disease Prevalence ({prior_prob:.1%})**:
|
| 266 |
+
- This means that out of every 100 people, about {int(prior_prob*100)} people have the disease
|
| 267 |
+
- In our population of 1,000 people, {int(prior_prob*population)} people have the disease and {int((1-prior_prob)*population)} people don't
|
| 268 |
+
|
| 269 |
+
2. **Test Sensitivity ({sensitivity:.1%})**:
|
| 270 |
+
- This means the test correctly identifies {sensitivity:.1%} of people who actually have the disease
|
| 271 |
+
- Out of the {int(prior_prob*population)} people with the disease:
|
| 272 |
+
* {int(true_positive)} people test positive (true positives) = {int(prior_prob*population)} × {sensitivity:.1%}
|
| 273 |
+
* {int(false_negative)} people test negative (false negatives) = {int(prior_prob*population)} × {(1-sensitivity):.1%}
|
| 274 |
+
|
| 275 |
+
3. **Test Specificity ({specificity:.1%})**:
|
| 276 |
+
- This means the test correctly identifies {specificity:.1%} of people who don't have the disease
|
| 277 |
+
- Out of the {int((1-prior_prob)*population)} people without the disease:
|
| 278 |
+
* {int(true_negative)} people test negative (true negatives) = {int((1-prior_prob)*population)} × {specificity:.1%}
|
| 279 |
+
* {int(false_positive)} people test positive (false positives) = {int((1-prior_prob)*population)} × {(1-specificity):.1%}
|
| 280 |
+
|
| 281 |
+
4. **Probability of Positive Test ({test_positive_prob:.1%})**:
|
| 282 |
+
- This is the total percentage of people who test positive, regardless of whether they have the disease
|
| 283 |
+
- It's calculated by adding:
|
| 284 |
+
* True positives: {int(true_positive)} people = {prior_prob:.1%} × {sensitivity:.1%} × 1,000
|
| 285 |
+
* False positives: {int(false_positive)} people = {(1-prior_prob):.1%} × {(1-specificity):.1%} × 1,000
|
| 286 |
+
- Total positive tests: {int(test_positive)} people out of 1,000 = {test_positive_prob:.1%} of the population
|
| 287 |
+
|
| 288 |
+
**How the formula works:**
|
| 289 |
+
|
| 290 |
+
Bayes' theorem calculates the probability that someone actually has the disease if they test positive:
|
| 291 |
+
|
| 292 |
+
P(Disease|Positive) = P(Positive|Disease) × P(Disease) / P(Positive)
|
| 293 |
+
|
| 294 |
+
Breaking this down with our numbers:
|
| 295 |
+
- P(Positive|Disease) = Sensitivity = {sensitivity:.1%}
|
| 296 |
+
- P(Disease) = Prior Probability = {prior_prob:.1%}
|
| 297 |
+
- P(Positive) = Probability of a positive test = {test_positive_prob:.1%}
|
| 298 |
+
|
| 299 |
+
Putting these into the formula:
|
| 300 |
+
- Posterior Probability = {sensitivity:.1%} × {prior_prob:.1%} ÷ {test_positive_prob:.1%}
|
| 301 |
+
- = {sensitivity * prior_prob:.1%} ÷ {test_positive_prob:.1%}
|
| 302 |
+
- = {posterior_prob:.1%}
|
| 303 |
+
|
| 304 |
+
**The key insight:** If someone tests positive, they have a {posterior_prob:.1%} chance of having the disease, not {sensitivity:.1%} as many people might think!
|
| 305 |
+
|
| 306 |
+
This is often surprising because:
|
| 307 |
+
1. Even a good test ({sensitivity:.1%} accurate) can give misleading results when a disease is rare
|
| 308 |
+
2. Most positive results might actually be false alarms when testing for rare conditions
|
| 309 |
+
3. The more common a disease is, the more likely a positive test is to be correct
|
| 310 |
+
"""
|
| 311 |
+
|
| 312 |
+
return fig, explanation
|
| 313 |
+
|
| 314 |
+
# Create the Gradio interface
|
| 315 |
+
with gr.Blocks(title="Bayes' Theorem Visualizer") as demo:
|
| 316 |
+
gr.Markdown("# Bayes' Theorem Visualizer")
|
| 317 |
+
gr.Markdown("""
|
| 318 |
+
Bayes' theorem helps us update our beliefs based on new evidence. This interactive tool visualizes how prior probability,
|
| 319 |
+
sensitivity, and specificity affect the posterior probability in a medical testing scenario.
|
| 320 |
+
|
| 321 |
+
Adjust the sliders below and see how the results change in real-time!
|
| 322 |
+
""")
|
| 323 |
+
|
| 324 |
+
with gr.Column():
|
| 325 |
+
with gr.Group():
|
| 326 |
+
gr.Markdown("### Adjust Parameters")
|
| 327 |
+
|
| 328 |
+
prior_prob = gr.Slider(
|
| 329 |
+
minimum=0.01, maximum=0.5, value=0.1, step=0.01,
|
| 330 |
+
label="Disease Prevalence (Prior Probability)",
|
| 331 |
+
info="What percentage of the population has the disease?"
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
sensitivity = gr.Slider(
|
| 335 |
+
minimum=0.5, maximum=1.0, value=0.9, step=0.01,
|
| 336 |
+
label="Test Sensitivity (True Positive Rate)",
|
| 337 |
+
info="How good is the test at detecting people who have the disease?"
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
specificity = gr.Slider(
|
| 341 |
+
minimum=0.5, maximum=1.0, value=0.9, step=0.01,
|
| 342 |
+
label="Test Specificity (True Negative Rate)",
|
| 343 |
+
info="How good is the test at correctly identifying people who don't have the disease?"
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
output_plot = gr.Plot(label="Visualization")
|
| 347 |
+
output_text = gr.Markdown(label="Explanation")
|
| 348 |
+
|
| 349 |
+
with gr.Accordion("Key Terms", open=False):
|
| 350 |
+
gr.Markdown("""
|
| 351 |
+
- **Prior Probability (Prevalence)**: The initial probability of having a disease before testing
|
| 352 |
+
- **Sensitivity**: The ability to correctly identify those with the disease (true positive rate)
|
| 353 |
+
- **Specificity**: The ability to correctly identify those without the disease (true negative rate)
|
| 354 |
+
- **Posterior Probability**: The updated probability of having the disease after a positive test
|
| 355 |
+
- **True Positive**: Correctly identified as having the disease
|
| 356 |
+
- **False Positive**: Incorrectly identified as having the disease (also called a "Type I error")
|
| 357 |
+
- **True Negative**: Correctly identified as not having the disease
|
| 358 |
+
- **False Negative**: Incorrectly identified as not having the disease (also called a "Type II error")
|
| 359 |
+
""")
|
| 360 |
+
|
| 361 |
+
# Update when any parameter changes
|
| 362 |
+
for param in [prior_prob, sensitivity, specificity]:
|
| 363 |
+
param.change(
|
| 364 |
+
explain_bayes,
|
| 365 |
+
inputs=[prior_prob, sensitivity, specificity],
|
| 366 |
+
outputs=[output_plot, output_text]
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
# Add examples
|
| 370 |
+
gr.Examples(
|
| 371 |
+
examples=[
|
| 372 |
+
[0.01, 0.99, 0.99], # Rare disease, excellent test
|
| 373 |
+
[0.1, 0.9, 0.9], # Common scenario
|
| 374 |
+
[0.3, 0.8, 0.7], # More common disease, less accurate test
|
| 375 |
+
[0.5, 0.7, 0.95] # Very common disease, asymmetric test accuracy
|
| 376 |
+
],
|
| 377 |
+
inputs=[prior_prob, sensitivity, specificity],
|
| 378 |
+
outputs=[output_plot, output_text],
|
| 379 |
+
fn=explain_bayes,
|
| 380 |
+
label="Try These Examples"
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
# Initialize the visualization
|
| 384 |
+
demo.load(
|
| 385 |
+
explain_bayes,
|
| 386 |
+
inputs=[prior_prob, sensitivity, specificity],
|
| 387 |
+
outputs=[output_plot, output_text]
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
# Launch the app
|
| 391 |
+
if __name__ == "__main__":
|
| 392 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
matplotlib>=3.5.0
|
| 3 |
+
numpy>=1.20.0
|
| 4 |
+
seaborn>=0.11.0
|